УДК 515.177

Однородные супермногообразия с ретрактом $\mathbb{CP}^{1|4}_{k_1k_211}$

Башкин М.А., Хабадзе Л.И. Ярославский государственный университет, 150 000, Ярославль, Советская, 14, e-mail: misha@uniyar.ac.ru,

получена 17 мая 2007

Аннотация

Излагаются результаты классификации однородных нерасщепимых супермногообразий, связанных с комплексной проективной прямой в случае, когда ретракт определяется векторным расслоением с сигнатурой $(k_1,k_2,1,1)$, где $k_1\geq k_2\geq 1$. Необходимые сведения по теории комплексных супермногообразий можно найти в [3] и [4].

Представленная статья посвящена решению проблемы классификации однородных нерасщепимых супермногообразий, связанных с заданным однородным расщепимым супермногообразием. Эта проблема была поставлена А.Л. Онищиком и частично решается в данной работе в случае, когда в качестве однородного расщепимого супермногообразия рассматривается супермногообразие $\mathbb{CP}^{1|4}_{k_1k_211}$. Мы не будем рассматривать случаи $k_1=k_2=1,2,3$, так как для них задача классификации уже была решена ранее (см. [1]).

Пусть $\mathbf{E} \to \mathbb{CP}^1$ — голоморфное векторное расслоение ранга 4, представленное в виде прямой суммы линейных расслоений на прямые $\mathbf{E} = \mathbf{L}_{-k_1} \oplus \mathbf{L}_{-k_2} \oplus 2\mathbf{L}_{-1}$, где $k_1 \geq k_2 \geq 1$. Обозначим через $\mathbb{CP}^{1|4}_{k_1k_211}$ расщепимое супермногообразие, определяемое расслоением \mathbf{E} .

Покроем \mathbb{CP}^1 двумя аффинными картами U_0 и U_1 с локальными координатами x и $y=\frac{1}{x}$ соответственно. Тогда функции перехода супермногообразия $\mathbb{CP}^{1|4}_{k_1k_211}$ в $U_0\cap U_1$ имеют вид

$$\begin{cases} y = x^{-1} \\ \eta_1 = x^{-k_1} \xi_1 \\ \eta_2 = x^{-k_2} \xi_2 \\ \eta_3 = x^{-1} \xi_3 \\ \eta_4 = x^{-1} \xi_4 \end{cases}$$

где ξ_i и η_i — базисные сечения расслоения ${\bf E}$ над U_0 и U_1 соответственно.

Обозначим через \mathcal{T}_{gr} градуированный касательный пучок супермногообразия $\mathbb{CP}^{1|4}_{k_1k_211}$ и через $\mathfrak{v}(\mathbb{CP}^1,\mathcal{O}_{gr})$ супералгебру Ли векторных полей на нем.

Рассмотрим подпучок $\mathcal{A}ut_{(2)}\mathcal{O}_{gr}=\exp((\mathcal{T}_{gr})_2\oplus(\mathcal{T}_{gr})_4)$ пучка $\mathcal{A}ut\,\mathcal{O}_{gr}$. Согласно теореме Грина, множество супермногообразий с заданным ретрактом (M,\mathcal{O}_{gr}) изоморфно множеству орбит группы Aut **E** на множестве $H^1(M,\mathcal{A}ut_{(2)}\mathcal{O}_{gr})$. Будем описывать когомологии с помощью коциклов Чеха в покрытии $\mathfrak{U}=\{U_0,U_1\}$. Можно доказать следующее

Предложение 1. Предположим, что $n \leq 5$ и $H^0(M,(\mathcal{T}_{\rm gr})_2) = 0$. Пусть заданы такие подпространства $Q_{2p} \subset Z^1(\mathfrak{U},(\mathcal{T}_{\rm gr})_{2p})$ (p=1,2), что каждый класс когомологий из $H^1(M,(\mathcal{T}_{\rm gr})_{2p})$ содержит ровно по одному коциклу из Q_{2p} (p=1,2). Тогда любой класс когомологий из $H^1(M,\mathcal{A}ut_{(2)}\mathcal{O}_{\rm gr})$ представляется единственным коциклом вида $z=\exp(u^2+u^4)$, где $u^2\in Q_2,\,u^4\in Q_4$.

Мы будем говорить далее о задании супермногообразия (M, \mathcal{O}) коциклом $u^2 + u^4$, подразумевая, что (M, \mathcal{O}) соответствует коциклу $z = \exp(u^2 + u^4)$.

