УДК 512.54

SR-группы порядка $2^n p^m$ с диэдральной 2-силовской подгруппой

Янишевский В.В. Ярославский государственный университет, 150 000, Ярославль, Советская, 14 e-mail: yvitaliy@rambler.ru,

получена 22 мая 2007

Аннотация

Устанавливается строение SR-групп порядка 2^np^m с диэдральной 2-силовской подгруппой по модулю подгруппы Фраттини. Доказано, что если такая группа несверхразрешима, то p — простое число Мерсенна и данная группа имеет факторгруппу специального вида.

Рассматриваются только конечные группы. Обозначения, нуждающиеся в пояснении: через $A \rtimes B$ обозначается полупрямое произведение подгрупп A и B с нормальной подгруппой A; D_{2n} — диэдральная группа порядка $2n,\ n\geqslant 3$; через C_n и $\langle x\rangle_n$ обозначается циклическая подгруппа порядка n (во втором обозначении x — образующая); E_{p^n} — элементарная абелева группа порядка p^n ; $O_p(G)$ — наибольшая нормальная p-подгруппа в G; O(G) — наибольшая нормальная подгруппа нечетного порядка в G; S_n — симметрическая группа степени n; $C_G^*(g):=\{x\in G|g^x=g^{\pm 1}\}$ — расширенный централизатор элемента g; $G^\sharp:=G\setminus\{1\}$.

Определение 1. Конечная группа называется SR-группой, если она обладает следующими свойствами: 1) Любой элемент сопряжен со своим обратным и 2) B разложение тензорного произведения любых двух неприводимых представлений каждое неприводимое представление входит не более одного раза.

Определение 2. Пусть группа G изоморфна группе вида $V \rtimes D_{2^n}$, где $V \cong E_{p^m}$ — минимальная нормальная подгруппа группы G, причем Z(G) = 1, p > 2, $n \geqslant 3$, $m \geqslant 1$. Такую группу мы будем называть атомарной группой.

Главный результат настоящей работы:

Теорема 1. Пусть G — конечная несверхразрешимая SR-группа порядка 2^np^m с диэдральной 2-силовской подгруппой. Если $\Phi(G)=1$, то либо $G\cong E_{p^2}\rtimes D_{2^{q+1}}$ — атомарная SR-группа, $p=2^q-1$ — простое число Мерсенна, либо $G\cong S_4$ и p=3.

Доказательство этой теоремы разбивается на несколько лемм. Сначала мы установим, что либо $G\cong S_4$, либо G является 2-нильпотентной. Далее, в случае 2-нильпотентности, доказывается существование у SR-группы G атомарной факторгруппы. В лемме 3 доказывается, что атомарная группа $E_{p^m} \rtimes D_{2^n}$ является несверхразрешимой SR-группой, если и только если $m=2,\ n=q+1,\$ где $p=2^q-1-$ простое число Мерсенна. В лемме 4 доказывается, что группа $(E_1\times E_2)\rtimes D_{2^n},\$ где $E_1\rtimes D_{2^n}\cong E_2\rtimes D_{2^n}-$ изоморфные атомарные SR-группы, не является SR-группой. Таким образом, минимального контрпримера к утверждению теоремы не существует, что завершает ее доказательство.

Предложение 1. Любая конечная SR-группа обладает следующими свойствами: 1) Факторгруппа SR-группы является SR-группой, 2) Центр SR-группы есть элементарная абелева 2-группа.

Доказательство. См. [1].

Лемма 1. Пусть G-SR-группа порядка 2m, где m- нечетное число. Тогда она изоморфна обобщенно диздральной группе.

Доказательство. Как известно, любая группа порядка |G|=2m имеет вид $A \rtimes \langle \tau \rangle$, где |A|=m. По определению SR-группы любой ее элемент сопряжен с обратным, поэтому любой элемент из A инвертируется τ . Пусть $a \in C_A(\tau)$, тогда $\langle a \rangle \times \langle \tau \rangle$ является подгруппой в G. Из того что a сопряжено с a^{-1} , следует, что существует такой элемент y, что $a^y=a^{-1}$. Рассмотрим теперь множество $C_G^*(a)$. Очевидно, что $C_G^*(a)$ — группа, и при этом $|C_G^*(a):C_G(a)|=2$. Но так как $|C_G(a)|$ делится на 2, то тогда $|C_G^*(a)|$ делится на 4. Откуда следует, что и |G| делится на 4. Значит, $C_A(\tau)=\langle 1 \rangle$. Учитывая, что $A\cong [A,\tau]\times C_A(\tau)$, получаем $A\cong [A,\tau]$. Итак, $G\cong D(A)$ — обобщенно диэдральная группа.

