УДК 519.6

Вариационные неравенства и принцип виртуальных перемещений

Демьянков Н.А.

Ярославский государственный университет им. П.Г. Демидова

e-mail: praetoriax@gmail.com получена 11 мая 2010

Ключевые слова: операторное включение, вариационное неравенство, многозначное отображение, аналитическая статика

Доказывается существование решения включения $0 \in A(x) + N_Q(x)$, в котором A – многозначный псевдомонотонный оператор из рефлексивного пространства V в сопряжённое к нему V^* , N_Q – нормальный конус к слабо компактному и, вообще говоря, невыпуклому множеству $Q \subset V$, имеющему ненулевую эйлерову характеристику $\chi(Q)$.

Введение. В работе изучается операторное включение

$$0 \in \mathscr{A}(x) + N_Q(x). \tag{1}$$

Устанавливается разрешимость включения (1) в случае, когда \mathscr{A} – псевдомонотонный оператор из рефлексивного пространства V в сопряжённое к нему V^* , N_Q – нормальный конус к ограниченному замкнутому множеству $Q\subset V$, имеющему ненулевую эйлерову характеристику $\chi(Q)$. В большинстве исследований, посвящённых включению (1), Q является выпуклым множеством. Отказ от этого неестественного для приложений к аналитической статике и экстремальным задачам условия представляется наиболее существенным в настоящей статье.

В первом её пункте приводятся определения многозначных отображений (мотображений) монотонного типа. Второй пункт содержит основной результат — теорему 1 о разрешимости соответствующего включению (1) вариационного неравенства. Эта теорема приводит к новым утверждениям даже для однозначных операторов, действующих в конечномерных пространствах. Пример такого рода, относящийся к аналитической статике, обсуждается в заключительном третьем пункте. Там же приводятся некоторые дополнения к теореме 1.

Введём обозначения: $cl(\mathfrak{M}), int(\mathfrak{M}), \partial \mathfrak{M}$ – замыкание (внутренность, граница) подмножества \mathfrak{M} метрического пространства $(\mathfrak{R}, \rho), d_{\mathfrak{R}}(x, \mathfrak{M}) = inf\{\rho(x, y), y \in \mathfrak{M}\}$

— расстояние в метрике ρ от элемента x до множества \mathfrak{M} ; метрика ρ в банаховом пространстве X с нормой $\|v\|$ вводится равенством $\rho(x,y) = \|x-y\|; X^*$ — сопряженное к X пространство; $\langle x, x^* \rangle$ — значение функционала $x^* \in X^*$ на элементе $x \in X$; $s(x^*, D) = \sup\{\langle x, x^* \rangle, x \in D\}$ — опорная функция множества $D \subset X$; Cv(X) — совокупность непустых выпуклых замкнутых подмножеств пространства X; $B_X = \{v \in X, \|v\| \le 1\}$ — единичный шар пространства X. Все банаховы пространства рассматриваются над полем \mathbb{R} действительных чисел.

Через $\Lambda(D)$ обозначается совокупность функций $h\colon D\to \mathbb{R}$, удовлетворяющих локальному условию Липшица. Если $h\in \Lambda(D), \ x\in int(D), \ v$ – произвольный элемент из X, то число

$$h^{\circ}(x;v) = \overline{\lim}_{y \to x, t \to +0} \frac{h(y+tv) - h(y)}{t}$$

конечно. Множество $\partial h(x) = \{x^* \in X^*, \langle v, x^* \rangle \leq h^\circ(x, v) \forall v \in X\}$ называют субдифференциалом Кларка функционала h в точке x; оно принадлежит классу $Cv(X^*)$. Справедливо равенство [1]

$$h^{\circ}(x, v) = \max\{\langle v, x^* \rangle, x^* \in \partial h(x)\}.$$

Функционал h называют регулярным в точке x, если для каждого v из X существует обычная производная

$$h'(x;v) = \lim_{t \to 0} \frac{h(x+tv) - h(x)}{t}$$

по направлению v и $h^{\circ}(x;v) = h'(x;v) \forall v \in X$.