Рассмотрим точную последовательность (см. [2])

$$0 \to \operatorname{End} \mathbf{E} \to \mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{\operatorname{gr}})_0 \xrightarrow{\beta} \mathfrak{sl}_2(\mathbb{C}) \to 0. \tag{1}$$

Подалгебра $\mathfrak{a} \subset \mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{gr})_0$ расщепляет последовательность (1), если β изоморфно отображает ее на $\mathfrak{sl}_2(\mathbb{C})$ или, что равносильно, имеем разложение в полупрямую сумму $\mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{gr})_0 = \operatorname{End} \mathbf{E} \oplus \mathfrak{a}$. В работе [2] показано, что супермногообразие с ретрактом ($\mathbb{CP}^1, \mathcal{O}_{gr}$) четно-однородно (или $\overline{0}$ -однородно) тогда и только тогда, когда на него поднимается некоторая подалгебра \mathfrak{a} , расщепляющая (1). В этой ситуации

мы будем говорить, что супермногообразие (\mathbb{CP}^1 , \mathcal{O}) является $\overline{0}$ -однородным относительно \mathfrak{a} . В рассматриваемом случае с точностью до изоморфизма из Aut \mathbb{E} существуют следующие подалгебры $\mathfrak{a} \simeq \mathfrak{sl}_2(\mathbb{C})$, которые можно задать базисами (см. [2]):

А. При
$$k_1 = k_2 = k \ge 4$$

1)
$$\mathbf{e} = \frac{\partial}{\partial x}$$
, $\mathbf{h} = -2x\frac{\partial}{\partial x} - \nabla$, $\mathbf{f} = -x^2\frac{\partial}{\partial x} - x\nabla$;

2)
$$\mathbf{e} = \xi_2 \frac{\partial}{\partial \xi_1} + \frac{\partial}{\partial x}, \ \mathbf{h} = -2x \frac{\partial}{\partial x} - (k+1)\xi_1 \frac{\partial}{\partial \xi_1} - (k-1)\xi_2 \frac{\partial}{\partial \xi_2} - \xi_3 \frac{\partial}{\partial \xi_3} - \xi_4 \frac{\partial}{\partial \xi_4}, \ \mathbf{f} = \xi_1 \frac{\partial}{\partial \xi_2} - x^2 \frac{\partial}{\partial x} - x\nabla;$$

3)
$$\mathbf{e} = \xi_4 \frac{\partial}{\partial \xi_2} + \frac{\partial}{\partial x}$$
, $\mathbf{h} = -2x \frac{\partial}{\partial x} - k\xi_1 \frac{\partial}{\partial \xi_1} - k\xi_2 \frac{\partial}{\partial \xi_2} - 2\xi_3 \frac{\partial}{\partial \xi_2}$, $\mathbf{f} = \xi_3 \frac{\partial}{\partial \xi_4} - x^2 \frac{\partial}{\partial x} - x\nabla$;

4)
$$\mathbf{e} = \xi_2 \frac{\partial}{\partial \xi_1} + \xi_4 \frac{\partial}{\partial \xi_3} + \frac{\partial}{\partial x}$$
, $\mathbf{h} = -2x \frac{\partial}{\partial x} - (k+1)\xi_1 \frac{\partial}{\partial \xi_1} - (k-1)\xi_2 \frac{\partial}{\partial \xi_2} - 2\xi_3 \frac{\partial}{\partial \xi_3}$, $\mathbf{f} = \xi_1 \frac{\partial}{\partial \xi_2} + \xi_3 \frac{\partial}{\partial \xi_4} - x^2 \frac{\partial}{\partial x} - x \nabla$;
Б. При $k_1 \ge 2$, $k_2 = 1$

1)
$$\mathbf{e} = \frac{\partial}{\partial x}$$
, $\mathbf{h} = -2x\frac{\partial}{\partial x} - \nabla$, $\mathbf{f} = -x^2\frac{\partial}{\partial x} - x\nabla$;

2)
$$\mathbf{e} = \xi_3 \frac{\partial}{\partial \xi_2} + \xi_4 \frac{\partial}{\partial \xi_3} + \frac{\partial}{\partial x}$$
, $\mathbf{h} = -2x \frac{\partial}{\partial x} - k_1 \xi_1 \frac{\partial}{\partial \xi_1} - 3\xi_2 \frac{\partial}{\partial \xi_2} - \xi_3 \frac{\partial}{\partial \xi_3} + \xi_4 \frac{\partial}{\partial \xi_4}$, $\mathbf{f} = 2\xi_2 \frac{\partial}{\partial \xi_3} + \xi_3 \frac{\partial}{\partial \xi_4} - x^2 \frac{\partial}{\partial x} - x \nabla$; В. При $k_1 > k_2 \ge 2$

1)
$$\mathbf{e} = \frac{\partial}{\partial x}$$
, $\mathbf{h} = -2x\frac{\partial}{\partial x} - \nabla$, $\mathbf{f} = -x^2\frac{\partial}{\partial x} - x\nabla$;