Лемма 2. Если $G/O_3(G) \cong S_4$ и G-SR-группа, то $O_3(G)=1$.

Доказательство. Предположим, что G — минимальный контрпример. В таком случае $O_3(G)/\Phi(O_3(G))$ является элементарной абелевой группой. Если $\Phi(O_3(G)) \neq 1$, то по предположению о минимальности $G/\Phi(O_3(G))$ не является SR-группой. Значит, $\Phi(O_3(G)) = 1$, откуда $O_3(G)$ — элементарная абелева.

Покажем, что $G=O_3(G)\rtimes S_4$. Пусть $T\lhd S_4$ — четверная группа Клейна, $T\cong C_2\times C_2$. Обозначим через $\bar T$ полный прообраз $T\lhd S_4$. По аргументу Фраттини $G=\bar TN_G(S)=O_3(G)N_G(S)$, где $S\cong T$ — силовская 2-подгруппа группы $\bar T$. Отсюда $N(S)/N(S)\cap O_3(G)\cong G/O_3(G)\cong S_4$. Так как $O_3(G)$ — абелева, то $D=N(S)\cap O_3(G)\lhd N(S)$ и $N(S)\cap O_3(G)\lhd O_3(G)$, откуда $D\lhd G$. Если $D\ne O_3(G)$, то $O_3(G)/D\ne 1$ и G/D не является SR-группой по предположению о минимальности. Значит, D=1 или $D=O_3(G)$. В первом случае $G=O_3(G)\rtimes N_G(S)$, где $N_G(S)\cong S_4$, а $O_3(G)$ — элементарная абелева.

Рассмотрим случай, когда $O_3(G) \leq N_G(S)$. Группа $G/O_2(G)$ имеет 2-силовскую подгруппу порядка 2 и является SR-группой порядка $2 \cdot 3^l$. Поэтому по лемме 1 она является обобщенно диэдральной группой и, стало быть, любая циклическая подгруппа порядка 3 из $O_3(G)$ нормальна в G. Если $|O_3(G)| \geq 9$, то по минимальности контрпримера для $x \in O_3(G) \setminus 1$, $\langle x \rangle \lhd G$, $G/\langle x \rangle$ имеем $O_3(G) \neq \langle x \rangle$ и поэтому не является SR-группой. Значит, $|O_3(G)| = 3$. Итак, $|G| = 3 \cdot 24 = 72$.

Для поиска возможных контрпримеров использовалась система компьютерной алгебры GAP [2]. GAP содержит библиотеку SmallGroups, которая состоит из небольших, отсортированных по порядку конечных групп. Команда обращения к группе в этой библиотеке выглядит так: G:=SmallGroup(m,n);, где m — порядок группы, а n — ее номер среди групп порядка m. Команда IdSmallGroup(G); возвращает порядок и номер группы G в виде [m,n]. Далее, группа $G_{[m,n]}$ обозначает группу SmallGroup(m,n).

Возвращаясь к возможному строению групп контрпримеров, замечаем, что имеются две возможности. Либо $G = (\langle c \rangle_3 \times A_4) \rtimes \langle \tau \rangle_2$, где $\tau c \tau = c^{-1}$, $A_4 \rtimes \langle \tau \rangle \cong S_4$. В таком случае группа G имеет представление в виде

$$G_{[72,43]} = \langle a, b, c \mid a^3 = b^3 = c^4 = (ac)^2 = (bc)^2 = [a, b] = 1 \rangle.$$

Либо $G = S \rtimes \langle b \rangle_9 \rtimes \langle \tau \rangle_2$, где $[b^3, S] = 1$, $\tau^{-1}b\tau = b^{-1}$. И в этом случае группа G задается следующим образом:

$$G_{[72,15]} = \langle a, b \mid a^9 = b^4 = (ab)^2 = (ab^{-1}a)^2 = 1 \rangle.$$

Теперь, с помощью команды Display(CharacterTable(G));, которая выводит таблицу характеров группы G, можно получить, что в обоих указанных выше случаях $cd(G) = \{1, 1, 2, 2, 2, 2, 3, 3, 6\}$, где cd(G) — множество степеней неприводимых характеров группы G. Отсюда ясно, что тензорный квадрат неприводимого характера степени 6 не может иметь в разложении на неприводимые характеры коэффициенты 0 или 1, а значит, обе группы не являются SR-группами.

