УДК 519.16 + 514.172.45

Гиперграфы специального вида и анализ свойств релаксаций разрезного многогранника

Николаев А.В.

Ярославский государственный университет им. П.Г. Демидова

e-mail: Awern@yandex.ru получена 1 октября 2010

Ключевые слова: гиперграфы, релаксации разрезного многогранника, корневой полуметрический многогранник, распознавание целочисленности.

Исследуется связь между классом гиперграфов специального вида и свойствами точек релаксаций $M_{n,k}$ разрезного многогранника. Устанавливается, что при достаточно больших n в многогранниках $M_{n,4}$ и $M_{n,5}$ имеются точки, в любом разложении которых по вершинам многогранника $M_{n,3}$ нет ни одной целой вершины.

Рассмотрим множество 3-однородных смешанных гиперграфов [1] вида G = (V, E, A), где

- V множество вершин, $V = N_n = \{1, ..., n\};$
- E множество неориентированных ребер, $E = \{(i, j, k)\} \subseteq N_n \times N_n \times N_n;$
- A множество ориентированных ребер, $A = \{((i, j), k)\} \subseteq N_n \times N_n \times N_n$, где пара вершин (i, j) начало ребра, вершина k конец ребра.

Введем операцию инвертирования *i*-й вершины гиперграфа G = (V, E, A), которая преобразует все ребра, инцидентные этой вершине, следующим образом:

$$(i, j, k) \to ((j, k), i), \quad ((j, k), i) \to (i, j, k), \quad ((i, j), k) \to ((i, k), j).$$

Результатом операции инвертирования является новый 3-однородный смешанный гиперграф $G' = Inv_i G = (V, E', A').$

Аналогично определим операцию инвертирования подмножества вершин гиперграфа G, так, что $Inv_{i,j,k}(G) = Inv_i(Inv_j(Inv_k(G))).$

Нетрудно убедиться, что $Inv_i(Inv_j(G)) = Inv_j(Inv_i(G))$ и операция инвертирования подмножества вершин гиперграфа G не зависит от порядка инвертирования отдельных вершин.

Введем класс G_I гиперграфов G = (V, E, A), для которых множество неориентированных ребер E не пусто и остается непустым при всех возможных инверсиях.

$$G = (V, E, A) \in G_I \Leftrightarrow \begin{cases} E \neq \emptyset, \\ \forall W \subseteq V : G' = Inv_W(G) = (V, E', A'), \text{ rge } E' \neq \emptyset. \end{cases}$$

Таким образом, класс гиперграфов G_I замкнут относительно операции инвертирования вершин:

$$G = (V, E, A) \in G_I \implies \forall W \subseteq V : Inv_W(G) \in G_I.$$

Теорема 1. Задача распознавания вида: «Верно ли, что гиперграф G не принадлежит классу G_I?» является NP-полной.

Доказательство. Рассмотрим задачу следующего вида: «Для заданного 3 - однородного гиперграфа $\overline{G} = (V, E)$ определить, можно ли так раскрасить вершины гиперграфа в два разных цвета, чтобы ни одно ребро не было монохромным (не содержало три вершины одного цвета)?». Эта задача известна как задача о 2раскрашиваемости 3-однородного гиперграфа и является NP-полной [2].

Множество 3-однородных гиперграфов $\overline{G} = (V, E)$ является подмножеством множества 3-однородных смешанных гиперграфов G = (V, E, A). Нетрудно заметить, что на нем задача распознавания вида: «Верно ли, что гиперграф G не принадлежит классу G_I ?» эквивалентна задаче о 2-раскрашиваемости 3-однородного гиперграфа, достаточно сопоставить множества инвертированных и неинвертированных вершин двум различным цветам. Таким образом, рассматриваемая задача распознавания включает задачу о 2-раскрашиваемости 3-однородного гиперграфа в качестве своего частного случая и также является NP-полной. **Теорема 1 доказана**.

Далее гиперграфы приведенного вида используются для описания свойств точек релаксаций разрезного многогранника.

В работе [3] определен класс многогранников $M_n \subseteq R^{4n^2}$, $n \in N$, позже названных корневыми полуметрическими [4]. Задающие M_n линейные ограничения имеют вид:

$$x_{i,j} + y_{i,j} + z_{i,j} + t_{i,j} = 1, (1)$$

$$x_{i,j} + y_{i,j} = x_{k,j} + y_{k,j},$$
(2)

$$x_{i,j} + z_{i,j} = x_{i,l} + z_{i,l},\tag{3}$$

$$x_{i,j} = x_{j,i}, \ t_{i,j} = t_{j,i}, \ y_{i,j} = z_{j,i},$$
(4)

$$y_{i,i} = z_{i,i} = 0,$$
 (5)

$$x_{i,j} \ge 0, \ y_{i,j} \ge 0, \ z_{i,j} \ge 0, \ t_{i,j} \ge 0,$$
(6)

где i, j, k, l независимо пробегают значения 1, ..., n.

Заметим, что координаты точек многогранника M_n удобно представлять в виде блочной матрицы (Таблица 1).

Ограничения (4) задают симметрию относительно главной диагонали в матрице из блоков, и, значит, достаточно ограничиться рассмотрением лишь половины матрицы координат ($i \leq j$).

$x_{i,j}$	$y_{i,j}$
$z_{i,j}$	$t_{i,j}$

Таблица 1. Блок координат

Многогранники этого класса обладают рядом особенностей, обусловливающих значительный интерес к ним (см. [4,5,6]). В частности, в работе [7] установлена полиномиальная разрешимость задачи следующего вида: для заданной линейной целевой функции f требуется выяснить, достигается ли $\max\{f(u): u \in M_n\}$ в целой вершине многогранника M_n (задача распознавания целочисленности).

Многогранник M_n^Z , порождаемый целыми вершинами из M_n , называется разрезным многогранником, так как известная NP-полная задача о максимальном разрезе (как, впрочем, и ряд других) сводится к оптимизации линейной функции на M_n^Z . Поэтому M_n является релаксационным многогранником задачи о разрезе, или релаксацией разрезного многогранника.