М-отображение \mathscr{F} множества D_1 во множество D_2 – это оператор, сопоставляющий элементу x из D_1 некоторое множество $\mathscr{F}(x) \subset D_2$; если $D \subset D_1$, то $\mathscr{F}(D) = \bigcup_{x \in D} \mathscr{F}(x)$ – область значений м-отображения \mathscr{F} на множестве D;

$$\mathscr{F}_{+}^{-1}(D_0) = \{ x \in D_1, \mathscr{F}(x) \subset D_0 \} -$$

малый прообраз множества $D_0 \subset D_2$; $Gr(\mathscr{F}) = \{(x_1, x_2) \in D_1 \times D_2, x_1 \in D_1, x_2 \in \mathscr{F}(x_1)\}$ — график отображения \mathscr{F} . М-отображение \mathscr{F} топологического пространства D_1 в топологическое пространство D_2 полунепрерывно сверху, если для любого открытого множества $D_0 \subset D_2$ его малый прообраз $\mathscr{F}_+^{-1}(D_0)$ есть открытое множество в D_1 [2], [3]. Отображение $\mathscr{F}: D_1 \to D_2$ (D_1, D_2 — подмножества банаховых пространств X, Y) ограничено, если для каждого ограниченного множества $D \subset D_1 \subset X$ область значений $\mathscr{F}(D)$ есть ограниченное подмножество пространства Y; если $\mathscr{F}(x) \in Cv(Y)$ для любого $x \in D$, то пишут $\mathscr{F}: D_1 \to Cv(Y)$.

1. Отображения монотонного типа. Ниже V – сепарабельное рефлексивное банахово пространство, $\|v\|$ и $\|v^*\|_*$ – нормы в V и сопряжённом к нему пространстве V^* , через \rightharpoonup и \rightarrow обозначены слабая и сильная сходимости соответственно, $\Gamma(V)$ – совокупность конечномерных подпространств пространства V. Последовательность $E_n, n = 1, 2, \cdots$ класса $\Gamma(V)$ назовём исчерпывающей пространство V, если $E_n \subset E_{n+1}$ для любого n и $cl(\cup_n E_n) = V$.

М-отображение $\mathscr{B}: V \to Cv(V^*)$ монотонно, если оно удовлетворяет условию

$$\langle v_1 - v_2, v_1^* - v_2^* \rangle \ge 0$$
 $(v_i \in V, v_i^* \in \mathcal{B}(v_i), i = 1, 2)$.

Имеются многочисленные модификации понятия монотонного оператора. Ввиду значительного разнобоя в терминологии приведём наиболее удобное для наших целей определение псевдомонотонного оператора. М-отображение $\mathscr{B}: V \to Cv(V^*)$ назовём псевдомонотонным, если оно ограничено и удовлетворяет следующему условию: для произвольной последовательности $(x_n, x_n^*) \in Gr(\mathscr{B})$, обладающей свойствами

$$x_n \rightharpoonup x, \quad x_n^* \rightharpoonup x^*, \quad \overline{\lim}_{n \to \infty} \langle x_n, x_n^* \rangle \le \langle x, x^* \rangle ,$$
 (2)

справедливы соотношения

$$x^* \in \mathscr{B}(x), \quad \lim_{n \to \infty} \langle x_n, x_n^* \rangle = \langle x, x^* \rangle.$$

Совокупность псевдомонотонных операторов $\mathscr{B}\colon V\to Cv(V^*)$ обозначим символом PM(V). Ради краткости будем писать $x_n\overset{\mathscr{B}}{\to} x$, если существует последовательность $(x_n,x_n^*)\in Gr(\mathscr{B})$, для которой справедливы соотношения (2). Сходимость $x_n\overset{\mathscr{B}}{\to} x$ эквивалентна [4] предположениям

$$x_n \rightharpoonup x$$
, $\lim_{n \to \infty} s(x - x_n, \mathscr{B}(x_n)) \ge 0$.

