Mooden. u ananrus ungopm. cucmem. T.17, Ne4 (2010) 7-16
YK 004.052.42:004.056.55

Automated Correctness Proof of Algorithm Variants
in Elliptic Curve Cryptography !

Anikeev M. 2, Madlener F., Schlosser A., Huss S.A., Walther C.

Southern Federal University, Taganrog, Russia
Technische Universitit Darmstadt, Germany

e-mail: anikeev@Qusers.tsure.ru

received 22 August 2010

Keywords: verification, cryptography, elliptic curves

The Elliptic Curve Cryptography (ECC) is widely known as secure and reliable
cryptographic scheme. In many situations the original cryptographic algorithm is
modified to improve its efficiency in terms like power consumption or memory
consumption which were not in the focus of the original algorithm. For all this
modification it is crucial that the functionality and correctness of the original
algorithm is preserved. In particular, various projective coordinate systems are
applied in order to reduce the computational complexity of elliptic curve encryption
by avoiding division in finite fields. This work investigates the possibilities of
automated proofs on the correctness of different algorithmic variants. We introduce
the theorems which are required to prove the correctness of a modified algorithm
variant and the lemmas and definitions which are necessary to prove these goals.
The correctness proof of the projective coordinate system transformation has prac-
tically been performed with the help of the an interactive formal verification system

eriFun.

1. Introduction

The most common public key schemes today are based on RSA [9] and on the more recent
Elliptic Curve Cryptography (ECC) [5,7]. Although ECC offers shorter bit-lengths and,
thus faster calculations [6], RSA will stay with us for the foreseeable future for legacy
reasons. When it comes to real implementations of such encryption algorithms then the
question of efficiency in terms of execution time, memory usage, or power consumption of
the dedicated hardware/software systems is of utmost interest. Therefore, a considerable
research effort has been dedicated in the past in order to develop variants of encryption
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algorithms, which are more efficient compared to their basic versions. The intended
cryptographic functionality of such algorithm variants has to be guaranteed to remain
unchanged, however.

This paper is aimed to demonstrate how a formal verification system may be exploited
to provide highly automated proofs on the correctness of algorithmic variants of ECC
schemes.

2. Elliptic curve cryptography

In general case an elliptic curve over a finite field is defined as the following cubic
equation:

E: v’ +azy + asy = 23 + asx® + auzx + ag, (1)

where a1, as, as, a4, ag are constants and x, y are elements of an arbitrary finite field. The
set of solutions {(x,y)}, which meet the elliptic curve equation, define the points of the
elliptic curve E. By defining an appropriate addition (EC-Add) operation and an extra
point @, called the point at infinity, these points become an additive Abelian group with
() as a neutral element.

Standard RSA algorithm relies on irreversibility of exponentiation in finite fields; ECC
in turn exploits the irreversibility of multiplication between a pre-selected EC point P
and an arbitrary scalar k. This k- P operation can be performed by repeated EC-Add
and EC-Double operations, where EC-Double stands for point doubling, i.e. adding an
EC point to itself. The EC operations in turn are composed of basic operations in the
underlying finite field.

P+P+ ... +P+P=kP=R

'

k times

with ke Nand PR € F.
Consider the following particular case of an elliptic curve:

E/K :y* = 2® + ax + b,char(K) # 2,3, (2)

where K is a GF(p), a € K, b € K, and the discriminant A = —16(4a® +27b%) meets
the condition A # 0 (mod p).

Let P = (z1,y1) € E(K) and Q = (z9,y2) € E(K), where P # +Q, P #0, Q #0.
Then the EC-Add operation is defined as follows: P + @ = (x3,y3), where

2
T3 = (u) — T2 — X1, (3)

To — Iq

Y2 — U1
= — 23) — Y1 4
= (220 o) - 0

Equations (3) and (4) represent the general case of the FC-Add algorithm in affine
coordinate system 2; the general case of EC-Double is defined as 2P = P+ P = (x3,y3)
where
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322 + a\’
XT3 = ( x1+a) —2%17 (5)

w= (2 -0 - (6)

Both EC-Add and EC-Double algorithms contain operations of division in finite fields,
which demand calculation of a multiplicative inverse — an extremely expensive operation
in terms of computation time and resource usage. One of the goals in the research of
efficient hardware ECC implementations is to reduce such operations by replacing them
with more efficient alternatives.