2)
$$\mathbf{e} = \xi_4 \frac{\partial}{\partial \xi_3} + \frac{\partial}{\partial x}$$
, $\mathbf{h} = -2x \frac{\partial}{\partial x} - k_1 \xi_1 \frac{\partial}{\partial \xi_1} - k_2 \xi_2 \frac{\partial}{\partial \xi_2} - 2\xi_3 \frac{\partial}{\partial \xi_3}$, $\mathbf{f} = \xi_3 \frac{\partial}{\partial \xi_4} - x^2 \frac{\partial}{\partial x} - x \nabla$;

где
$$\nabla = k_1 \xi_1 \frac{\partial}{\partial \xi_1} + k_2 \xi_2 \frac{\partial}{\partial \xi_2} + \xi_3 \frac{\partial}{\partial \xi_3} + \xi_4 \frac{\partial}{\partial \xi_4}$$
.

Пусть $\lambda_2: \mathcal{A}ut_{(2)}\mathcal{O}_{gr} \to (\mathcal{T}_{gr})_2$ — гомоморфизм пучков, сопоставляющий каждому ростку автоморфизма a 2-компоненту элемента $\log a$ в $(\mathcal{T}_{gr})_2 \oplus (\mathcal{T}_{gr})_4$. Обозначим через $H^1(\mathbb{CP}^1, (\mathcal{T}_{gr}))^{\mathfrak{a}}$ множество \mathfrak{a} -инвариантных классов когомологий. Справедливо

Предложение 2. Если \mathfrak{a} — подалгебра, расщепляющая последовательность (1), и если $H^1(\mathbb{CP}^1, \mathcal{A}ut_{(2)}\mathcal{O}_{\mathrm{gr}})^{\mathfrak{a}}$ — множество классов, определяющих $\overline{0}$ -однородные относительно \mathfrak{a} супермногообразия, то λ_2^* биективно отображает это множество на $H^1(\mathbb{CP}^1, (\mathcal{T}_{\mathrm{gr}})_2)^{\mathfrak{a}}$.

Следовательно, $\overline{0}$ -однородные относительно $\mathfrak a$ супермногообразия задаются коциклами u^2+u^4 , где класс $[u^2]$ $\mathfrak a$ -инвариантен, а класс $[u^4]$ может быть определен с помощью предложения 5.1 из [4]. Вычисляем базис пространства $H^1(\mathbb{CP}^1, (\mathcal{T}_{gr})_2)^{\mathfrak a}$ и проверяем равенство $[u^2, u^2] = 0$. Из предложения 5.1 работы [4] следует, что класс $[u^4]$ также должен быть $\mathfrak a$ -инвариантным. Вычисления показывают, что для любого из описанных ранее случаев подалгебры $\mathfrak a$ имеем $H^1(\mathbb{CP}^1, (\mathcal{T}_{gr})_4)^{\mathfrak a} = \{0\}$.

Теорема 1. В каждом случае подалгебры $\mathfrak a$ четно-однородные относительно $\mathfrak a$ супермногообразия описываются следующими коциклами, представляющими базис пространства $H^1(\mathbb{CP}^1, (\mathcal{T}_{gr})_2)^{\mathfrak a}$:

A 1)
$$x^{-1}\xi_{3}\xi_{4}\xi_{1}\frac{\partial}{\partial\xi_{1}}, x^{-1}\xi_{3}\xi_{4}\xi_{2}\frac{\partial}{\partial\xi_{2}}, x^{-1}\xi_{1}\xi_{3}\xi_{4}\frac{\partial}{\partial\xi_{2}}, x^{-1}\xi_{2}\xi_{3}\xi_{4}\frac{\partial}{\partial\xi_{1}};$$

$$B 1) x^{-1}\xi_2\xi_3\xi_1\frac{\partial}{\partial\xi_1}, x^{-1}\xi_2\xi_4\xi_1\frac{\partial}{\partial\xi_1}, x^{-1}\xi_3\xi_4\xi_1\frac{\partial}{\partial\xi_1}, x^{-1}\xi_2\xi_3\xi_4\frac{\partial}{\partial\xi_4}, x^{-1}\xi_2\xi_4\xi_3\frac{\partial}{\partial\xi_3}, x^{-1}\xi_3\xi_4\xi_2\frac{\partial}{\partial\xi_2};$$

$$B\ 1)\ x^{-1}\xi_3\xi_4\xi_1\frac{\partial}{\partial\xi_1},\ x^{-1}\xi_3\xi_4\xi_2\frac{\partial}{\partial\xi_2}.$$

B остальных случаях $H^1(\mathbb{CP}^1, (\mathcal{T}_{gr})_2)^{\mathfrak{a}} = 0.$