Приведённое определение псевдомонотонного оператора представляет секвенциальный вариант более общих определений [3], в которых вместо обычных последовательностей рассматриваются сети и ослаблено требование ограниченности. Если $h\colon V\to\mathbb{R}$ – выпуклый ограниченный на каждом шаре RB_V функционал, то оператор $\mathscr{B}(x)=\partial h(x)$ одновременно и монотонен, и псевдомонотонен. Более общие примеры монотонных и псевдомонотонных операторов, а также обсуждение соотношений между этими классами операторов можно найти в [3]-[9].

Пусть $E \in \Gamma(V)$. Наделим пространство E структурой евклидова пространства и отождествим с E пространство E^* . Обозначим через j_E оператор вложения $j_E \colon E \to V$ пространства E в пространство V, а через j_E^* – сопряженный к нему оператор из V^* в $E^* = E$. Псевдомонотонный оператор $\mathscr{B} \colon V \to Cv(V^*)$ индуцирует на пространстве E оператор $\mathscr{B}_E = j_E^* \mathscr{B} j_E \colon E \to Cv(E)$, иногда называемый следом оператора \mathscr{B} на пространстве E. Как нетрудно видеть, отображение \mathscr{B}_E ограничено и полунепрерывно сверху.

Обозначим через $\Lambda_0(V)$ часть класса $\Lambda(V)$, состоящую из тех функционалов g, для которых м-отображение $\mathscr{B}(x) = \partial g(x) \, (x \in V)$ псевдомонотонно. В этом случае отображение \mathscr{B} назовём потенциальным, функционал g – потенциалом отображения \mathscr{B} . Функционалы класса $\Lambda_0(V)$ слабо полунепрерывны снизу [4],[5].

Ниже рассматривается множество Q, определяемое равенством

$$Q = \{ x \in V, g(x) \le 0 \}. \tag{3}$$

Всюду далее $g \in \Lambda_0(V)$, $\mathscr{B} = \partial g \colon V \to V^*$ — псевдомонотонный оператор. Помимо этих условий, обеспечивающих слабую замкнутость множества Q, далее будут использоваться дополнительные предположения, гарантирующие сравнительную простоту множества Q. Положим $M = \{x \in V, g(x) = 0\}$ и введём условия типа регулярности множества M:

 (I_g) множество M непусто, и если $x \in M$, то $0 \notin \mathcal{B}(x)$ и $g'(x;v) = g^*(x;v)$; (II_g) если $x_n \in Q, x_n \xrightarrow{\mathcal{B}} x$ и $g(x_n) \to 0$, то $x \in M$. Условия $(I_g), (II_g)$ влекут за собой равенства

$$int(Q) = \{x \in V, g(x) < 0\}, \quad \partial Q = M.$$

Для каждого x из Q определены касательный и нормальный конусы Кларка $T_Q(x)$ и $N_Q(x)$; в рассматриваемом случае они могут быть заданы соотношениями $T_Q(x) = V, N_Q(x) = \{0\}$, если $x \in int(Q)$ и $T_Q(x) = \{v \in V, g^0(x, v) \leq 0\}, N_Q(x) = \bigcup_{\lambda \geq 0} \lambda \mathscr{B}(x)$, если $x \in \partial Q$ (см. [1], гл. 2). Определим многозначное отображение $\Pi \colon Q \to Cv(V)$ равенством $\Pi(x) = x + T_Q(x)$. Таким образом, для каждого x из Q множество $\Pi(x)$ – это приставленный к x касательный конус. Введём ещё одно условие регулярности:

 (III_g) если $x_n \in M$ и $x_n \rightharpoonup x$, то для любой исчерпывающей V последовательности конечномерных пространств E_n имеет место равенство

$$\lim_{n\to\infty} d_V(x,\Pi(x_n)\cap E_n) = 0.$$

Условия (I_g) , (II_g) фигурируют в статье [4]. Вместо условия (III_g) в этой работе используется более жёсткое, но в достаточной мере обозримое условие типа псевдомонотонности оператора \mathscr{B} :