The following EC-Double algorithm is proposed in [3]| for the elliptic curve defined
by (2) with a = —3 and Jacobian coordinate system B, where the projective point
(X : Y : Z) corresponds to the affine point (X/Z2,Y/Z3)

Algorithm 1 Double,,;
Input: P=(X;:Y): %)
Output: 2P = (X3: Y3 : Z3)

1: if P =0 then

2:  return 0

3: else

4 A <=4X,Y?

5: B <« 8Y14

6: C<=3(X1—23)(X1+ 72}
7.

8

9

D« —2A4+C?
X3<= D
. Ys<CA-D)—-B
10: Z3 <= 2Y17;
11:  return (X3:Y3:Z3)
12: end if

In order to provide compatibility with other implementations it is essential that
Algorithm 1 always returns exactly the same result as EC-Double for all the possible
input combinations. The following theorem formalizes this idea.

Theorem 1. Let m : A — B and o : P — A be two transformation functions to
transform points to projective and affine coordinates, respectively. Given the procedures

Double s and Double,,,; for doubling point in affine and projective coordinates, respec-
tively, for all p € A and all P € B holds that

Double .5 (p) = a(Double,,; (7(p))), (7)
Double .55 (a(P)) = a(Double i (P)). (8)
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3. \ériFun

The veriFun system [13] is an interactive system for the verification of statements
about programs written in the functional first-order programming language £ [12]. This
language consists of definition principles for freely generated polymorphic data types,
for procedures operating on these data types based on recursion, case analyses, let-
expressions and functional composition, and statements (called “lemmas” in £) about
the data types and the procedures. Procedures are evaluated in a call-by-value discipline.
The data types bool with constructors true and false, and N for natural numbers with
constructors 0 and *(...) for the successor function are predefined in £. Lemmas are
defined by universal quantifications using case analyses and the truth values to represent
connectives. Upon definition of a data type, each argument position of a constructor
is provided with a selector function, e.g. ~(...) is the selector of constructor *(...)
thus representing the predecessor function, and hd and tl are the selectors of the list-
constructor ::.

ECs are defined over arbitrary finite fields, a structure which can be modeled by
a set of axioms in pure first order logic. Hence, verification of properties of operations
defined on ECs is possible in first order logic—in principle. But due to the large number of
axioms and defining formulas for the operations it is not feasible to use a fully automated
first order theorem prover like Vampire [8] or E [10]. Given a set of clauses describing
the problem these provers return true, false, or out-of-memory. The latter is the most
likely result when the number of clauses grows too big. Using an interactive prover like
\/eriFun, the user is provided with intermediate results which he can analyze and use to
push the proof further in the right direction. Possible interactions are the invention of new
lemmas to support the proof or interactive proof steps in the current proof goal. Thus,
our approach is to model the arithmetic of GF(p) finite fields with recursively defined
procedures and data structures and use these procedures as a base for the implementation
of point doubling and addition in elliptic curves. In a next step we proved several lemmas
over the base procedures (by induction) and used them to perform an interactive first
order proof of Theorem 1.

4. Verification

An empty project in VeriFun contains nothing but several basic definitions, namely two
data types (“bool” and “N”), one infix function “>”, and fourteen elementary lemmas (e.g.
transitivity of “>" and “=", irreflexivity of “>", etc.), which are considered valid without
any proofs. In order to define and prove lemmas corresponding to Theorem 1 we have
added facts describing various subject areas. First of all, arithmetic operations for natural
numbers and their basic properties were introduced. Then we derived similar operations
of modular arithmetic for finite fields and prove their corresponding properties. And the
final challenge is introduction of data types, functions, and lemmas directly related to
the chosen elliptic curve equation.

The following definition of addition of z and y modulo m is given as an example of
a modular arithmetic function implemented in veriFun.
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function addm(x : N,y : Nym :N): N <=
if 70(x)

then y mod m

else T(addm(~(z),y,m)) mod m
end

An important step of transition from natural number arithmetics to finite fields was
an introduction of Fermat’s little theorem [3]. Without it, most of the facts related to
division in finite fields cannot be proved.

Theorem 2 (Fermat’s little theorem). If ged (a,p) = 1, then a?~' =1 (mod p) [3].

As soon as we consider only GF(p) (prime finite field) operations, the precondition of
the Fermat’s little theorem can be simplified to @ #Z 0 (mod p), which is indeed identical
to ged (a,p) = 1 if p is prime.