Остается случай, когда $O(G) = O_3(G)$ — элементарная абелева нециклическая группа. Имеем $G = O_3(G) \rtimes K$, где $K \cong S_4$, и $O_3(G)$ — минимальная нормальная подгруппа. Отсюда $C_G(K) = 1$ (иначе G/G' не элементарная абелева 2-группа). Таким образом, K действует неприводимо на $V = O_3(G)$ как на векторном пространстве над GF(3). Известно (см. [3], с. 604-605), что существуют ровно 2 неприводимых точных K-модуля, оба размерности 3. Несложный поиск в системе GAP приводит нас к следующим группам:

$$G_{[648,703]} = \langle a, b \mid a^3 = b^4 = (ab^2ab)^2 = (aba^{-1}ba^{-1}b^{-1})^2 = 1 \rangle,$$

 $G_{[648,704]} = \langle a, b \mid a^3 = b^4 = (ab)^4 = (ab^2)^3 = (ab^{-1})^6 = 1 \rangle.$

С помощью GAP находим степени неприводимых характеров этих групп: $cd(G_{[648,703]}) = \{1,1,2,3,3,6,6,6,6,8,8,8,12,12\}$ и $cd(G_{[648,704]}) = \{1,1,2,3,3,4,4,4,4,6,6,6,6,8,8,12,12\}$. Отсюда, также рассмотрев тензорный квадрат любого неприводимого характера степени 12 этих групп, легко убедиться, что его разложение на неприводимые содержит коэффициенты, отличные от 0 и 1. То есть $G_{[648,703]}$ и $G_{[648,704]}$ не являются SR-группами. Лемма доказана.

Введем обозначения: если G — группа и $g \in G$, то $\sqrt{g}(M) = \{x \in M \subseteq G \mid x^2 = g\}$ (если M = G, то положим $\sqrt{g} = \sqrt{g}(G)$); |M| — число элементов множества M. Для доказательства остальных теорем нам потребуется следующее утверждение.

Предложение 2. Конечная группа G является SR-группой тогда и только тогда, когда она обращает в равенство неравенство Вигнера:

$$\sum_{g \in G} |\sqrt{g}|^3 \leqslant \sum_{g \in G} |C_G(g)|^2. \tag{1}$$

Доказательство. См. [4], §5.8.

Лемма 3. Пусть $G \cong E_{p^m} \rtimes D_{2^n}$ — атомарная группа. Группа G является несверхразрешимой SR-группой тогда и только тогда, когда m=2 и n=q+1, где $p=2^q-1$ — простое число Мерсенна.

Доказательство. Сначала покажем, что $n\geqslant 3$. Предположим, что $G=V\rtimes D_4$, где $D_4=C_2\times C_2$ по определению. Тогда $S=\langle \tau\rangle\times\langle \nu\rangle-2$ -силовская подгруппа. Получаем, что τ — оператор с минимальным многочленом x^2-1 , корни которого +1 и -1 есть в любом поле. Тогда $V=V_1\times V_{-1}$, где $V_1=\{v\mid v^\tau=v\}$ и $V_{-1}=\{v\mid v^\tau=v^1\}$. Если $v\in V_1$, то $v^{\nu\tau}=v^{\tau\nu}=v^\nu$. Отсюда $V_1^\nu=V_1$, т.е. V_1 инвариантно относительно v. Аналогично получаем $V_{-1}^\nu=V_{-1}$. Это означает, что оба подпространства V_1, V_{-1} инвариантны. Если теперь S неприводима на V, то либо $V=V_1$, либо $V=V_{-1}$. Если $V=V_1$, то τ централизует $G=V\rtimes S$, что не так, поскольку Z(G)=1 (иначе G сверхразрешима). Если $V=V_{-1}$, то аналогично для каждого $w\in V, w^\nu=-w$, но тогда $w^{\tau\nu}=w$. Получаем, что $\tau v=\mu\in Z(G)$. Итак, в обоих случаях получаем, что группа G сверхразрешима, что противоречит условию теоремы. Значит, $n\geqslant 3$.