 (α_0) для любой последовательности $x_n \in M, x_n \stackrel{\mathscr{B}}{\to} x$ справедливо соотношение

$$\overline{\lim}_{n \to \infty} s(v - x_n, \mathscr{B}(x_n)) \le s(v - x, \mathscr{B}(x)) \qquad \forall v \in V.$$

Для однозначного псевдомонотонного оператора $\mathscr{B}\colon V\to V^*$ условие (α_0) выполнено. В частности, если функционал g дифференцируем по Гато в каждой точке множества M, то условие (III_q) становится лишним.

Через S(V) обозначим совокупность ограниченных м-отображений $\mathscr{A}\colon V\to Cv(V^*)$, удовлетворяющих условию

 (α) если $(x_n, x_n^*) \in Gr(A)(n=1,2,\cdots)$ и справедливы соотношения (2), то $x^* \in A(x)$ и $x_n \to x$.

Однозначные отображения близкого вида изучались многими авторами(см., например, [4], [9] и приведённую там литературу). Примеры многозначных отображений класса S(V) рассмотрены в [4], [8]. Без труда устанавливается включение $S(V) \subset PM(V)$; для бесконечномерных пространств V это включение является строгим. Вместе с тем, если $\mathscr{A} \in S(V)$, $\mathscr{B} \in PM(V)$, то $\mathscr{A} + \mathscr{B} \in S(V)$. Для конечномерного пространства V включение $\mathscr{A} \in S(V)$ эквивалентно ограниченности и полунепрерывности сверху отображения $\mathscr{A} : V \to Cv(V)$; в данном случае PM(V) = S(V).

2. Разрешимость вариационных неравенств. Напомним некоторые понятия алгебраической топологии. Пусть (\mathfrak{R}, ρ) – метрическое пространство, $H_l(\mathfrak{R}), l = 0, 1, \cdots$ – группа целочисленных гомологий с компактными носителями (см. [10], гл. 7), $b_l(\mathfrak{R})$ – ранг группы $H_l(\mathfrak{R})$, называемый l-ым числом Бетти пространства \mathfrak{R} . Если $b_l(\mathfrak{R}) < \infty \forall l$ и $b_l(\mathfrak{R}) = 0$ при $l > l_0$, то число $\chi(\mathfrak{R}) = b_0(\mathfrak{R}) - b_1(\mathfrak{R}) + \cdots + (-1)^{l_0} b_{l_0}(\mathfrak{R})$ называют эйлеровой характеристикой пространства \mathfrak{R} .

Конечность $\chi(\mathfrak{R})$ означает сравнительную простоту пространства \mathfrak{R} . В естественных предположениях относительно просто введенное выше множество $Q \in V$, рассматриваемое с индуцированной из объемлющего пространства V метрикой.

Предложение 1. Пусть функционал g класса $\Lambda_0(V)$ удовлетворяет условиям $(I_g)-(III_g)$, множество Q определено равенством (3) и ограничено. Тогда

- 1) существует такое пространство E_0 из $\Gamma(V)$, что если $E \in \Gamma(V)$ и $E_0 \subset E$, то группы гомологий пространств Q и $Q \cap E$ изоморфны: $H_l(Q) \cong H_l(Q \cap E), l = 0, 1, \cdots$;
- 2) имеет смысл эйлерова характеристика $\chi(Q)$ пространства Q и справедливо равенство $\chi(Q) = \chi(Q \cap E)(E \in \Gamma(V), E_0 \subset E)$.

Предложение 1 следует из результатов работы [4]. Там же доказано, что в качестве пространства E_0 можно взять пространство E_k , где $\{E_n\}$ – исчерпывающая V последовательность конечномерных пространств, а k – достаточно большое число; таким образом $\chi(Q \cap E_n) = \chi(Q) \forall n > n_0$.

