УДК 517.51+514.17

Пространственно-неоднородные периодические решения уравнения Хатчинсона с распределенным насыщением

Глызин Д. С., Кащенко С. А., Полстьянов А. С. 1

Ярославский государственный университет им. П. Г. Демидова

e-mail: glyzin@gmail.com, kasch@uniyar.ac.ru, pol_art@rambler.ru получена 22 ноября 2010

Ключевые слова: асимптотические методы, распределенное уравнение Хатчинсона, метод шагов

Получены асимптотики пространственно-неоднородных периодических решений пространственно распределенного уравнения Хатчинсона с периодическими краевыми условиями в случаях симметричного и несимметричного насыщения. Численный анализ упрощенной модели демонстрирует мультистабильность — сосуществование периодических решений вида бегущих волн, среди которых, тем не менее, не наблюдается решений с полученной асимптотикой.

1. Постановка задачи. Настоящая работа тесно примыкает к работе авторов [1] в которой рассматривается распределенное уравнение Хатчинсона

$$\frac{\partial N}{\partial t} = r \left[1 - \int_{-\infty}^{\infty} F(s)N(t - h, x + s)ds \right] N + d\frac{\partial^2 N}{\partial x^2}$$
 (1)

с периодическими краевыми условиями

$$N(t, x + 2\pi) \equiv N(t, x). \tag{2}$$

Параметры r, h и d в (1) положительны, а функция F(x), характеризующая насыщение, задана формулой

$$F(x) = (\pi \sigma)^{-1/2} \exp(-\sigma^{-1}(x+\alpha)^2), \qquad (\sigma > 0).$$
(3)

Отметим, что $\int\limits_{-\infty}^{\infty}F(x)dx=1$. В [2, 3] исследовалась задача о поведении всех решений (1), (2) в малой окрестности состояния равновесия $N\equiv 1$. В настоящей работе

 $^{^{1}}$ Работа выполнена при финансовой поддержке целевой программы «Научные и научнопедагогические кадры инновационной России» (государственный контракт № 02.740.11.0197).

речь пойдет о нелокальных периодических решениях этой краевой задачи. Как и в [2, 3], предполагаем, что диффузия в (1) достаточно мала, т.е. для некоторых фиксированных σ_0 и d_0 имеем

$$\sigma = \varepsilon \sigma_0, \quad d = \varepsilon d_0, \quad 0 < \varepsilon \ll 1.$$
 (4)

Рассмотрим отдельно случаи симметричной F(x), когда $\alpha = 0$, и существенно более сложный случай несимметричной F(x), когда $\alpha \neq 0$.

2. Случай симметричной F(x). Пусть

$$\alpha = 0. (5)$$

Следующее важное условие

$$rh > \frac{\pi}{2} \tag{6}$$

означает [4], что уравнение Хатчинсона

$$\dot{N} = r[1 - N(t - h)]N\tag{7}$$

имеет единственное (с точностью до фазового сдвига) непостоянное орбитально устойчивое периодическое решение $N_0(t)$. Обозначим его период через T_0 . Отметим ещё один факт из [5]: при увеличении значений rh количество различных периодических решений неограниченно возрастает.

Функция $N_0(t)$, очевидно, является однородным периодическим решением и краевой задачи (1), (2). Множество функций вида

$$N_0 \left(t + r \frac{kT_0 x}{2\pi} \right), \tag{8}$$

где $k = 0, \pm 1, \pm 2, \ldots$, также является решением уравнения (7). Отсюда и из условий (4) и (5) следует, что каждая из функций (8) удовлетворяет (1) с точностью до $O(\varepsilon)$.

3. Случай несимметричной F(x). Здесь предполагаем что $\alpha \neq 0$. Для определенности, удобно считать, что

$$\alpha > 0$$
.

В этом пункте, как и в предыдущем, считаем, что выполнено условие (6). Тем самым, уравнение (7) и краевая задача (1), (2) имеют одновременное периодическое решение $N_0(t)$.

