УДК 681.3

Автоморфизмы систем переходов

Белов Ю.А. Ярославский государственный университет e-mail: belov@univ.uniyar.ac.ru

получена 15 марта 2007

Аннотация

Автоморфизм системы переходов есть изоморфное отображение системы на себя. Множество автоморфизмов системы является группой относительно суперпозиции отображений. Доказано, что любая конечная группа изоморфно вкладывается в группу автоморфизмов некоторой системы переходов.

1. Определения

Система помеченных переходов (labeled transition system LTS [1]) - это тройка $D = \langle S, L, T \rangle$, где S - произвольное бесконечное множество, называемое множеством состояний, L - конечное множество меток (имен) переходов, $T \subseteq S \times L \times S$ - множество переходов. Элементы из T записываются в следующем виде: $s \stackrel{l}{\to} s'$, если $(s,l,s') \in T$ и читаются так: система D из состояния s под действием перехода с именем l перешла в состояние s'.

Понятие изоморфизма системы встречалось, например, в работах [2, 3].

Система $D = \langle S_1, L, T_1 \rangle$ называется **изоморфной** системе $H = \langle S_2, L, T_2 \rangle$, если существует биективное отображение α S_1 на S_2 такое, что $\forall s, s' \in S_1$ $s \xrightarrow{l} s'$ тогда и только тогда, когда $\alpha(s) \xrightarrow{l} \alpha(s')$. Конечно, из определения следует, что между множествами T_1 и T_2 имеется биективное соответствие. Ясно, что отношение изоморфности для систем переходов является отношением эквивалентности. Изоморфность систем практически означает, что две системы идентичны и различаются лишь обозначениями множеств состояний и переходов.

Автоморфизмом системы называется изоморфное отображение системы на себя.

Группа автоморфизмов активно изучалась для произвольных алгебраических систем [4]. Как отмечалось в [6], группа автоморфизмов графа описывает его симметрии.

2. Результат

Суперпозиция автоморфизмов также является автоморфизмом, отображение, обратное автоморфизму, снова является, как легко проверить, автоморфизмом. Поэтому справедливо следующее очевидное, но необходимое утверждение.

Предложение Множество всех автоморфизмов произвольной помеченной системы переходов D является группой.

Будем обозначать её Aut(D).

Для групп автоморфизмов графов одним из первых результатов является теорема Фрухта о том, что всякая конечная группа изоморфиа группе автоморфизмов некоторого графа (см., например, [6]). Для конечного графа каждый автоморфизм задается подстановкой вершин, сохраняющей смежность. Поэтому для n—вершинного графа группа автоморфизмов является подгруппой полной симметрической группы подстановок S_n .

Для систем переходов, аналогично, всякий автоморфизм определяется подстановкой на множестве состояний системы, сохраняющей отношение переходов. Существенное отличие от графов в том, что множество состояний системы бесконечно, и группа Aut(D) может быть бесконечна (и содержать элементы бесконечного порядка). Соответствующие примеры нетрудно построить.

Тем не менее справедливо следующее утверждение.

Теорема. Всякая конечная группа изоморфна подгруппе группы Aut(D) для некоторой системы помеченных переходов D.

Для доказательства утверждения достаточно убедиться, что любая полная симметрическая группа S_n изоморфно вкладывается в некоторую группу Aut(D) при подходящем D. Действительно, как известно,(см. [5]), всякая конечная группа изоморфна некоторой подгруппе S_n .

В качестве системы переходов рассмотрим обыкновенную сеть Петри, которая содержит следующий фрагмент:

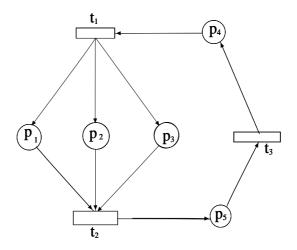


Рис. 1.

Состояние такой сети определяется распределением фишек по позициям p_1, p_2, p_3, p_4, p_5 , другими словами, вектором разметки $(x_1, x_2, x_3, x_4, x_5, x_6)$ с неотрицательными целочисленными координатами. Множество S состояний такой системы описывается всевозможными указанными векторами. Пусть задана произвольная подстановка на трёх символах, например, цикл (1, 2, 3). Этой подстановке соответствует биекция α множества S на себя, задающая перестановку координат векторов разметок:

$$\alpha(x_1, x_2, x_3, x_4, x_5, x_6) = (x_2, x_3, x_1, x_4, x_5, x_6).$$

Легко проверить, что указанное отображение $\alpha:S\to S$ является автоморфизмом системы и при этом произведению подстановок соответствует суперпозиция автоморфизмов. На рисунке приведен пример при n=3, но всё аналогично строится для любого n.

Список литературы

- 1. Кузьмин Е.В. Структурированные системы переходов /Е.В. Кузьмин, В.А. Соколов .- М.: ФИЗМАТ-ЛИТ, 2006 .
- 2. Lomazova L.A. Universal Petry Nets and Process Rewrite Systems Extended with Procedures // Proceedings of International Conference CS&P'2004, Informatik-Bericht 170 2004 c. 81-87 Berlin, Humboldt-Universitat zu Berlin.
- 3. Белов, Ю.А. Некоторые алгебраические свойства систем переходов /Ю.А.Белов. Математика в Ярославском университете: Сборник обзорных статей к 30-летию математического факультета. Ярославль, 2006. С. 33-42.
- 4. Плоткин, Б.И. Группы автоморфизмов алгебраических систем /Б.И. Плоткин. М.: Наука, 1966.
- 5. Курош, А.Г. Теория групп /А.Г.Курош. М.: Гос. изд-во технико-теоретической лит., 1952.
- 6. Емеличев В.А. Лекции по теории графов /В.А. Емеличев, О.И. Мельников, В.И. Сарванов, В.И. Тышкевич. М.: Наука, 1990.

Automorphisms of transition systems

Belov Yu.A.

A automorphism of transitions system is an isomorphism of a system oneself. In the article are showed, that every finite group may be embedded in a group of automorphisms of a certain transition system.