В пределах этого пункта считаем выполненными условия предложения 1. С учётом приведённого выше описания конуса $N_Q(x)$ получаем, что включение (1) эквивалентно выполнению соотношений

$$0 \in \mathcal{A}(x) + \lambda \partial g(x), \quad \lambda \ge 0, \quad g(x) \le 0, \quad \lambda g(x) = 0.$$
 (4)

Равенство $\lambda g(x) = 0$ – это условие дополнительной нежёсткости. Из (4) следует, например, что если g(x) < 0, то $0 \in \mathscr{A}(x)$. Соотношения типа (4) характерны для аналитической статики и экстремальных задач. Если x – решение включения (1), то существует элемент x^* из $\mathscr{A}(x)$ такой, что

$$\langle w, x^* \rangle \ge 0 \quad \forall w \in T_Q(x) \,, \tag{5}$$

верно и обратное. Более традиционная в теории вариационных неравенств форма записи (5) имеет вид

$$\langle v - x, x^* \rangle > 0 \quad \forall v \in \Pi(x) .$$
 (6)

Соотношения (4)-(6) представляют интерпретации включения (1).

Для исследования включения (1) введём ещё одно условие на структуру множества Q.

 (IV_g) : если $x_n \in M$ и $x_n \stackrel{\mathscr{A}}{\to} x$, то из неравенства $g^{\circ}(x,v-x) < 0$ следует неравенство $g^{\circ}(x_n,v-x_n) < 0$ при больших n.

Как нетрудно видеть, если отображение \mathscr{B} удовлетворяет условию (α_0) , то условие (IV_g) выполнено. В частности, это условие автоматически выполнено для однозначного псевдомонотонного отображения \mathscr{B} , поэтому для дифференцируемых по Гато функционалов g условие (IV_g) не нуждается в проверке.

Теорема 1. Пусть выполнены условия $(I_g) - (IV_g)$ и множество Q ограничено. Если $\chi(Q) \neq 0$, то для любого отображения $\mathscr A$ класса PM(V) включение (1) имеет решение.

Доказательство. Для отображений \mathscr{A} класса S(V) утверждение теоремы 1 доказано в [4]. В общем случае воспользуемся аппроксимациями псевдомонотонного опе-

ратора последовательностью отображений класса S(V) и подходящим предельным процессом.

Как известно [11], в сепарабельном рефлексивном пространстве V может быть введена норма, эквивалентная первоначальной, относительно которой V и V^* – локально равномерно выпуклые пространства. Поэтому, не нарушая общности, можно предположить, что подобным свойством обладает исходная норма в пространстве V. Данное предположение обеспечивает (см., например, [11]) справедливость следующих условий: 1° функционал $f_0(x) = ||x||^2/2$ дифференцируем на пространстве V; 2° равенство $J(x) = f'_0(x)$ определяет однозначный оператор класса S(V); 3° для произвольного x из V справедливы равенства $\langle x, J(x) \rangle = ||x||^2$, $||J(x)||_* = ||x||$.

Так как $J \in S(V)$, то для любого натурального числа n многозначное отображение $\mathscr{A}_n = \mathscr{A} + \frac{1}{n}J$ принадлежит классу S(V). В силу результатов работы [4] найдётся такой элемент $x_n \in Q$, что $0 \in \mathscr{A}_n(x_n) + N_Q(x_n)$. Отсюда вытекает существование элемента x_n^* из $\mathscr{A}(x_n)$, удовлетворяющего следующему варианту соотношения (6)

$$\left\langle v - x_n, x_n^* + \frac{1}{n} J(x_n) \right\rangle \ge 0 \forall v \in \Pi(x_n).$$
 (7)

Последовательности x_n, x_n^* ограничены в пространствах V, V^* . Ввиду рефлексивности пространства V, можно, не нарушая общности, считать, что $x_n \rightharpoonup x, x_n^* \rightharpoonup x^*$. Так как $x_n \rightharpoonup x$, то в силу условия (III_g) имеет место равенство

$$\lim_{n\to\infty} d_V(x,\Pi(x_n)) = 0.$$

Поэтому найдётся такая последовательность $v_n \in \Pi(x_n)$, что $v_n \to x$. Согласно неравенству (7)

$$\left\langle v_n - x_n, x_n^* + \frac{1}{n} J(x_n) \right\rangle \ge 0.$$

Последнее неравенство влечёт за собой оценку

$$\overline{\lim}_{n \to \infty} \langle x_n, x_n^* \rangle \le \langle x, x^* \rangle .$$