При проведении исследования на однородность полученных $\overline{0}$ -однородных супермногообразий с ретрактом $\mathbb{CP}^{1|4}_{k_1k_211}$ мы используем утверждения, аналогичные предложению 15 и предложению 12 (в котором дано описание алгебры End E) из [2]. Получаем следующий окончательный результат:

Теорема 2. Любое нерасщепимое однородное супермногообразие c ретрактом $\mathbb{CP}^{1|4}_{k_1k_211}$ c точностью до изоморфизма может быть представлено коциклом

при
$$k_1 = k_2 \ge 4$$

1)
$$x^{-1}\xi_3\xi_4\xi_1\frac{\partial}{\partial\xi_1}$$
,

2)
$$x^{-1}\xi_1\xi_3\xi_4\frac{\partial}{\partial \xi_2}$$

3)
$$x^{-1}\xi_3\xi_4\xi_1\frac{\partial}{\partial\xi_1} + x^{-1}\xi_3\xi_4\xi_2\frac{\partial}{\partial\xi_2}$$

4)
$$x^{-1}\xi_1\xi_3\xi_4\frac{\partial}{\partial\xi_2} + x^{-1}\xi_2\xi_3\xi_4\frac{\partial}{\partial\xi_1}$$
,

5)
$$x^{-1}\xi_3\xi_4\xi_1\frac{\partial}{\partial\xi_1} + x^{-1}\xi_1\xi_3\xi_4\frac{\partial}{\partial\xi_2} + x^{-1}\xi_2\xi_3\xi_4\frac{\partial}{\partial\xi_1}$$
;

при $k_1 \ge 2, k_2 = 1$

1)
$$x^{-1}\xi_2\xi_3\xi_1\frac{\partial}{\partial\xi_1}$$
,

$$2) x^{-1}\xi_2\xi_3\xi_4\frac{\partial}{\partial\xi_4},$$

3)
$$x^{-1}\xi_3\xi_4\xi_1\frac{\partial}{\partial \xi_1}$$
,

4)
$$x^{-1}\xi_2\xi_3\xi_1\frac{\partial}{\partial\xi_1} + x^{-1}\xi_2\xi_3\xi_4\frac{\partial}{\partial\xi_4}$$
,

5)
$$x^{-1}\xi_2\xi_3\xi_1\frac{\partial}{\partial\xi_1} + x^{-1}\xi_3\xi_4\xi_2\frac{\partial}{\partial\xi_2}$$

6)
$$x^{-1}\xi_2\xi_3\xi_4\frac{\partial}{\partial\xi_4} + x^{-1}\xi_3\xi_4\xi_1\frac{\partial}{\partial\xi_1}$$

7)
$$x^{-1}\xi_3\xi_4\xi_1\frac{\partial}{\partial\xi_1} + x^{-1}\xi_3\xi_4\xi_2\frac{\partial}{\partial\xi_2}$$
,

8)
$$x^{-1}\xi_2\xi_3\xi_1\frac{\partial}{\partial\xi_1} + x^{-1}\xi_2\xi_4\xi_3\frac{\partial}{\partial\xi_3} + x^{-1}\xi_3\xi_4\xi_2\frac{\partial}{\partial\xi_2}$$
;

при $k_1 > k_2 \ge 2$

1)
$$x^{-1}\xi_3\xi_4\xi_1\frac{\partial}{\partial\xi_1}$$
.

Список литературы

- 1. Башкин, M.A. Однородные нерасщепимые супермногообразия размерности 1|4 над комплексной проективной прямой /M.A. Башкин, A.Л. Онищик // Математика в Ярославском университете: Сб. обзорных статей. К 30-летию математического факультета / Яросл. гос. ун-т. Ярославль, 2006. С. 17-32.
- 2. *Бунегина*, *В.А.* Однородные супермногообразия, связанные с комплексной проективной прямой / B.A. *Бунегина*, A.Л. *Онищик* // M.: ВИНИТИ, 2001. C. 141 180.
- 3. Онищик, А.Л. Проблемы классификации комплексных супермногообразий / А.Л. Онищик // Математика в Ярославском университете: Сб. обзорных статей. К 25-летию математического факультета / Яросл. гос. ун-т. Ярославль, $2001.-\mathrm{C.}~7-34.$
- 4. Onishchik, A.L. A Construction of Non-Split Supermanifolds / A.L. Onishchik // Annals of Global Analysis and Geometry. 1998. V. 16. P. 309 333.

Homogeneous Supermanifolds with Retract $\mathbb{CP}^{1|4}_{k_1k_211}$

Bashkin M.A., Habadze L.I.

We give the results of classification of all non-split homogeneous supermanifolds over the complex projective line whose retract is corresponding to a holomorphic vector bundle with a set $(k_1, k_2, 1, 1)$, where $k_1 \geq k_2 \geq 1$. See [3] and [4] for more information about the complex supermanifolds theory.