This theorem is defined in veriFun 's functional language as follows.

lemma Fermat little <=Vz,p: N

if {
if {p > 2,
if {P(p),~ 70(x mod p), false},
false},
powm(z,” (p),p) = 1,
true}

Here the symbol P denotes a recursively-defined function, which returns true if its
argument is a prime number and false otherwise. Its definition and correctness proof is
provided in [14].

Original automated verification of Fermat’s little theorem, which suits VeriFun well,
has been proposed by R. S. Boyer and J. S. Moore in 1984 in their effort to prove
correctness of the RSA algorithm [1]. The general idea of the proof is based on the
introduction of the sequence S(n, M, p) = [nM mod P, (n—1)M mod P, ..., 1M mod P].
It is proved that the product of all elements of S(p — 1, M,p) is (p — 1)!MP~! mod P,
and on the other hand S(p — 1, M, p) is always a permutation of [p— 1, ..., 2, 1] sequence,
whose product of elements is obviously (p—1)! mod P. These facts lead to the conclusion
that MP~' =1 (mod p).

In order to proceed to elliptic curve arithmetic we have to define data structures,
which are able to represent points in both affine and projective coordinates.

structure point[QX, QY] <=
inf,
put(zxc: QX yc: QY)

structure proj[QX,QY, Q7] <=

inf _proj,
put_proj(xp: QX yp: QY, zp: QF)
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Even though there is a dedicated value to represent infinity point in Jacobian co-
ordinates, namely (1 : 1 : 0), we decided to define explicit constants for representing
infinity points in both affine and projective spaces for demonstration (inf and inf proj
respectively). Doubling returns the infinity point only if the same infinity point is its
argument (AP : P € E(K)A P = —P). So doubling of the infinity point and doubling of
any other point can be viewed as two separate operations in both affine and projective
coordinates. It is also possible to employ these dedicated infinity constants in addition
operations if the following special cases are considered separately:

e If P and () are added to each other and either of them is by chance a dedicated
constant for (), another argument is returned;

e If ) = —P, then the respective dedicated constant for ) is returned;
e Otherwise, the respective general addition algorithm is used.

When the required eliptic-curve arithmetic operations are defined, it is possible to
formulate lemmas, which correspond to both statements of the target Theorem 1.

lemma Fquation 7 <= Vpl : point[N,N],a,b,p: N
if {p > 3,
if {P(p),
if {a = subm(p, 3, p),
if {?0(b mod p),true,
if {?0(yc(pl) mod p), true,
if {?0(discriminant(a,b, p)), true,
if {belongs(pl,a,b,p),
ec_dbl(pl,a,b,p)= jac2aff (ec_dbl_jac(aff2jac(pl), a,b,p),p),
truet}}},
true},
true},
true}

lemma Fquation 8 <=Vpl : proj[N,N, N],
a,b,p: N
if {p > 3,
if {P(p),
if {a = subm(p, 3, p),
if {?0(b mod p), true,
if {70(yc(jac2aff (p1,p)) mod p), true,
if {?0(discriminant(a,b, p)), true,
if {belongs(jac2aff (p1,p),a,b,p),
ec_dbl(jac2aff (p1,p), a,b,p) = jac2aff (ec_dbl jac(pl,a,b,p),p),
truet}}},
true},
true},
true}



Correctness Proof of Elliptic Curve Cryptography Algorithms 13

Verification of the target lemmas (summarized by Theorem 1) proved quite laborious
and demanded most of the transformations to be done manually. This fact was partly
caused by a substantial number of complex preconditions besides the terms, which
correspond to equations (7) and (8) directly. veriFun’s heuristics was always trying
to unfold and simplify those preconditions, despite the fact that they were needed only
in very specific situations (i.e. fraction cancellation). High complexity of both parts of
the target equation was another challenge for the system’s heuristics.

The strategy of verifying each lemma was quite similar. First of all, the defined
doubling functions for both coordinate systems treat the case of infinity-point separately.
So verification of both target statements started from application of case analysis, which
splits the entire proof tree into the obvious infinity-point case, and the complex general
case. After some automated simplification and purging projective Z-coordinate, the
general case is split to the proof of two separate equations, which characterized two
different ways of calculating z- and y-coordinates of the resulting point (i.e. in affine and
projective coordinates).