Таким образом, $x_n \stackrel{\mathscr{A}}{\to} x$, а поскольку $\mathscr{A} \in PM(V)$, то $x^* \in \mathscr{A}(x)$ и $\langle x_n, x_n^* \rangle \to \langle x, x^* \rangle$ при $n \to \infty$.

Из оценки (7) вытекает неравенство

$$\langle v - x, x^* \rangle \ge 0 \quad \forall \in \Pi_0 = \overline{\lim}_{n \to \infty} \Pi(x_n).$$
 (8)

В (8) Π_0 – верхний топологический предел последовательности множеств $\Pi(x_n), n=1,2,\cdots$, состоящий из тех элементов v, каждая окрестность которых пересекается с бесконечным числом множеств $\Pi(x_n)$.

Если $g^{\circ}(x, v - x) < 0$, то в силу условия (IV_g) при всех достаточно больших n выполнено неравенство $g^{\circ}(x_n, v - x_n) < 0$, в частности, $v \in \Pi(x_n)$. Отсюда легко следует включение $\Pi(x) \subset \Pi_0$. Поэтому (8) верно для всех v из множества $\Pi(x)$, и x есть решение вариационного неравенства (6). Теорема доказана.

3. Примеры и замечания. Пусть на точки $P_i(x_i, y_i, z_i)$ трёхмерного евклидова пространства \mathbb{R}^3 действуют заданные силы $F_i(P) \in \mathbb{R}^3 (i=1,\cdots,n)$ и пусть на эту систему наложены односторонние связи

$$g_k(P) \le 0 \quad (k = 1, \cdots, m); \tag{9}$$

здесь и далее \mathbb{R}^{3n} – прямое произведение n евклидовых пространств \mathbb{R}^3 , отождествляемое с сопряжённым к нему, $P=(P_1,\cdots,P_n)\in\mathbb{R}^{3n},\ F(P)=(F_1(P),\cdots,F_n(P))\in\mathbb{R}^{3n}$. Если P – точка равновесия данной механической системы, то согласно принципу виртуальных перемещений (см., например, [12]) найдутся такие числа $\lambda_i, i=1,\cdots,m$ (множители Лагранжа), что выполняются соотношения

$$F(P) = \sum_{k=1}^{m} \lambda_k \nabla g_k(P), \qquad (10)$$

$$\lambda_k \ge 0, \quad g_k(P) \le 0, \quad \lambda_k g_k(P) \le 0 \quad (k = 1, \dots, m).$$
 (11)

Будем считать, что функции F_i , g_k , $\frac{\partial g_k}{\partial x_j}$ определены и непрерывны на \mathbb{R}^n . В курсах теоретической механики такого рода условия молчаливо предполагаются. Вопросы существования точек равновесия также обычно игнорируются; в некоторых частных случаях система уравнений (10), (11) может быть решена в явном виде – достаточно содержательные примеры можно найти во многих руководствах.

Существование точек равновесия можно вывести из конечномерной версии теоремы 1. С этой целью введем в рассмотрение функцию

$$g(P) = \max_{1 \le k \le m} g_k(P) \quad (P \in \mathbb{R}^{3n}).$$

Как нетрудно видеть, совокупность соотношений (9) эквивалентна одному неравенству $g(P) \leq 0$. Функция $g \colon \mathbb{R}^{3n} \to \mathbb{R}$ локально липшицева, однако она может быть недифференцируемой в отдельных точках. Введём в рассмотрение множество $Q = \{P \in \mathbb{R}^{3n}, g(P) \leq 0\}$ конфигураций механической системы, допускаемых ограничениями (9). Будем считать, что Q – собственное подмножество \mathbb{R}^{3n} ; это требование гарантирует непустоту множества $M = \{P \in \mathbb{R}^{3n}, g(P) = 0\}$.