Определим, следуя [4], релаксации разрезного многогранника более высоких уровней. С этой целью выберем натуральное k (k < n) и рассмотрим систему неравенств S, задающую многогранник M_k^Z ; обозначим через Θ число этих неравенств. Далее, для каждого k-элементного подмножества $\nu = \{\nu_1, ..., \nu_k\}$ множества N_n pacсмотрим систему S_{ν} , получающуюся из системы неравенств S заменой переменных $x_{i,j}, y_{i,j}, z_{i,j}$ и $t_{i,j}$, соответственно, на $x_{\nu_i,\nu_j}, y_{\nu_i,\nu_j}, z_{\nu_i,\nu_j}$ и t_{ν_i,ν_j} . Дополним систему (1)-(6) совокупностью всех $\Theta \cdot C_n^k$ указанных неравенств, а многогранник, который задается расширенной системой ограничений, обозначим через $M_{n,k}$.

Многогранники M_1 и M_2 не имеют нецелочисленных вершин и совпадают с M_1^Z и M_2^Z соответственно, а значит, и релаксации $M_{n,1}$ и $M_{n,2}$ будут совпадать с самим многогранником M_n . Таким образом, $M_{n,3}$ – первая, отличная от M_n , релаксация разрезного многогранника. M_{n.3} задается системой (1)-(6) и дополнительными ограничениями:

$$x_{i,j} + t_{i,j} + x_{i,k} + t_{i,k} + y_{j,k} + z_{j,k} \le 2,$$
(7)

$$\begin{aligned} x_{i,j} + t_{i,j} + x_{i,k} + t_{i,k} + y_{j,k} + z_{j,k} &\leq 2, \\ x_{i,j} + t_{i,j} + y_{i,k} + z_{i,k} + x_{j,k} + t_{j,k} &\leq 2, \end{aligned}$$
(7)

$$y_{i,j} + z_{i,j} + x_{i,k} + t_{i,k} + x_{j,k} + t_{j,k} \le 2,$$
(9)

$$y_{i,j} + z_{i,j} + y_{i,k} + z_{i,k} + y_{j,k} + z_{j,k} \le 2, \tag{10}$$

для каждой тройки $i, j, k \in N_n$, где i < j < k [6,7].

В основе упомянутого выше результата о полиномиальной разрешимости задачи распознавания целочисленности на M_n [7] лежит следующее

Утверждение. Каждая точка многогранника $M_{n,3}$ является выпуклой комбинацией вершин многогранника M_n , среди которых есть хотя бы одна целая.

Ниже устанавливается, что ситуация оказывается принципиально иной при переходе к последующим релаксациям.

Отметим, что каждой точке $u \in M_{n,3}$ можно сопоставить 3-однородный смешанный гиперграф рассмотренного вида, который назовем гиперграфом точки G(u), по следующим правилам:

- 1. $V = N_n;$
- 2. $(i, j, k) \in E(u)$ тогда и только тогда, когда $y_{i,j} + z_{i,j} + y_{i,k} + z_{i,k} + y_{j,k} + z_{j,k} = 2;$
- 3. $((i, j), k) \in A(u)$ тогда и только тогда, когда $y_{i,j} + z_{i,j} + x_{i,k} + t_{i,k} + x_{j,k} + t_{j,k} = 2$.

Введем следующие условные обозначения для ориентированных и неориентированных ребер гиперграфа (Рис. 1).

Рис. 1. Условные обозначения для ребер гиперграфа

Приведем пример построения гиперграфа. Рассмотрим точку u^* многогранника $M_{4,3}$ (Таблица 2).

$\frac{\frac{1}{3}}{0}$	$\begin{array}{c} 0\\ \frac{2}{3} \end{array}$	$\frac{\frac{1}{3}}{0}$	$\frac{\frac{1}{3}}{\frac{1}{3}}$	$\begin{array}{c} \frac{1}{3} \\ 0 \end{array}$	$\frac{\frac{1}{3}}{\frac{1}{3}}$	$ \begin{array}{c} \frac{1}{4} \\ \frac{1}{12} \end{array} $	$\frac{\frac{5}{12}}{\frac{1}{4}}$
		$\begin{array}{c} \frac{2}{3} \\ 0 \end{array}$	$\begin{array}{c} 0\\ \frac{1}{3} \end{array}$	$\frac{\frac{1}{3}}{\frac{1}{3}}$	$\frac{\frac{1}{3}}{0}$	$\frac{\frac{1}{3}}{\frac{1}{3}}$	$\frac{\frac{1}{3}}{0}$
				$\begin{bmatrix} \frac{2}{3} \\ 0 \end{bmatrix}$	$\frac{0}{\frac{1}{3}}$	$\frac{\frac{1}{3}}{\frac{1}{3}}$	$\frac{\frac{1}{3}}{0}$
						$\begin{array}{c} \frac{2}{3} \\ 0 \end{array}$	$\begin{array}{c} 0\\ \frac{1}{3} \end{array}$

Таблица 2. Координаты точки $u^* \in M_{4,3}$

Для точки u^* выполнено:

 $x_{1,2} + t_{1,2} + x_{1,3} + t_{1,3} + y_{2,3} + z_{2,3} = 2,$ $y_{2,3} + z_{2,3} + y_{2,4} + z_{2,4} + y_{3,4} + z_{3,4} = 2,$

поэтому соответствующий ей гиперграф $G(u^*)$ имеет вид, приведенный на Рис. 2.

Введем для точек многогранника $M_{n,3}$ операцию *инвертирования*, которая произвольную точку $u \in M_{n,3}$ превращает в точку $v = Inv_i(u)$ (Таблица 3).

Нетрудно проверить, что так построенная точка v удовлетворяет системе (1)-(10) и также принадлежит многограннику $M_{n,3}$.

Рис. 2. Гиперграф $G(u^*)$

$x_{i,i} = 0$	x_i	, <i>j</i>	$y_{i,j}$	$x_{i,k}$	$y_{i,k}$	$x_{i,i}$	0	$z_{i,j}$	$t_{i,j}$	$x_{i,k}$	$y_{i,k}$
$0 t_{i,i}$	$_{i}$ z_{i}	,j	$t_{i,j}$	$z_{i,k}$	$t_{i,k}$	0	$t_{i,i}$	$x_{i,j}$	$y_{i,j}$	$z_{i,k}$	$t_{i,k}$
	x_j	,j	0	$x_{j,k}$	$y_{j,k}$			$t_{j,j}$	0	$y_{j,k}$	$x_{j,k}$
	0)	$t_{j,j}$	$z_{j,k}$	$t_{j,k}$			0	$x_{j,j}$	$t_{j,k}$	$z_{j,k}$
				$x_{k,k}$	0		ı			$x_{k,k}$	0
				0	$t_{k,k}$					0	$t_{k,k}$

Таблица 3. Операция инвертирования точки

Отметим, что операции инвертирования точки многогранника $M_{n,3}$ и вершины гиперграфа G эквивалентны в том смысле, что для точки $v = Inv_j(u)$ ее гиперграф $G(v) = Inv_jG(u)$.