Введем несколько обозначений. Фиксируем сначала произвольно величину T>0 и при всех значениях параметра z из промежутка $z\in (-\infty,\infty)$ рассмотрим семейство уравнений Хатчинсона

$$\dot{N} = r[1 - N(t - h - zT)]N. \tag{9}$$

Как уже отмечалось, это уравнение имеет нетривиальное устойчивое периодическое решение при условии

 $r(h+zT) > \frac{\pi}{2}.$

Учитывая (6), заключаем, что уравнение (9) имеет (непостоянное) периодическое решение $N=M_z(t)$ при

$$z > z^-$$
, где $z^- = (\pi - 2rh) \cdot (2rT)^{-1}$ $(z^- < 0)$.

Обозначим через R(zT) период функции $M_z(t)$. Функция R(zT) является монотонно возрастающей, причем

$$\lim_{z \to z^{-} + 0} R(zT) = 2\pi(T)^{-1}, \quad \lim_{z \to \infty} R(zT) = \infty.$$

Из асимптотических формул, приведенных в [5], получаем асимптотику R(zT) при $z \to \infty$:

$$R(zT) = r^{-1} \exp r(h + zT) \cdot (1 + o(1)). \tag{10}$$

Отметим что формула (10) дает хорошее приближение уже начиная со значений $zT \approx 2r^{-1} - h$.

Далее, при увеличении z, начиная от z^- , найдется такое значение $z=z_0$, что

$$R(z_0T) = T, \quad z_0R'(z_0T) = 1.$$
 (11)

Можно предположить, что значение z_0 определяется единственным образом. Это проверяется асимптотической формулой (10) и результатами численного счета. Отсюда же получаем, что значение z_0 и корень $T=T_0$ уравнения (11) близки, соответственно к значениям

$$z_0 \approx r^{-1} \exp r(h + r^{-1}), \qquad T_0 \approx \exp r(h + r^{-1}).$$

Изложим основную конструкцию. Будем искать периодическое с некоторым периодом T решение краевой задачи (1), (2), зависящее от линейной комбинации переменных t и x. Тем самым T-периодическое решение имеет вид

$$N = N\left(t + \frac{kT}{2\pi}x\right),\tag{12}$$

где $k=\pm 1,\pm 2,\ldots$ Подставим (12) в (1). При достаточно малых ε функция $N_k(s)=N\left(t+\frac{kT}{2\pi}x\right)$ ($s=t+\frac{kT}{2\pi}x$) удовлетворяет условию

$$\dot{N}_k = r \left[1 + N_k \left(t - h + \frac{k\alpha T}{2\pi} \right) + O(\varepsilon) \right] N + O(\varepsilon).$$

Таким образом, уравнение Хатчинсона (9) при $z=\frac{k\alpha}{2\pi}$ играет роль нулевого приближения для нахождения T-периодического решения $N_k(s)$. В результате приходим к задаче нахождения периодического решения с периодом T для уравнения (9). Отсюда получаем уравнение для определения T:

$$R\left(k\alpha T(2\pi)^{-1}\right) = T. \tag{13}$$

Согласно введенным выше обозначениям заключаем, что это уравнение имеет один корень для всех тех целых неположительных k, для которых

$$z^{-} < \frac{k\alpha}{2\pi} \le 0, \tag{14}$$

и ровно два корня для положительных целых k, удовлетворяющих неравенству

$$0 < \frac{k\alpha}{2\pi} < z_0. \tag{15}$$

Очевидно, таких значений k тем больше, чем меньше значение отклонения α . Сформулируем основной результат.

Теорема 1. При условии (15) и достаточно малых значениях параметра ε краевая задача (1), (2) имеет асимптотическое по невязке решение $N(t,x,\varepsilon) = N_0((1+o(1))t, rkT_0x/(2\pi)) + o(1).$

Отметим, что при $\alpha = \alpha(\varepsilon) \to 0$ количество периодических решений неограниченно растет и периоды заполняют в пределе всю полуось $(2\pi r^{-1}, \infty)$.