Пусть $G = V \rtimes S$, где G несверхразрешима и $S = D_{2^n}$ действует неприводимо и точно на V, $n \geqslant 3$, а $S = \langle t \rangle_{2^{n-1}} \rtimes \langle \tau \rangle_2$, где $t^\tau = t^{-1}$. При этом группа $C_V(t)$ допустима относительно τ , откуда $C_V(t) = 1$. Здесь возможны два случая. В первом, который мы будем называть неприводимым случаем, $\langle t \rangle$ действует неприводимо на V. Во втором случае, который мы будем называть приводимым, $V = V_0 \times V_0^\tau$, где $\langle t \rangle$ неприводима на V_0 .

Докажем, что m четно. В неприводимом случае получаем, что $\langle t \rangle \leq GL_m(p)$ и действует неприводимо на V. Получаем $p^m-1\equiv 0\pmod{2^{n-1}}$, и в этом случае $V\rtimes\langle t \rangle$ — группа Фробениуса. Так как $t\in GL_m(p)$, то линейная оболочка $\langle t,t^2,\ldots,t^{2^{n-1}}\rangle$ — конечное поле $GF(p^m)$, причем $GF(p^m)^*=\langle x \rangle$, $|x|=p^m-1$. В частности, $2^{n-1}|p^m-1$. При этом неприводимость влечет утверждение $2^{n-1}|p^m-1$ и 2^{n-1} не делит p^j-1 при $1\leqslant j< m$. По теореме II.7.3 из [5] $N_G(\langle t \rangle)=N_G(\langle x \rangle)$ и поэтому $|N_G(\langle t \rangle)/C_G(\langle t \rangle)|$ делит m. Так как $N_G(\langle t \rangle)=S$ и $|S/\langle t \rangle|=2$, то 2|m. В частности, $2^{n-1}|p^{2k}-1=(p^k-1)(p^k+1)$. При этом 2^{n-1} не делит p^k-1 . Так как $(p^k-1,p^k+1)=2$, то отсюда следует, что $2^{n-2}|p^k+1$. В приводимом случае, $\langle t \rangle$ приводима на V. Тогда $V=V_0 \times V_0^{\tau}$, где V_0 — неприводимый $\langle t \rangle$ -модуль. Отсюда $2^{n-1}|p^k-1$ и m=2k. В обоих случаях получаем, что m=2k.

Покажем, что $V \rtimes \langle t \rangle$ — группа Фробениуса. В неприводимом случае это очевидно. Пусть V_0 — неприводимый подмодуль и $V = V_0 \times V_1^{\tau}$. Положим $\nu = t^{2^{n-1}}$. В этом случае, $V_0 \rtimes \langle t \rangle$ и $V_0^{\tau} \rtimes \langle t \rangle$ — группы Фробениуса. Если предположить, что $C_{V_0}(\nu) \neq 1$ для некоторого $v \in V$, то и $C_{V_0}(\nu)^{\tau} = C_{V_0^{\tau}}(\nu) \neq 1$. Тогда $Z(V \rtimes S) \neq 1$ — противоречие. Поэтому и в приводимом случае $V \rtimes \langle t \rangle$ — группа Фробениуса.

Вычислим порядки централизаторов элементов группы G.

Порядок централизатора единичного элемента равен $|C_G(1)| = |G| = 2^n p^{2k}$. Причем, поскольку Z(G) = 1, то это единственный элемент с таким свойством.