Теорема 2. Если для некоторой точки $u \in M_{n,3}$ ее гиперграф G(u) принадлежит классу G_I , то в любом разложении и в виде выпуклой комбинации вершин $M_{n,3}$ нет ни одной целой вершины.

Доказательство. Предположим противное, т.е. предположим, что точка *u* раскладывается в выпуклую комбинацию вершин, среди которых есть целая:

$$u = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_k v_k,$$

$$\forall i : \alpha_i > 0,$$

$$\sum_{i=1}^k \alpha_i = 1,$$

$$\exists i : v_i \in ext M_{n,3}^Z.$$

Без ограничения общности положим, что целой является вершина $v_1 = v \in ext M_{n,3}^Z$, тогда:

$$u = \alpha v + \alpha_2 v_2 + \dots + \alpha_k v_k$$
$$\sum_{i=2}^k \alpha_i = 1 - \alpha,$$

$$w = \frac{1}{1 - \alpha} (\alpha_2 v_2 + \dots + \alpha_k v_k),$$
$$\sum_{i=2}^k \frac{\alpha_i}{1 - \alpha} = 1 \implies w \in M_{n,3},$$
$$u = \alpha v + (1 - \alpha)w.$$

Нетрудно проверить, что

$$\forall i: Inv_i(u) = \alpha(Inv_i(v)) + (1 - \alpha)(Inv_i(w)).$$

Вершина v является целой, любая ее инверсия $(Inv_i(v))$ также будет целой вершиной $M_{n,3}$. Учитывая структуру множества целочисленных вершин многогранника M_n [6], инвертировав точки u, v и w несколько раз, можно получить

$$u^* = \alpha v^* + (1 - \alpha)w^*,$$

 $v^* : \forall i, j : x_{i,j}^{v^*} = 1.$

Гиперграф G(u) принадлежит классу G_I , следовательно, $G(u^*) = (V, E^*, A^*)$ также принадлежит G_I . Тогда

$$\begin{aligned} \exists i, j, k: \ (i, j, k) \in E^*, \\ y_{i,j}^{u^*} + z_{i,j}^{u^*} + y_{i,k}^{u^*} + z_{i,k}^{u^*} + y_{j,k}^{u^*} + z_{j,k}^{u^*} &= 2, \\ y_{i,j}^{v^*} + z_{i,j}^{v^*} + y_{i,k}^{v^*} + z_{i,k}^{v^*} + y_{j,k}^{v^*} + z_{j,k}^{v^*} &= 0, \\ w^* &= \frac{u^* - \alpha v^*}{1 - \alpha}, \\ y_{i,j}^{w^*} + z_{i,j}^{w^*} + y_{i,k}^{w^*} + z_{i,k}^{w^*} + y_{j,k}^{w^*} + z_{j,k}^{w^*} &= \frac{2}{1 - \alpha} \\ \alpha > 0, \quad \frac{2}{1 - \alpha} > 2, \\ y_{i,j}^{w^*} + z_{i,j}^{w^*} + y_{i,k}^{w^*} + z_{i,k}^{w^*} + y_{j,k}^{w^*} + z_{j,k}^{w^*} > 2. \end{aligned}$$

Противоречие, точка w не принадлежит многограннику $M_{n,3}$, а значит, точка u представляет собой выпуклую комбинацию вершин $M_{n,3}$, среди которых нет ни одной целой. **Теорема 2 доказана.**

Теорема 3. Для любого $n \ge 195$ существует точка $u \in M_{n,5} \subseteq M_{n,4}$, в любом разложении которой в виде выпуклой комбинации вершин $M_{n,3}$ нет ни одной целой вершины.

Доказательство. Зафиксируем n = 195 и построим такую точку $\tilde{u} \in R^{76440}$ $(M_{195} \subseteq R^{76440})$, что $\tilde{u} \in M_{195,3}$ и в ее разложении в выпуклую комбинацию вершин $M_{195,3}$ нет ни одной целой вершины. По теореме 2 для этого достаточно, чтобы ее гиперграф $G(\tilde{u}) = \tilde{G}$ принадлежал классу G_I .

Рассмотрим гиперграф \tilde{G} (Рис. 3, Приложение 1 – Таблица 6).

Ввиду сложности гиперграфа \tilde{G} некоторые вершины и ребра не были изображены. Уточним некоторые подробности.

Рис. 3. Гиперграф \tilde{G}

- 1. Общее число вершин равно 195.
- 2. Множество вершин гиперграфа \tilde{G} можно разбить на три симметричных подмножества $\tilde{V} = \tilde{V}_1 \cup \tilde{V}_2 \cup \tilde{V}_3$, где $\tilde{V}_1 = \{1, 4, 5, ..., 67\}, \tilde{V}_2 = \{2, 68, 69, ..., 131\}$ и $\tilde{V}_3 = \{3, 132, 133, ..., 195\}.$
- 3. Каждое из этих множеств содержит такое подмножество \tilde{V}_i^{\Box} , что любая вершина j из \tilde{V}_i^{\Box} образует ориентированное ребро с парой вершин $\{1, 2, 3\} \setminus \{i\}$, в котором j является концом ребра. Например, вершина 13 из \tilde{V}_1^{\Box} связана ребром ((2, 3), 13) с вершинами 2 и 3 (Рис. 4).
- 4. Аналогично множество вершин \widetilde{V}_1 можно представить в виде $\widetilde{V}_1 = \{1\} \cup \widetilde{V}_{1,4} \cup \widetilde{V}_{1,5}$. Причем подграфы на множествах вершин $\widetilde{V}_{1,4} = \{4, 6, 7, ..., 36\}$ и $\widetilde{V}_{1,5} = \{5, 37, 38, ..., 67\}$ изоморфны. В свою очередь, множество $\widetilde{V}_{1,4}$ разбивается на подмножества $\{4\} \cup \{8\} \cup \widetilde{V}_{1,4,6} \cup \widetilde{V}_{1,4,7}$ и т.д.
- 5. Рассмотрим более подробно множество $\widetilde{V}_{1,4,6} = \{6, 9, 10, ..., 22\}$. Кроме уже описанного подмножества $\widetilde{V}_{1,4,6}^{\Box} = \widetilde{V}_{1,4,6} \cap \widetilde{V}_{1}^{\Box} = \{13, 15, 19, 21\}$, оно содержит подмножество $\widetilde{V}_{1,4,6}^{\Delta} = \{14, 16, 20, 22\}$. Каждая вершина *i* из $\widetilde{V}_{1,4,6}^{\Delta}$ образует ориен-

тированное ребро ((4, i), 7) с вершинами 4 и 7 (Рис. 5).