Отличие от результатов, сформулированных выше при условии (6), только в том, что решение вида (12) существует при условии (15) и дополнительном условии

$$r(h + \frac{\alpha kT}{2\pi}) > \frac{\pi}{2}.$$

4. Результаты численного исследования. Рассмотрим задачу

$$\frac{\partial N(t,x)}{\partial t} = r[1 - N(t,x-\alpha)]N(t,x) + d\frac{\partial^2 N(t,x)}{\partial x^2}, \quad N(t,x+2\pi) = N(t,x), \quad (16)$$

предельный случай задачи (1), (2) при $\sigma \to 0$ и при значении запаздывания h=0. Отметим, что некоторые результаты численного анализа краевой задачи (1), (2)

при $\alpha = 0$ приведены в [6]. Здесь мы рассмотрим случай $\alpha > 0$. Вернемся к уравнению Хатчинсона (7), в котором будем считать выполненным

Вернемся к уравнению Хатчинсона (7), в котором оудем считать выполненным соотношение (6). Зафиксируем r и обозначим единственное устойчивое периодическое решение этого уравнения $u_h(t)$, а его период — T_h . Отметим, что $u_h(t+cx)$ также является решением уравнения Хатчинсона при любом c.

Подставим в задачу (16) $N(t,x) = u_h(t+cx)$, получим:

$$\dot{u}_h(t+cx) = r(1 - u_h(t+cx-c\alpha))u_h(t+cx) + dc^2 \ddot{u}_h(t+cx), u_h(t+c(x+2\pi)) = u_h(t+cx).$$
(17)

Если положить $d=\varepsilon d_0$, то $u_h(t+cx)$ будет удовлетворять этому уравнению с невязкой $O(\varepsilon)$ при условии, что $c\alpha=h$ и $2\pi c=kT_h$ для некоторого целого k.

Таким образом, если при некоторых значениях параметров k и α уравнение

$$T_h = \frac{2\pi h}{k\alpha} \tag{18}$$

имеет решение, то функция

$$u_h(t + \frac{h}{\alpha}x) = u_h(t + \frac{kT_h}{2\pi}x) \tag{19}$$

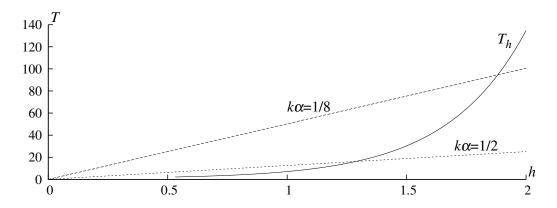


Рис. 1. Зависимость периода решения уравнения Хатчинсона от запаздывания при r=3.

будет удовлетворять (16) с точностью до порядка ε .

На Рис. 1 изображен график зависимости периода решения уравнения Хатчинсона от величины запаздывания и прямые вида $f(h) = \frac{2\pi}{k\alpha}h$ при различных $k\alpha$. Методика численного анализа задачи (16) сводится к следующему: зафиксировав k и α , мы можем найти численно точку пересечения кривой T_h с прямой $f(h) = \frac{2\pi}{k\alpha}h$. Полученное таким образом h мы подставляем в уравнение (7), которое затем решаем методом шагов. Мы вычисляем приближение орбиты $u_h(t)$, то есть такой функции $\bar{u}_h(t)$, $t \in [0, T_h]$, что $u_h(t) = \bar{u}_h(t \mod T_h)$. Отметим, что для любого выбора начальной функции уравнения (7) функция $\bar{u}_h(t)$ будет одной и той же с точностью до фазы.