Найдем число инволюций в G и порядки их централизаторов. Поскольку $V \rtimes \langle t \rangle$ — группа Фробениуса, то все инволюции из $V \rtimes \langle t \rangle$ сопряжены с инволюцией ν , а их число равно p^m . Рассмотрим группу $S = \langle t \rangle_{2^{n-1}} \rtimes \langle \tau \rangle_2$. Если $g \in S \setminus \langle t \rangle$, то $g = t^i \tau$, для некоторого i. Имеем $g^2 = (t^i \tau) t^i \tau = 1$, $|C_S(g)| = 4$, число сопряженных с g равно $2^n/4 = 2^{n-2}$. Число элементов в $S \setminus \langle t \rangle$ равно 2^{n-1} . Число сопряженных инволюций в S с нецентральной инволюцией равно 2^{n-2} . Отсюда есть два класса сопряженных инволюций в $S \setminus \langle t \rangle$. Значит, в группе G имеется три класса сопряженных инволюций: $(\nu)^G$, $(\tau)^G$, $(t\tau)^G$. Инволюции, сопряженные с ν , мы будем называть центральными, а остальные — нецентральными. Найдем порядки централизаторов нецентральных инволюций. В самом деле, если $w = v_1 v_2^\tau$ для $v_1, v_2 \in V_0$, то $(v_1 v_2^\tau)^{t\tau} = v_1^{t\tau} v_2^{t-1} = v_1 v_2^\tau$. Откуда из $v_1^{t\tau} \in V_0^\tau$ и $v_2^{t-1} \in V_0$ получаем $v_1 = v_2^{t-1}$ и $v_1^{t\tau} = v_2^\tau$, т.е. $v_2 = v_1^{t-1}$. Поэтому $C_V(t\tau) = \{v_1 v_1^{t-1} \mid v_1 \in V_0\}$. То есть $|C_V(t\tau)| = p^k = |C_V(\tau)|$. Итак, $|C_G(\tau)| = |C_G(t\tau)| = 2^2 p^k$, и $|(\tau)^G| = |(t\tau)^G| = 2^{n-2} p^k$.

Найдем теперь порядки централизаторов элементов $w \in V$. Поскольку $V \rtimes \langle t \rangle$ — группа Фробениуса, то для любого $w \in V$, $w^{\nu} = w^{-1}$. Отсюда следует, что $w^{t^i} \neq w$, для любого $i \neq 2^{n-2}$, $1 \leqslant i < 2^{n-1}$. Так как расширенный централизатор $C_G^*(w)$ содержит $\langle \tau_w \rangle$ в качестве 2-силовской подгруппы, то для элемента из $w \in V^{\sharp}$ возможны два случая: 1) либо существует (с точностью до сопряженности в $C_G^*(w)$) единственная инволюция τ_w , которая его централизует, 2) либо $w^{\tau} \neq w$ для любой нецентральной инволюции. Случай, когда элемент $w \in V$ централизуется двумя и более не сопряженными нецентральными инволюциями, например τ_1, τ_2 , невозможен, так как $C_G(w) = V \rtimes \langle \tau_1, \tau_2 \rangle$, откуда $\nu \in C_G(w)$. Противоречие. Поскольку $C_V(w) = V$, то для случая 1) получаем, что $|C_G(w)| = 2p^{2k}$, а для случая 2), что $|C_G(w)| = p^{2k}$. Как было сказано, $|C_G(\tau)| = 2^2 p^k$, что означает существование множества $|\{w \in V \mid w^{\tau} = w\}| = p^k$. Для этих элементов w выполняется $|C_G(w)| = 2p^{2k}$, поскольку их централизует любой элемент из V, а также инволюция τ . Найдем теперь число элементов, соответствующих случаям 1) и 2). Для любого смежного класса с инволюцией τ в качестве представителя, где τ — нецентральная инволюция, $V\tau = T_0 \cup T_1$, где T_0 — элементы порядка 2p, а T_1 — инволюции. Подсчитаем число инволюций в $V\tau$. Их ровно p^k , ибо $|V\langle \tau \rangle$: $C_{V\langle \tau \rangle}(\tau)| = |V:V_1| = p^k$. Поэтому остальные элементы имеют четный порядок, но не инволюции,

следовательно, их $p^{2k}-p^k$. Так как всего инволютивных представителей нецентральных 2^{n-1} , то $2^{n-1}(p^{2k}-p^k)$ — количество элементов порядка 2p. Все эти элементы разбиваются на классы $x\approx y$, если $x^2=y^2$, т.е. если они корни из одного и того же элемента порядка p. Число таких корней равно p^k для фиксированного элемента (как сказано выше). Пусть x — число классов p-элементов, отличных от единичного, из которых извлекается корень квадратный в $G\setminus V$. Тогда $x2^{n-1}p^k$ — число элементов порядка 2p. Отсюда $x2^{n-1}p^k=2^{n-1}(p^{2k}-p^k)=2^{n-1}p^k(p^k-1)$. Поэтому $x=p^k-1$.