Рис. 4. Вершины из \widetilde{V}_1^\square образуют ориентированные ребра с вершинами 2 и 3

Рис. 5. Вершины из $\widetilde{V}^{\bigtriangleup}_{1.4.6}$ образуют ориентированные ребра с вершинами 4 и 7

Все подмножества вершин гиперграфа \widetilde{G} приведены в Приложении 2.

Предположим, что $\widetilde{G} \notin G_I$. Тогда, инвертировав некоторое подмножество его вершин $V^* \subseteq \widetilde{V}$, мы получим такой гиперграф G^* , что множество его неориентированных ребер будет пусто.

В гиперграфе \tilde{G} только одно ребро (1,2,3) принадлежит E. Чтобы получить гиперграф G^* , необходимо инвертировать как минимум одну из вершин 1, 2, 3. Без ограничения общности положим, что вершина 1 принадлежит V^* (Рис. 6).

Рис. 6. Построение гиперграфа G^* , инвертирование вершины 1

Теперь ребро $(1,4,5) \in E$, и следует инвертировать одну из трех его вершин. Вершина 1 уже принадлежит V^* и не может быть повторно инвертирована. Без

Рис. 7. Построение гиперграфа G^* , инвертирование вершины 4

ограничения общности, положим, что вершина $4 \in V^*$, но она образует ребро с вершинами 6 и 7 (Рис. 7).

Ребро (4, 6, 7) принадлежит E, следовательно, одна из вершин 6 и 7 также принадлежит V^* . Пусть это будет вершина 6 и т.д. Нетрудно заметить, что последовательное инвертирование вершин $\widetilde{V}_{1,4,6}$ приводит к двум возможным вариантам.

- 1. Найдется такая вершина $i \in \widetilde{V}_{1,4}^{\square}$, что $i \in V^*$.
- 2. Найдется такая вершина $j \in \widetilde{V}_{1,4,6}^{\triangle}$, что $j \in V^*$. Каждая вершина из $\widetilde{V}_{1,4,6}^{\triangle}$ связана ребром с вершинами 4 и 7 (Рис. 8).

Рис. 8. Вершины из $\widetilde{V}_{1,4,6}^{\bigtriangleup}$ образуют ребра с вершинами 4 и 7

Ребро (4,7,j) принадлежит E, а вершины 4 и j уже инвертированы, следовательно, и вершина 7 принадлежит V^* (Рис. 9).

Таким образом, вершина 8 из $\widetilde{V}_{1,4}^{\Box}$ также принадлежит V^* , и второй вариант сводится к первому.

Имеем вершину $i \in \tilde{V}_1^{\square}$, принадлежащую множеству V^* , но каждая вершина из \tilde{V}_1^{\square} образует ребро с вершинами 2 и 3 (Рис. 10), значит, одна из этих вершин также лежит в V^* . Без ограничения общности положим, что это вершина 2.

Рассмотрим произвольную вершину k из \widetilde{V}_3^{\Box} . По определению множества в гиперграфе \widetilde{G} существует ребро ((1,2),k), которое после инвертирования вершин 1 и 2 принадлежит E (Рис. 11).

Рис. 9. Построение гиперграф
а $G^{\ast},$ инвертирование вершины 7.

Рис. 10. Вершины из $\widetilde{V}_1^{\square}$ связаны ребрами с вершинами 2 и 3

Рис. 11. Неориентированное ребр
о $\left(1,2,k\right)$

Очевидно, что $k \in V^*$. Так как это верно для произвольной вершины из $\widetilde{V}_3^{\square}$, то верно для всего $\widetilde{V}_3^{\square} \subseteq V^*$.

Рассмотрим множество вершин $\widetilde{V}_{3,132}$. Вершина 136 принадлежит $\widetilde{V}_{3,132}^{\Box}$ и соответственно V^* (Рис. 12).

Рис. 12. Построение гиперграфа G^* , инвертирование вершины 136

Значит, одна из вершин 134 и 135 должна быть инвертирована. Пусть это будет вершина 135.

Рассмотрим произвольную вершину pиз $\widetilde{V}_{3,133,134}^{\bigtriangleup}$ (Рис. 13).

Рис. 13. Вершины из $\widetilde{V}_{3,133,134}^{\bigtriangleup}$ связаны ребрами с вершинами 132 и 135

Возможны два варианта.

- 1. Вершина 132 принадлежит V^* и должна быть инвертирована.
- 2. $\widetilde{V}_{3,132,134}^{\Delta} \subseteq V^*$.

Отметим, что $\widetilde{V}_{3,132,134}^{\Box} \subseteq \widetilde{V}_{3}^{\Box} \subseteq V^*$. Рассмотрим множество вершин $\widetilde{V}_{3,132,134}$ (Рис. 14).

Очевидно, что вершины $\{139, 140, 145, 146\} \subseteq V^*$ и должны быть инвертированы (Рис. 15).

Рис. 14. Множество вершин V_{3,132,134}.

Рис. 15. Построение гиперграфа G^* , инвертирование вершин {139, 140, 145, 146}.

Вершины 137 и 138 также принадлежат V^* , а соответственно и вершина 134. Нетрудно заметить, что ребро (132, 134, 135) после инвертирования вершин 134 и 135 также принадлежит E, а значит, и 132 $\in V^*$. Второй вариант сводится к первому.

Аналогично следует рассмотреть множество $\widetilde{V}_{3,133}$ и показать, что вершина 133 принадлежит V^* (Рис. 16).

Ребро $(3, 132, 133) \in E$ и 3 – единственная вершина не из V^* , инвертируем ее (Рис. 17).

Итак, ребро $(1,2,3) \in E$ и вершины $\{1,2,3\}$ принадлежат V^* . Искомый гиперграф G^* строится по гиперграфу \widetilde{G} инвертированием подмножества вершин $V^* \subseteq \widetilde{V}$, а значит, будет содержать ребро $(1,2,3) \in E$, противоречие. Гиперграф \widetilde{G} принадлежит классу G_I .