Теперь в задаче (16) дискретизируем пространственную переменную и перейдем к системе M обыкновенных дифференциальных уравнений

$$\frac{\partial N_i(t)}{\partial t} = r(1 - N_{i-p}(t))N_i(t) + d\frac{4\pi^2}{M^2}(N_{i+1} - 2N_i(t) + N_{i+1}), \quad i = 0, \dots M - 1, \quad (20)$$

где $p=\left[\frac{\alpha N}{2\pi}\right]$, а все индексы в правой части берутся по модулю M. В качестве начального условия выберем дискретизацию функции

$$\bar{u}_h\left(\left(\frac{kT_h}{2\pi}x\right) \mod T_h\right), \quad x \in [0, 2\pi].$$
 (21)

Полученная задача решалась методом Дормана–Принса 5(4) с абсолютной погрешностью на шаге, равной 10^{-6} , на промежутке времени $t \in [0,200]$ при значении M=2000. В зависимости от параметров α и d задача демонстрирует численно наблюдаемые устойчивые пространственно-неоднородные режимы с различным количеством всплесков на пространственном отрезке $[0,2\pi]$. Типичные графики временных срезов полученного таким образом решения при значениях параметров $\alpha=0.6$, d=0.04 представлены на Рис. 2. Пространственный срез при тех же значениях параметров для $x=\pi$ приводится на Рис. 3.

На Рис. 4 изображена зависимость количества всплесков в установившемся режиме от α и d.

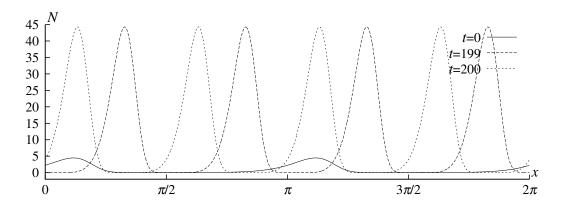


Рис. 2. Временные срезы решения задачи (20), (21) при $\alpha = 0.6, \, d = 0.04$

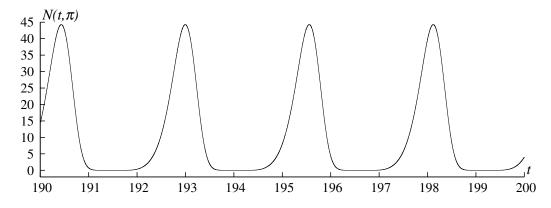


Рис. 3. Пространственный срез решения задачи (20), (21) при $\alpha=0.6,\, d=0.04,\, x=\pi$

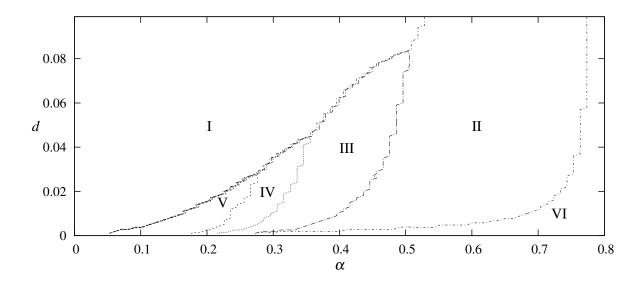


Рис. 4. Характерные области значений параметров при начальном условии с количеством волн k=2

В области I решение стремится к пространственно-однородному стационарному режиму N(t,x)=1.

Область II отвечает устойчивости режима с четырьмя всплесками, III — с шестью, IV — с восьмью.

В области V притягивающими являются режимы с 10 и более всплесками, причем это количество растет с уменьшением α .

В области VI решения обладают амплитудой более 10^5 , и вычисление количества всплесков в ней не выполнялось.

Резкий рост амплитуды при приближении d сверху к границе области VI характерен для всех значений α .