Найдем централизаторы элементов $g \in (V \rtimes \langle t \rangle) \setminus V$. Положим $M = V \rtimes \langle t \rangle$. Если $g = v\nu$, то g - центральная инволюция, поэтому $C_V(\nu) = 1$ и $C_S(\nu) = 2^n$. Значит, $|C_G(\nu)| = 2^n$ и $|(\nu)^G| = |G|/|C_G(\nu)| = p^{2k}$. Пусть $g = vt^i$, где $t^i \neq \nu$. Поскольку $C_V(t) = 1$, то $C_V(g) = 1$. Далее, $C_S(t) = \langle t \rangle$. Поэтому $|C_G(g)| = 2^{n-1}$, а их число равно $|M| - |(\nu)^G| - |V| = 2^{n-1}p^{2k} - p^{2k} - p^{2k}$.

Найдем централизаторы элементов $g=w\tau$, где g не является инволюцией. Имеем $C_V(w\tau)=C_V(w)\cap C_V(\tau)=C_V(\tau)$. Как было показано выше, $|C_V(\tau)|=p^k$. С другой стороны, $C_S(w\tau)=\langle \tau \rangle$. Поэтому для таких элементов $|C_G(g)|=2p^k$. Общее их число равно $|G|-|M|-|(\tau)^G|-|(t\tau)|^G=2^{n-1}p^{2k}-2^{n-1}p^k-2^{n-1}p^k$.

Для удобства оформим полученные значения порядков централизаторов в виде таблицы.

Таблица 1.

Порядки централизаторов элементов $G = E_{p^m} \rtimes D_{2^n}$				
расположение $g \in G$	число таких g	$ C_G(g) $		
1	1	$2^n p^{2k}$		
$\{w_1 \in V^{\sharp} \mid C_G(w) \not\subseteq V\}$	$2^{n-1}(p^k-1)$	$2p^{2k}$		
$\{w_2 \in V^{\sharp} \mid C_G(w) \subseteq V\}$	$p^{2k} - 1 - 2^{n-1}(p^k - 1)$	p^{2k}		
$ au^G$	$2^{n-2}p^k$	2^2p^k		
$(t\tau)^G$	$2^{n-2}p^k$	2^2p^k		
$w\tau \notin \{(\tau)^G \cup (t\tau)^G\}, \ w \in V$	$2^{n-1}p^{2k} - 2^{n-1}p^k - 2^{n-1}p^k$	$2p^k$		
$(\nu)^G$	p^{2k}	2^n		
$g \in M \setminus \{(\nu)^G \cup V\}$	$2^{n-1}p^{2k} - p^{2k} - p^{2k}$	2^{n-1}		

Из таблицы 1 получаем следующее выражение для правой части тождества Вигнера:

$$\sum_{g \in G} |C_G(g)|^2 = 1 \cdot (2^n p^{2k})^2 + 2^{n-1} (p^k - 1) \cdot (2p^{2k})^2 + (p^{2k} - 1 - 2^{n-1} (p^k - 1)) \cdot (p^{2k})^2 + \\
+ 2^{n-1} p^k \cdot (2^2 p^k)^2 + 2^{n-1} (p^{2k} - p^k) \cdot (2p^k)^2 + p^{2k} \cdot (2^n)^2 + (2^{n-1} p^{2k} - p^{2k} - p^{2k}) \cdot (2^{n-1})^2.$$
(1)

Вычислим теперь количества квадратных корней из элементов группы G.

Корнями из единицы являются все инволюции группы G и сама единица. Имеем: $|(\nu)^G| = |V| = p^{2k}$, $|(\tau)^G| = |(t\tau)^G| = 2^{n-2}p^k$. Таким образом, $|\sqrt{1}| = 1 \cdot (2^{n-1}p^k + p^{2k} + 1)^3$.