Предложение 2. Пусть $P \in M, I(P) = \{k \in \overline{1,n}, g_k(P) = 0\}$. Тогда если градиенты $\nabla g_i(P)$ $(i \in I(P))$ положительно линейно независимы, то функция g регулярна в точке P u

$$N_Q(P) = \left\{ \sum_{k \in I(P)} \lambda_k \nabla g_k(P) : \lambda_k \ge 0 \right\}.$$

Предложение 2 вытекает из результатов [1]. Условие положительной линейной независимости системы градиентов $\nabla g_k(P), k \in I(P)$ означает, что равенство

$$\sum_{k \in I(P)} \lambda_k \nabla g_k(P) = 0$$

при неотрицательных λ_k возможно лишь в случае нулевых λ_k . Систему ограничений (9) назовём в этом случае регулярной в точке P. Из предложений 1, 2 вытекает следующее следствие.

Следствие. Пусть Q — непустое ограниченное подмножество пространства \mathbb{R}^{3n} и система ограничений (9) регулярна в каждой точке P множества M. Тогда имеет смысл и конечна эйлерова характеристика $\chi(Q)$ множества Q.

Теорема 2. Пусть множество Q удовлетворяет условиям следствия и $\chi(Q) \neq 0$. Тогда для любого непрерывного силового поля F существует точка равновесия рассматриваемой механической системы.

Доказательство. Введем непрерывное отображение $\mathscr{A}(P)=-F(P)$ и положим $V=\mathbb{R}^{3n}$. Из теоремы 1 вытекает разрешимость задачи (1) для множества $Q=\{P\in\mathbb{R}^{3n},g(P)\leq 0\}$. Для завершения доказательства теоремы достаточно учесть данное выше описание конуса $N_Q(P)$.

Предположение $\chi(Q) \neq 0$ выполнено, если, например, пространство Q стягиваемо (по себе) в точку; в этом случае $\chi(Q)=1$. Эйлерова характеристика представляет хорошо изученный топологический инвариант (см., например, [10] и приведённую там литературу).

В заключение остановимся ещё на двух дополнениях к теореме 1. В её предположениях можно гарантировать существование решений у приближений Галёркина к включению (1). Именно, пусть E_n – исчерпывающая V последовательность пространств класса $\Gamma(V)$, $j_n = j_{E_n} \colon E_n \to V$ – оператор вложения E_n в V (см. п. 1), $j_n^* \colon V^* \to E_n$ – сопряжённый к j_n оператор, $\mathscr{A}_n = j_n^* \mathscr{A} j_n$, $Q_n = Q \cap E_n$. Приближением Галёркина к включению (1) назовём включение

$$0 \in \mathscr{A}_n(x) + j_n^* N_Q j_n(x), \quad x \in Q_n.$$
(12)

Теорема 3. Пусть выполнены условия теоремы 1. Тогда найдётся такое натуральное число n_0 , что при $n > n_0$ включение (12) имеет хотя бы одно решение.

Доказательство. Как отмечалось выше, $\chi(Q_n) = \chi(Q) \neq 0, n > n_0$. При любом n отображение $\mathscr{A}_n \colon E_n \to Cv(E_n)$ ограничено и полунепрерывно сверху. Теперь существование решения включения (12) вытекает из конечномерного варианта теоремы 1. Теорема доказана.

В условиях теоремы 1 включение (1) может иметь несколько решений. Однако если решение этого включения всё-таки единственно, то следует ожидать, что последовательность решений включений (12) сходится (в каком-то смысле) к решению включения (1). Точная формулировка и доказательство соответствующего утверждения представляют несомненный интерес, однако выходят за рамки данной статьи.