Обнаружить устойчивые решения непосредственно вида (19), то есть с числом всплесков, равным k, в данном численном эксперименте не удалось. При этом задача демонстрирует мультистабильность: на Рис. 5 и Рис. 6 представлены временные срезы решений задачи с теми же параметрами $\alpha=0.6,\ d=0.04,\$ но различными начальными условиями: в первом случае это функция $N(0,x)=\bar{u}_h(T_hx/(2\pi)),\$ где h — решение уравнения (18) при $k=1,\ \alpha=0.6,\$ и во втором случае — $N(0,x)=1.1+\sin(6x)$. Таким образом, хотя наблюдаются устойчивые режимы с тремя и более волнами, напоминающими по поведению периодические решения уравнения Хатчинсона, они не относятся к классу (19), поскольку при данном α уравнение (18) разрешимо лишь при k=1 или k=2, причем эта ситуация является общей, то есть не удалось найти такое α , при котором бы существовали решения с допустимыми (в смысле уравнения (18)) k.

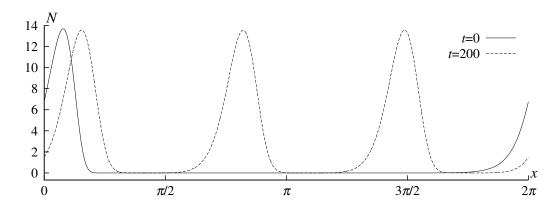


Рис. 5. Временные срезы решения задачи (20), (21) при $\alpha=0.6,\, d=0.04$

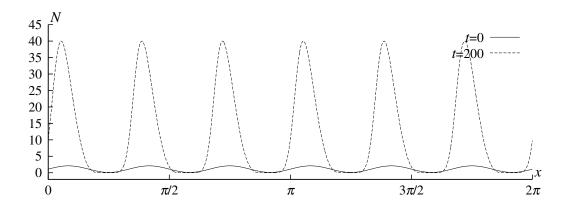


Рис. 6. Временные срезы решения задачи (20), (21) при $\alpha = 0.6, \, d = 0.04$

Список литературы

- 1. Глызин Д. С., Кащенко С. А., Полстьянов А. С. Пространственнонеоднородные периодические решения в распределенном уравнении Хатчинсона // Моделирование и анализ информационных систем. 2009. Т. 16. N 4. C. 77–85.
- 3. *Кащенко Д.С.*, *Кащенко И.С.* Динамика логистического уравнения с пространственно-распределенным насыщением // Моделирование и анализ информационных систем. 2009. Т. 16. N 1. C. 54–61.
- 4. Jones G. S. On the nonlinear differential-difference equation $f'(x) = -\alpha f(x-1)\{1 + f(x)\}$ // J. Math. Anal. Appl. 4 (1962), 440–469.
- 5. *Кащенко*, *С.А.* Асимптотика периодического решения обобщенного уравнения Хатчинсона // Исследования по устойчивости и теории колебаний. Ярославль, 1981. С. 64–85.
- 6. Bestehorn M., Grigorieva E. V., Kaschenko S. A. Spatio-temporal structures in a biological model with delay and diffusion // The Third International Conference "Tools for mathematical modelling", June 18 23, 2001. Saint Petersburg, 2001.

Spatially inhomogeneous periodic solutions in the Hutchinson equation with distributed saturation

Glyzin D. S., Kaschenko S. A., Polstyanov A. S.

Keywords: asymptotic methods, distributed Hutchinson equation, method of steps

The asymptotics of spatially inhomogeneous periodic solutions of a complex spatially distributed Hutchinson equation with periodic boundary conditions are presented. It is shown that such solutions are not observed in a numerical experiment.

Сведения об авторах: Глызин Дмитрий Сергеевич,

Ярославский государственный университет им. П. Г. Демидова, канд. физ.-мат. наук, доцент кафедры математического моделирования;

Кащенко Сергей Александрович,

Ярославский государственный университет им. П. Г. Демидова, д-р физ.-мат. наук, профессор, зав. кафедрой математического моделирования;

Полстьянов Артем Сергеевич,

Ярославский государственный университет им. П. Г. Демидова, аспирант.