Найдем корни из элементов $w \in V$. В неприводимом случае, поскольку V — неприводимый $\langle t \rangle$ -модуль, то мы можем выбрать в качестве τ автоморфизм порядка 2 поля $GF(p^{2k})$ (так как $(\alpha^{p^k})^{p^k} = \alpha^{p^kp^k} = \alpha^{p^2k} = \alpha^{p^2k} = \alpha\alpha^{p^{2k-1}} = \alpha)$ и тогда $|C_V(\tau)|$ — число элементов $w \in V = GF(p^{2k})$, удовлетворяющих соотношению $\alpha^{p^k} = \alpha$. Таким образом, из элемента $w \in V$, такого, что $w^\tau = w$, извлекается p^k корней вида $w_1\tau$, где $w_1 \in V$. Кроме того, из элемента w в подгруппе V извлекается ровно 1 корень, как из элемента нечетного порядка. Значит, $|\sqrt{w}| = p^k + 1$. Покажем, что в приводимом случае выполняется то же самое. Пусть $w \in V^\sharp$ такой, что $C_G(w) \neq V$. Тогда $C_G(w) = V \times \langle \tau \rangle = V_1 \times (V_2 \langle \tau \rangle)$, где $(w\tau)^2 = 1$, для любого $w \in V_2$ и $V_1 = C_V(\tau)$, где $V = C_V(\tau)$. Для любого $g \in Vt'$, где t' — элемент из $\langle t \rangle$, g сопряжен с t'. Поэтому число сопряженных с t' в G равно $2p^k$ при условии, что $t' \in \langle \nu \rangle$. Если же $t' = \nu$, то $|t^G| = p^{2k}$. Пусть $w^2 \in V_1^\sharp$ — любой элемент, централизующий τ . Тогда $ww_1\tau = \sqrt{w^2}$ для любого $w_1 \in V_2$. В самом деле, $(ww_1\tau)^2 = w^2w_1\tau w_1\tau = w^2w_1w_1^{-1} = w^2$. Значит, число корней из w^2 в $V\tau$ равно p^k . Кроме того, w — корень из w^2 в V. Отсюда в $V \times \langle \tau \rangle$ число корней из w равно p^k+1 . Число элементов $w \in V$, для которых $|\sqrt{w}| = p^k+1$, в обоих случаях совпадает с числом тех элементов w, у которых $C_G(w) \not\subseteq V$. Таким образом, их число равно $2^{n-1}(p^k-1)$.

Для тех элементов $w \in V$, для которых $w^{\tau} \neq w$, для любой нецентральной инволюции τ , выполнено $|\sqrt{w}| = 1$ (как для любого элемента нечетного порядка). Их число равно $(p^{2k} - 1 - 2^{n-1}(p^k - 1))$.

Корни из элементов множества $M = G' \setminus V$. Покажем, что из каждого такого элемента извлекаются ровно два корня. Любой элемент $g \in G' \setminus V$ имеет вид $g = wt^i$, для некоторого четного i. Поэтому $(wt^i)^2 = wt^iwt^i = wt^iwt^{-i}t^{2i} = (ww^{t^{-i}})t^{2i} = w't^{2i}$, где $w' \in V$. Отсюда следует, что $o(wt^i) = o(t^i) = 2^{i'}$ для некоторого i'. Следовательно, элемент wt^i сопряжен с элементом вида $t^{i_1} \in S$, того же порядка, откуда

 $|\sqrt{wt^i}| = |\sqrt{t^{i_1}}|$. Но из любого элемента $t^i \in S' \setminus 1$ извлекаются ровно 2 корня: $t^{i/2}$ и $t^{i/2+2^{n-2}}$. Поэтому $|\sqrt{g}| = 2$, для любого $g \in G' \setminus V$, причем $|G' \setminus V| = 2^{n-2}p^{2k} - p^{2k}$.

Корни из элементов $g \in G \setminus G'$ не извлекаются. Действительно, по предложению 1 получаем, что G/G' — элементарная абелева 2-группа. Поэтому квадрат любого элемента лежит в G'. Значит, для элементов $g \in G \setminus G'$ выполняется $|\sqrt{g}| = 0$ и вклад их в левую часть неравенства Вигнера нулевой.

Для удобства оформим полученные значения порядков квадратных корней элементов в виде таблицы. Таблица 2.