Нетрудно проверить, что, инвертировав часть вершин гиперграфа \tilde{G} , можно построить новый гиперграф $\overline{G} \in G_I$, содержащий только неориентированные ребра. Например, этого можно добиться, инвертировав подмножества {1, 6, 7, 11, 12, 17, 18, 25, 26, 31, 32, 37, 38, 42, 43, 48, 49, 56, 57, 62, 63} множества \tilde{V}_1 , {2, 70, 71, 75, 76, 81, 82, 89, 90, 95, 96, 101, 102, 106, 107, 112, 113, 120, 121, 126, 127} множества \tilde{V}_2 и {3, 134, 135,

Рис. 16. Построение гиперграф
а $G^{\ast},$ инвертирование вершины 133

Рис. 17. Построение гиперграфа G^* , инвертирование вершины 3

139, 140, 145, 146, 153, 154, 159, 160, 165, 166, 170, 171, 176, 177, 184, 185, 190, 191 $\}$ множества $\widetilde{V}_3.$

Построим точку $\overline{u} \in R^{76440}$, гиперграф которой совпадает с \overline{G} , следующим образом:

1. Если для некоторых i, j $(1 \le i < j \le 195)$ вершины i и j гиперграфа \overline{G} входят в общее ребро, то блок матрицы координат i, j точки \overline{u} имеет вид, приведенный в Таблице 4.

Таблица 4. Блок i, j матрицы координат точки \overline{u} .

2. Если для некоторых p, q $(1 \le p < q \le 195)$ вершины p и q гиперграфа \overline{G} не входят ни в какое общее ребро, то блок матрицы координат p, q точки \overline{u} имеет вид, приведенный в Таблице 5.

Нетрудно убедиться, что построенная данным образом точка \overline{u} удовлетворяет системе (1)-(10) и принадлежит многограннику $M_{n,3}$. Гиперграф $G(\overline{u}) \in G_I$, и, по теореме 2, точка \overline{u} раскладывается в выпуклую комбинацию вершин $M_{n,3}$, среди которых нет ни одной целой. Покажем, что точка $\overline{u} \in M_{n,4}$.

Введем новые обозначения для координат:

$$x_{i,j} = x_{i,j}^{1,1}, \quad y_{i,j} = x_{i,j}^{1,2}, \quad z_{i,j} = x_{i,j}^{2,1}, \quad t_{i,j} = x_{i,j}^{2,2}.$$

Таблица 5. Блок p, q матрицы координат точки \overline{u} .

Лемма 1. Многогранник $M_{n,4}$ определен системой неравенств (1)– (10) и дополнительными ограничениями вида

$$x_{i,i}^{a_i,a_i} + x_{j,j}^{a_j,a_j} + x_{k,k}^{a_k,a_k} + x_{l,l}^{a_l,a_l} - x_{i,j}^{a_j,a_i} - x_{i,k}^{a_k,a_i} - x_{i,l}^{a_l,a_i} - x_{j,k}^{a_k,a_j} - x_{j,l}^{a_l,a_j} - x_{k,l}^{a_l,a_k} \le 1 \quad (11)$$

для каждой четверки индексов i, j, k, l, где $1 \leq i < j < k < l \leq n$, и для всех векторов $a \in [1, 2]^n$.

Доказательство. Рассмотрим многогранник $M_{n,4}^*$, удовлетворяющий системе (1) – (11). Достаточно проверить тот факт, что $M_{4,4}^*$ не имеет нецелочисленных вершин и совпадает с многогранником M_4^Z . В этом, в частности, можно убедиться с помощью программы PORTA [8]. Отсюда напрямую следует, что $M_{n,4}^* = M_{n,4}$. Лемма 1 доказана.

Оценим неравенство (11) для точки \overline{u} :

$$\forall i: \ x_{i,i} = t_{i,i} = \frac{1}{2},$$

$$\begin{aligned} 2 - x_{i,j}^{a_j,a_i} - x_{i,k}^{a_k,a_i} - x_{i,l}^{a_l,a_i} - x_{j,k}^{a_k,a_j} - x_{j,l}^{a_l,a_j} - x_{k,l}^{a_l,a_k} &\leq 1, \\ 1 \leq x_{i,j}^{a_j,a_i} + x_{i,k}^{a_k,a_i} + x_{i,l}^{a_l,a_i} + x_{j,k}^{a_k,a_j} + x_{j,l}^{a_l,a_j} + x_{k,l}^{a_l,a_k}, \\ \min_{i,j} x_{i,j} &= \min_{i,j} y_{i,j} = \min_{i,j} z_{i,j} = \min_{i,j} t_{i,j} = \frac{1}{6}, \\ \forall i, j, k, l : \ x_{i,j}^{a_j,a_i} + x_{i,k}^{a_k,a_i} + x_{i,l}^{a_l,a_i} + x_{j,k}^{a_k,a_j} + x_{j,l}^{a_l,a_j} + x_{k,l}^{a_l,a_k} \geq 1 \end{aligned}$$

Точка \overline{u} удовлетворяет системе (1)-(11), а следовательно, принадлежит многограннику $M_{n.4}$.

Теперь обратимся к многограннику $M_{n,5}$.

Лемма 2. Многогранник $M_{n,5}$ определен системой неравенств (1)– (11) и дополнительными ограничениями вида

$$\forall i, j, k, l, p: 1 \leq i < j < k < l < p \leq n, \ \forall a, b \in [1, 2]^n,$$

$$x_{i,i}^{a_i,a_i} + x_{j,j}^{a_j,a_j} + x_{k,k}^{a_k,a_k} + x_{l,l}^{a_l,a_l} + x_{p,p}^{a_p,a_p} - x_{i,j}^{a_j,a_i} - x_{i,k}^{a_k,a_i} - x_{i,l}^{a_l,a_i} -$$

$$- x_{i,p}^{a_p,a_i} - x_{j,k}^{a_k,a_j} - x_{j,l}^{a_l,a_j} - x_{j,p}^{a_p,a_j} - x_{k,l}^{a_l,a_k} - x_{k,p}^{a_p,a_k} - x_{l,p}^{a_p,a_l} \leq 1,$$

$$2 \cdot (x_{i,i}^{b_i,b_i} + x_{j,j}^{b_j,b_j} + x_{k,k}^{b_k,b_k} + x_{l,l}^{b_l,b_l} + x_{p,p}^{b_p,b_p}) - x_{i,j}^{b_j,b_i} - x_{i,k}^{b_k,b_i} - x_{i,l}^{b_l,b_i} -$$

$$- x_{i,p}^{b_p,b_i} - x_{j,k}^{b_k,b_j} - x_{j,p}^{b_l,b_j} - x_{k,l}^{b_l,b_k} - x_{k,p}^{b_p,b_k} - x_{l,p}^{b_l,b_i} -$$