Без предположения $\chi(Q) \neq 0$ теорема 1, вообще говоря, неверна. Соответствующие примеры легко конструируются в случае $V = \mathbb{R}^2$. В частности, пусть Q есть кольцо в плоскости Oxy, определяемое неравенствами $1 \leq x^2 + y^2 \leq 4$, \mathscr{A} – оператор поворота плоскости Oxy вокруг начала координат на острый угол. Тогда включение (1) не имеет решений. В рассматриваемом случае $\chi(Q) = 0$. Подобные примеры можно привести и для бесконечномерного пространства V.

Вместе с тем, справедливо следующее утверждение.

Теорема 4. Пусть $g \in \Lambda_0(V)$, выполнено условие (I_g) и Q – ограниченное непустое множество. Пусть $\mathscr A$ – потенциальный оператор класса PM(V). Тогда включение (1) имеет решение.

 \mathcal{A} оказательство. В условиях теоремы множество Q – компакт в слабой топологии пространства V, потенциал f оператора \mathscr{A} – слабо полунепрерывный снизу функционал на пространстве V. Поэтому задача

$$f(x) \to \min, \qquad x \in Q$$

имеет решение x_* . В силу известных результатов ([1], с. 55) элемент x_* есть решение включения (1). Теорема доказана.

В случае потенциального оператора \mathscr{A} для оценки числа решений включения (1) можно применить мощные методы вариационного исчисления в целом; в частности, здесь могут оказаться полезными теория Люстерника–Шнирельмана, теория Морса и их многочисленные модификации.

В заключение хочется поблагодарить моего научного руководителя Климова Владимира Степановича за помощь в написании данной статьи.

Список литературы

- 1. Кларк Ф., Оптимизация и негладкий анализ. М.: Наука, 1988.
- 2. Борисович Ю.Г., Гельман Б.Д., Мышкис А.Д., Обуховский В.В. Топологические методы в теории неподвижных точек многозначных отображений // УМН. 1980. Т. 35, №1. С. 59–126.
- 3. Gossez J.P. Surjectivity Results for Pseudo-Monotone Mappings in Complementary Systems // Journal of Math. Anal. and Appl. 1976. V. 53. P. 484–494.
- 4. Климов В.С. Топологические характеристики многозначных отображений и липшицевых функционалов // Изв. РАН. Сер. мат. 2008. Т. 72, № 4. С. 97 120.
- 5. Browder F.E. Pseudo-monotone operators and the direct method of the calculus of variations // Arch. Ration. Mech. Anal. 1970. V. 38. P. 268–277.
- 6. Лионс Ж.Л. Некоторые методы решения нелинейных краевых задач. М.: Мир, 1972.
- 7. Скрыпник И.В. Нелинейные эллиптические уравнения высшего порядка. Киев: Наукова думка, 1973.
- 8. Климов В.С. Бесконечномерный вариант теоремы Пуанкаре–Хопфа и гомологические характеристики функционалов // Матем. сб. 2001. Т. 192, №1. С. 51–66.
- 9. Рязанцева И.П. Избранные главы теории операторов монотонного типа. Нижний Новгород: Изд-во НГТУ, 2008.
 - 10. Масси У. Теория гомологий и когомологий. М.: Мир, 1981.
- 11. Trojanski S.L. On locallu uniform convexs and differentiable norms in certain nonseparable Banach Spaces // Studia Math. 1970. V. 37. P. 173-180.
 - 12. Четаев Н.Г. Теоретическая механика. М.: Наука, 1987.

Variational inequalities and the principle of virtual displacements

Demyankov N.A.

Keywords: operator inclusion, variational inequality, multivalued mapping, analytical statics

The existence of a solution of the inclusion $0 \in A(x) + N_Q(x)$ is proved, in which A is a multivalued pseudomonotone operator from the reflexive space V to the conjugate space to it V^* , N_Q is a normal cone to the weakly compact and, generally speaking, not convex set $Q \subset V$, with nonzero euler characterization $\chi(Q)$.

Сведения об авторе: Демьянков Николай Андреевич,

Ярославский государственный университет им. П.Г. Демидова, аспирант