Finally, each verification step was carried out manually, with the intention to match
left and right clauses of each equation. Verification of statement (7) comprised nearly 100
manual operations, while verification of statement (8) comprised more than 160 manual
operations. These figures describe only the operations directly contained by the proofs;
there are more of them if the ones contained by auxiliary lemmas are taken into account.

5. Evaluation

We have proved that point doubling operations for elliptic curves, described by equation
(2), always return identical results either performed in affine or Jacobian projective
coordinates. Preparatory work towards the proof of this fact can be viewed as a gradual
introduction of definitions and verification of facts, which are related to the following
domains: natural-number arithmetic, basic modular arithmetic, finite fields (GF(p)), and
elliptic curves over GF(p).

Most of natural-number arithmetic and basic modular arithmetic lemmas have been
proved either automatically or with some assistance in case VeriFun’s heuristics chose
wrong proof strategy. A set of non-trivial lemmas was only needed to propagate the
properties of natural-number arithmetic operations to their analogs from modular arith-
metic.

After introduction of prime numbers, relevant lemmas and their proofs became more
complex. This was partly caused by the fact that the proof heuristics was always trying
to unfold the complex recursive definition of a prime number, instead of treating it
as an integral entity, which is characterized by some already proved properties. It is
also impossible to perform induction on prime numbers in proofs for obvious reasons.
Verification of Fermat’s little theorem demanded extensive base of sophisticated facts
related to lists, including properties of permutations and the pigeonhole principle.

As soon as the target lemmas proved extremely complex for automated verification,
VeriFun’s next-rule heuristics was turned off completely. Verification was carried out in
manual mode using only first-order transformations without application of inductions.
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Verification of the both statements (7) and (8) required basically the same set of facts
with several exceptions of very targeted simplification lemmas, which were proved separa-
tely in order to simplify the target terms. This fact supports the idea that the introduced
set of lemmas and definitions can ease verification of theorems similar to Theorem 1 for
other elliptic-curve algorithms and other types of projective coordinate systems.

6. Related Work

Results of the first major research devoted to verification of a public key encryption
algorithm were published by Boyer and Moore in 1984 [1].

Some research on verification of symmetric block ciphers has also been carried out.
Duan et al. [2] prove invertibility of several popular block-cipher algorithms using HOL-4
theorem prover.

Hurd et al. [4] use the same theorem prover to formalize elliptic curve theory in higher
order logic. The authors intend to create a mechanized ‘gold standard’ for elliptic curve
operations. They define data types to represent elliptic curve equations, sets of points,
arithmetic operations on elliptic curve points, and elliptic curve groups. The theorem,
which represents ElGamal encryption for elliptic curves, is also defined. However, as soon
as no proofs are given yet, it is hard to assume to what extent these definitions would
be suitable for automated theorem proving.

Théry [11] defines elliptic curve operations in the theorem prover Coq. He proves a
set of theorems, which form the group law for elliptic curve points.

Unlike authors of [4] and [11], we focus exclusively on a narrow practical problem of
proving equivalence of optimized elliptic curve operations and their original descriptions.
We do not intend to create a concise set of definitions suitable for further verification of
any arbitrary fact related to elliptic curves as done in [4]. The research presented in this
paper is targeted to getting the first proof-of-concept results as fast as possible, which
draws the first approximation of data types, algorithms, and facts, needed for solutions
of other similar problems.

7. Conclusion

We have presented a feasible approach to do a formal proof for the correctness of
algorithmic variants in the domain of elliptic curve cryptography. This approach has been
tested on the formal verification of the projective coordinate system, an ECC variant
which is optimized towards a minimal number of finite field inversions.

The proof has been implemented and performed with the interactive theorem prover
veriFun. During the proving process we figured out some weaknesses in its rule applica-
tion heuristic where it tries to apply an induction step over prime numbers. Thus some
manual interaction was required to apply the correct rules. This should be improved in
a future work step to allow a further automation of the verification.

Most of the introduced lemmas, their proofs, and the mathematical definitions hold
for all elliptic curves. Thus, they can be adopted and reused for other algorithmic ECC
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variants and their subsequent correctness proofs. This will reduce the effort to generate
new, and highly optimized algorithm variants with a guaranteed functional correctness.

The source file for veriFun 3.2.2 with all the proofs is available at http://bit.
tsure.ru/sites/default/files/docs/ecc.vf; the distributive of VeriFun 3.2.2 can
be requested at http://www.verifun.org.
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