$$- x_{i,p}^{b_p,b_i} - x_{j,k}^{b_k,b_j} - x_{j,p}^{b_l,b_j} - x_{k,l}^{b_l,b_k} - x_{k,p}^{b_p,b_k} - x_{l,p}^{b_l,b_l} \leq 3,$$

$$\forall i, j, k, l: 1 \leq i < j < k < l \leq n, \ \forall p \in N_n \setminus \{i, j, k, l\}, \ \forall c \in [1, 2]^n:$$

$$3 \cdot x_{p,p}^{1-c_p,1-c_p} + 2 \cdot (x_{p,i}^{c_i,c_p} + x_{p,j}^{c_j,c_p} + x_{p,k}^{c_k,c_p} + x_{p,l}^{c_l,c_p}) -$$

$$-x_{i,j}^{c_j,c_i} - x_{i,k}^{c_k,c_i} - x_{i,l}^{c_l,c_i} - x_{j,k}^{c_k,c_j} - x_{j,l}^{c_l,c_j} - x_{k,l}^{c_l,c_k} \le 3.$$
(14)

Доказательство. Рассмотрим многогранник $M_{n,5}^*$, удовлетворяющий системе (1) – (14). Достаточно проверить тот факт, что $M_{5,5}^*$ не имеет нецелочисленных вершин и совпадает с многогранником M_5^Z [8]. Отсюда напрямую следует, что $M_{n,5}^* = M_{n,5}$. Лемма 2 доказана.

Покажем, что неравенства (12)-(14) также выполнены для точки \overline{u} . Аналогично доказательству для $M_{n,4}$ имеем

$$\forall i, j, k, l, p:$$

$$x_{i,i}^{a_i,a_i} + x_{j,j}^{a_j,a_j} + x_{k,k}^{a_k,a_k} + x_{l,l}^{a_l,a_l} + x_{p,p}^{a_p,a_p} = \frac{5}{2},$$

$$x_{i,j}^{a_j,a_i} + x_{i,k}^{a_k,a_i} + x_{i,l}^{a_p,a_i} + x_{j,k}^{a_k,a_j} + x_{j,l}^{a_l,a_j} + x_{j,p}^{a_p,a_j} + x_{k,l}^{a_l,a_k} + x_{k,p}^{a_p,a_k} + x_{l,p}^{a_p,a_l} \ge \frac{10}{6}$$

$$\frac{5}{2} - \frac{10}{6} = \frac{5}{6} \le 1.$$

Точка \overline{u} удовлетворяет неравенствам (12). На основе гиперграфа $\overline{G} = (\overline{V}, \overline{E})$ построим такой граф $\widehat{G} = (\widehat{V}, \widehat{E})$, что

1. $\overline{V} = \widehat{V}$,

2. Если для некоторых i, j, k ребро $\{i, j, k\} \in \overline{E}$, то $\{\{i, j\}, \{i, k\}, \{j, k\}\} \subseteq \widehat{E}$. Отметим несколько важных свойств \overline{G} и \widehat{G} :

- 1. любой подграф гиперграфа \overline{G} на четырех вершинах имеет не более 2 ребер, любой подграф графа \widehat{G} на четырех вершинах имеет не более 5 ребер;
- 2. любой подграф гиперграфа \overline{G} на пяти вершинах имеет не более 3 ребер, любой подграф графа \widehat{G} на пяти вершинах имеет не более 7 ребер.

Предположим, что точка \overline{u} не удовлетворяет одному из неравенств (13):

$$\exists i, j, k, l, p \ (1 \le i < j < k < l < p \le n), \exists b \in [1, 2]^n :$$

$$2 \cdot (x_{i,i}^{b_i, b_i} + x_{j,j}^{b_j, b_j} + x_{k,k}^{b_k, b_k} + x_{l,l}^{b_l, b_l} + x_{p,p}^{b_p, b_p}) - x_{i,j}^{b_j, b_i} - x_{i,k}^{b_k, b_i} - x_{i,l}^{b_l, b_i} -$$

$$- x_{i,p}^{b_p, b_i} - x_{j,k}^{b_k, b_j} - x_{j,l}^{b_p, b_j} - x_{k,l}^{b_l, b_k} - x_{k,p}^{b_p, b_k} - x_{l,p}^{b_p, b_l} > 3,$$

$$x_{i,i}^{b_i, b_i} + x_{j,j}^{b_j, b_j} + x_{k,k}^{b_k, b_k} + x_{l,l}^{b_l, b_l} + x_{p,p}^{b_p, b_p} = \frac{5}{2},$$

$$+ x_{i,k}^{b_k, b_i} + x_{j,k}^{b_p, b_i} + x_{k,k}^{b_l, b_j} + x_{k,k}^{b_l, b_l} + x_{p,p}^{b_p, b_j} + x_{k,k}^{b_l, b_k} + x_{p,p}^{b_l, b_k} + x_{p,p}^{b_p, b_k} + x_{p,p}^{b_p, b_k} - x_{p,p}^{b_p, b_k} + x_{p,p}^{b_p, b_l} < 2.$$

 $x_{i,j}^{b_j,b_i} + x_{i,k}^{b_k,b_i} + x_{i,l}^{b_l,b_i} + x_{i,p}^{b_p,b_i} + x_{j,k}^{b_k,b_j} + x_{j,l}^{b_l,b_j} + x_{j,p}^{b_p,b_j} + x_{k,l}^{b_l,b_k} + x_{k,p}^{b_p,b_k} + x_{l,p}^{b_p,b_l} < 2.$ (15)

Отметим, что координаты точки в произвольном блоке $i, j \ (i \neq j)$ принимают значения только из множества $\{\frac{1}{6}, \frac{2}{9}, \frac{5}{18}, \frac{1}{3}\}$. Таким образом, неравенство (15) можно переписать в виде

$$\alpha \cdot \frac{1}{6} + \beta \cdot \frac{1}{3} + \gamma \cdot \frac{2}{9} + \delta \cdot \frac{5}{18} < 2, \tag{16}$$

$$\alpha + \beta + \gamma + \delta = 10, \tag{17}$$

где $\alpha, \beta, \gamma, \delta \in N \cup \{0\}.$

Причем для некоторой координаты $x_{i,j}^{b_j,b_i}$:

- 1. если $b_i = b_j$, то $x_{i,j}^{b_j,b_i} \in \{\frac{1}{6}, \frac{5}{18}\};$
- 2. если $b_i \neq b_j$, то $x_{i,j}^{b_j,b_i} \in \{\frac{1}{3}, \frac{2}{9}\}.$

Таким образом,

$$\alpha + \delta = \phi, \ \phi \in \{4, 6, 10\},\tag{18}$$

$$\beta + \gamma = \xi, \ \xi \in \{0, 4, 6\}.$$
(19)

Кроме того, в силу свойства 2 графа \widehat{G}

$$\alpha + \beta \le 7. \tag{20}$$

Полученная система (16) – (20) имеет единственное целочисленное решение: $\alpha = 6, \gamma = 4$. Нетрудно проверить, что оно не соответствует свойству 1 графа \hat{G} (подграф на четыре вершинах будет содержать 6 ребер). Противоречие, точка \bar{u} удовлетворяет неравенствам (13).

Теперь предположим, что точка \overline{u} не удовлетворяет одному из неравенств (14):

$$\exists i, j, k, l: 1 \le i < j < k < l \le n, \ \exists p \in N_n \setminus \{i, j, k, l\}, \exists c \in [1, 2]^n: \\ 3 \cdot x_{p,p}^{1-c_p, 1-c_p} + 2 \cdot (x_{p,i}^{c_i, c_p} + x_{p,j}^{c_j, c_p} + x_{p,k}^{c_k, c_p} + x_{p,l}^{c_l, c_p}) - \\ - x_{i,j}^{c_j, c_i} - x_{i,k}^{c_k, c_i} - x_{i,l}^{c_l, c_i} - x_{j,k}^{c_l, c_j} - x_{k,l}^{c_l, c_k} > 3.$$

Его следует рассмотреть аналогично неравенству (13), получив систему

$$\begin{cases}
-4\alpha + 2\beta - 2\gamma + 2\delta - \theta + \tau > 17, \\
\alpha + \beta + \gamma \le 4, \\
\delta + \theta + \tau \le 6, \\
\alpha + \beta + \delta + \theta \le 7,
\end{cases}$$
(21)

где $\alpha, \beta, \gamma, \delta, \theta, \tau \in N \cup \{0\}.$

Нетрудно убедиться, что система (21) не имеет целочисленных решений. Противоречие, точка \overline{u} удовлетворяет также и неравенствам (14).

Таким образом, построенная по описанному выше правилу такая точка \overline{u} , что $G(\overline{u}) = \overline{G}$, принадлежит многограннику $M_{195,5} \subseteq M_{195,4}$.

Из проведенных построений следует, что для любого $n \ge 195$ существует точка многогранника $M_{n,5} \subseteq M_{n,4}$ любое разложение которой по вершинам $M_{n,3}$ не содержит целых вершин. **Теорема 3 доказана**.

Приложение 1

((4,5),1)	((6,7),4)	((6,7),8)	((9, 10), 6)	((11, 12), 9)
((13, 14), 11)	((15, 16), 12)	((17, 18), 10)	((19, 20), 17)	((21, 22), 18)
((4, 14), 7)	((4, 16), 7)	((4, 20), 7)	((4, 22), 7)	((23, 24), 7)
((25, 26), 23)	((27, 28), 25)	((29, 30), 26)	((31, 32), 24)	((33, 34), 31)
((35, 36), 32)	((4, 28), 6)	((4, 30), 6)	((4, 34), 6)	((4, 36), 6)
((37, 38), 5)	((37, 38), 39)	((40, 41), 37)	((42, 43), 40)	((44, 45), 42)
((46, 47), 43)	((48, 49), 41)	((50, 51), 48)	((52, 53), 49)	((5, 45), 38)
((5, 47), 38)	((5, 51), 38)	((5, 53), 38)	((54, 55), 38)	((56, 57), 54)
((58, 59), 56)	((60, 61), 57)	((62, 63), 55)	((62, 65), 62)	((66, 67), 63)
((5, 59), 37)	((5, 61), 37)	((5, 65), 37)	((5, 67), 37)	((2,3),8)
((2,3),13)	((2,3),15)	((2,3),19)	((2,3),21)	((2,3),27)
((2,3),29)	((2,3),33)	((2,3),35)	((2,3),39)	((2,3),44)
((2,3),46)	((2,3),50)	((2,3),52)	((2,3),58)	((2,3),60)
((2,3),64)	((2,3), 66)	((68, 69), 2)	((70, 71), 68)	((70, 71), 72)
((73,74),70)	((75, 76), 73)	((77, 78), 75)	((79, 80), 76)	((81, 82), 74)
((83, 84), 81)	((85, 86), 83)	((68, 78), 71)	((68, 80), 71)	((68, 84), 71)
((68, 86), 71)	((87, 88), 71)	((89, 90), 87)	((91, 92), 89)	((93, 94), 90)
((95, 96), 88)	((97, 98), 95)	((99, 100), 96)	((68, 92), 70)	((68, 94), 70)
((68, 98), 70)	((68, 100), 70)	((101, 102), 69)	((101, 102), 103)	((104, 105), 101)
((106, 107), 104)	((108, 109), 106)	((110, 111), 107)	((112, 113), 105)	((114, 115), 112)
((116, 117), 113)	((69, 109), 102)	((69, 111), 102)	((69, 115), 102)	((69, 117), 102)
((118, 119), 102)	((120, 121), 118)	((122, 123), 120)	((124, 125), 121)	((126, 127), 119)
((128, 129), 126)	((130, 131), 127)	((69, 123), 101)	((69, 125), 101)	((69, 129), 101)
((69, 131), 101)	((1,3),72)	((1,3),77)	((1,3),79)	((1,3),83)
((1,3),85)	((1,3),91)	((1,3),93)	((1,3),97)	((1,3),99)
((1,3),103)	((1,3),108)	((1,3),110)	((1,3),114)	((1,3),116)
((1,3),122)	((1,3),124)	((1,3),128)	((1,3),130)	((132, 133), 3)
((134, 135), 132)	((134, 135), 136)	((137, 138), 134)	((139, 140), 137)	((141, 142), 139)
$((\overline{143,144}),140)$	((145, 146), 138)	$((\overline{147, 148}), 145)$	$((\overline{149, 150}), 146)$	((132, 142), 135)

Таблица 6: Список ребер гиперграф
а $\widetilde{G}.$

Продолжение таблицы на следующей странице.

((132, 144), 135)	((132, 148), 135)	((132, 150), 135)	((151, 152), 135)	((153, 154), 151)
((155, 156), 153)	((157, 158), 154)	((159, 160), 152)	((161, 162), 159)	((163, 164), 160)
((132, 156), 134)	((132, 158), 134)	((132, 162), 134)	((132, 164), 134)	((165, 166), 133)
((165, 166), 167)	((168, 169), 165)	((170, 171), 168)	((172, 173), 170)	((174, 175), 171)
((176, 177), 169)	((178, 179), 176)	((180, 181), 177)	((133, 173), 166)	((133, 175), 166)
((133, 179), 166)	((133, 181), 166)	((182, 183), 166)	((184, 185), 182)	((186, 187), 184)
((188, 189), 185)	((190, 191), 183)	((192, 193), 190)	((194, 195), 191)	((133, 187), 165)
((133, 189), 165)	((133, 193), 165)	((133, 195), 165)	((1,2),136)	((1,2),141)
((1,2),143)	((1,2),147)	((1,2),149)	((1,2),155)	((1,2),157)
((1,2),161)	((1,2),163)	((1,2),167)	((1,2),172)	((1,2),174)
((1,2),178)	((1,2),180)	((1,2),186)	((1,2),188)	((1,2),192)
((1,2),194)	(1, 2, 3)			

Приложение 2

Подмножества вершин гиперграфа \widetilde{G} . $\widetilde{V}_1 = \{1, 4 - 67\}, \ \widetilde{V}_2 = \{2, 68 - 131\}$ и $\widetilde{V}_3 = \{3, 132 - 195\}.$ $\widetilde{V}_1^{\square} = \{8, 13, 15, 19, 21, 27, 29, 33, 35, 39, 44, 46, 50, 52, 58, 60, 64, 66\}.$ $\widetilde{V}_2^{\square} = \{72, 77, 79, 83, 85, 91, 93, 97, 99, 103, 108, 110, 114, 116, 122, 124, 128, 130\}.$ $\widetilde{V_3}^{\square} = \{136, 141, 143, 147, 149, 155, 157, 161, 163, 167, 172, 174, 178, 180, 186, 188, 192, 194\}.$ $\widetilde{V}_{1,4} = \{4, 6 - 36\}, \ \widetilde{V}_{1,5} = \{5, 37 - 67\}.$ $\widetilde{V}_{1,4,6} = \{6, 9-22\}, \ \widetilde{V}_{1,4,6}^{\triangle} = \{14, 16, 20, 22\}.$ $\widetilde{V}_{1,4,7} = \{7, 23 - 36\}, \ \widetilde{V}_{1,4,7}^{\triangle} = \{28, 30, 34, 36\}.$ $\widetilde{V}_{1,5,37} = \{37, 40 - 53\}, \quad \widetilde{V}_{1,5,37}^{\triangle} = \{45, 47, 51, 53\}.$ $\widetilde{V}_{1,5,38} = \{38, 54 - 67\}, \ \widetilde{V}_{1,5,38}^{\triangle} = \{59, 61, 65, 67\}.$ $\widetilde{V}_{2,68} = \{68, 70 - 100\}, \ \widetilde{V}_{2,69} = \{69, 101 - 131\}.$ $\widetilde{V}_{2,68,70} = \{70, 73 - 86\}, \ \widetilde{V}_{2,68,70}^{\bigtriangleup} = \{78, 80, 84, 86\}.$ $\widetilde{V}_{2,68,71} = \{71, 87 - 100\}, \ \widetilde{V}_{2,68,71}^{\bigtriangleup} = \{92, 94, 98, 100\}.$ $\widetilde{V}_{2,69,101} = \{101, 104 - 117\}, \ \widetilde{V}_{2,69,101}^{\Delta} = \{109, 111, 115, 117\}.$ $\widetilde{V}_{2,69,102} = \{102, 118 - 131\}, \ \widetilde{V}_{2,69,102}^{\triangle} = \{123, 125, 129, 131\}.$ $\widetilde{V}_{3,132} = \{132, 134 - 164\}, \ \widetilde{V}_{3,133} = \{133, 165 - 195\}.$ $\widetilde{V}_{3,132,134} = \{134, 137 - 150\}, \ \widetilde{V}_{3,132,134}^{\triangle} = \{142, 144, 148, 150\}.$ $\widetilde{V}_{3,132,135} = \{135, 151 - 164\}, \ \widetilde{V}_{3,132,135}^{\triangle} = \{156, 158, 162, 164\}.$ $\widetilde{V}_{3,133,165} = \{165, 168 - 181\}, \widetilde{V}_{3,133,165}^{\triangle} = \{173, 175, 179, 181\}.$ $\widetilde{V}_{3,133,166} = \{166, 182 - 195\}, \ \widetilde{V}_{3,133,166}^{\triangle} = \{187, 189, 193, 195\}.$

Список литературы

- 1. Емеличев В.А., Мельников О.И., Сарванов В.И., Тышкевич Р.И. Лекции по теории графов. М.: Наука, 1990. 384 с.
- 2. Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. М.: Мир, 1982. 416 с.
- Бондаренко В.А. Об одном комбинаторном многограннике // Моделирование и анализ вычислительных систем: Сб. науч. тр. Ярославль: Яросл. гос. ун-т., 1987. С. 133 – 134.
- 4. Деза М., Лоран М. Геометрия разрезов и метрик. М.: МЦНМО, 2001. 736 с.
- 5. Padberg M.V. The Boolean quadratic polytope: some characteristics, facets and relatives // Mathematical Program. 1989. V. 45. P. 139 172.
- 6. Бондаренко В.А., Максименко А.Н. Геометрические конструкции и сложность в комбинаторной оптимизации. М.: ЛКИ, 2008. 184 с.
- 7. Бондаренко В.А., Урываев Б.В. Об одной задаче целочисленной оптимизации // Автоматика и телемеханика. 2007 №6. С. 18 23.
- 8. PORTA: POlyhedron Representation Transformation Algorithm 1.4.0. Thomas Christof, Andreas Loebel. The Konrad-Zuse-Zentrum fur Informationstechnik Berlin, http://www.zib.de/Optimization/Software/Porta/

Hypergraphs of Special Type and CUT Polytope Relaxations Properties Analysis

Nikolaev A.V.

Keywords: hypergraphs, cut polytope relaxations, rooted semimetric polytope, integrity recognition.

The topic of the research is a relationship between a class of hypergraphs of a special type and properties of the points of the cut polytope relaxations $M_{n,k}$. It is established that for a sufficiently large n in $M_{n,4}$ and $M_{n,5}$ polytopes, there are points which have no integer vertices in any expansion in a convex combination of $M_{n,3}$ vertices.

Сведения об авторе: Николаев Андрей Валерьевич, Ярославский государственный университет им. П.Г. Демидова, аспирант.