Порядки корней группы $G=E_{p^m} times D_{2^n}$			
расположение $g \in G$	число таких g	$ \sqrt{g} $	
1	1	$2^{n-1}p^k + p^{2k} + 1$	
$\{w_1 \in V^{\sharp} \mid C_G(w) \not\subseteq V\}$	$2^{n-1}(p^k-1)$	$p^k + 1$	
$\{w_2 \in V^{\sharp} \mid C_G(w) \subseteq V\}$	$p^{2k} - 1 - 2^{n-1}(p^k - 1)$	1	
$G' \setminus V$	$2^{n-2}p^{2k} - p^{2k}$	2	
$G \setminus G'$	$2^n p^{2k} - 2^{n-2} p^{2k}$	0	

Из таблицы 2 получаем следующее выражение для левой части тождества Вигнера:

$$\sum_{g \in G} |\sqrt{g}|^3 = 1 \cdot (2^{n-1}p^k + p^{2k} + 1)^3 + 2^{n-1}(p^k - 1) \cdot (p^k + 1)^3 + (2^{n-2}p^{2k} - p^{2k}) \cdot (2)^3 + (p^{2k} - 1 - 2^{n-1}(p^k - 1)) \cdot (1)^3.$$
 (2)

Приравняем выражения (1) и (2), а после перенесем все в правую часть. После упрощений получим квадратный многочлен относительно p^k :

$$(2^{2n-2} - 4) \cdot p^{2k} + (2^{n+1} - 2^{3n-3}) \cdot p^k + (2^{3n-3} - 2^{2n-2} - 2^{n+1} + 4) = 0.$$

Раскладывая этот многочлен, получим:

$$(2^{2n-2} - 4)(p^k - 1)(p^k + 1 - 2^{n-1}) = 0.$$

Учитывая то, что $n\geqslant 3,\ p>2,\ k\geqslant 1$, получим равенство: $p^k=2^{n-1}-1$. Согласно лемме IX.2.7 в [6], такое равенство возможно, только когда k=1 и $p=2^{n-1}-1$ — простое число Мерсенна, причем с необходимостью (n-1)=q — также некоторое простое число. Теорема доказана.

Лемма 4. Пусть $G \cong (E_1 \times E_2) \rtimes D_{2^{q+1}}$, где $E_1 \rtimes D_{2^{q+1}} \cong E_2 \rtimes D_{2^{q+1}} \cong E_{p^2} \rtimes D_{2^{q+1}}$ изоморфны атомарной группе SR-группе, $p = 2^q - 1$. Тогда G не является SR-группой.

Доказательство. Доказательство этой леммы во многом повторяет доказательство леммы 3 и использует те же методы. Поэтому мы приведем только соответствующие таблицы порядков централизаторов и корней. Положим $D_{2^{q+1}} = \langle t \rangle_{2^q} \rtimes \langle \tau \rangle_2 \in Syl_2(G), \ \nu = t^{2^{q-1}}, \ V = E_1 \times E_2, \ M = V \rtimes \langle t \rangle_{2^q}.$

Таблица порядков централизаторов для элементов группы G:

Таблица 3.

Порядки централизаторов элементов $G = (E_1 \times E_2) \rtimes D_{2^{q+1}}$				
расположение $g \in G$	число таких g	$ C_G(g) $		
1	1	$2^{q+1}p^4$		
$\{w_1 \in V^{\sharp} \mid C_G(w) \not\subseteq V\}$	$2^q(p^2-1)$	$2p^4$		
$\{w_2 \in V^{\sharp} \mid C_G(w) \subseteq V\}$	$p^4 - 2^q(p^2 - 1) - 1$	p^4		
$g \in (\tau)^G$	$2^{q-1}p^2$	$2^{2}p^{2}$		
$g \in (t\tau)^G$	$2^{q-1}p^2$	$2^{2}p^{2}$		
$g \in G \setminus \{M \cup (\tau)^G \cup (t\tau)^G\}$	$2^q p^4 - 2 \cdot 2^{q-1} p^2$	$2p^2$		
$g \in (\nu)^G$	p^4	2^{q+1}		
$g \in M \setminus \{V \cup (\nu)^G\}$	$2^q p^4 - 2 \cdot p^4$	2^q		

Из таблицы 3 получаем выражение для правой части неравенства Вигнера группы G:

$$\sum_{g \in G} |C_G(g)|^2 = 1 \cdot (2^{q+1}p^4)^2 + 2^q(p^2 - 1) \cdot (2p^4)^2 + (p^4 - 2^q(p^2 - 1) - 1) \cdot (p^4)^2 + 2 \cdot 2^{q-1}p^2 \cdot (2^2p^2)^2 + (2^qp^4 - 2 \cdot 2^{q-1}p^2) \cdot (2p^2)^2 + p^4 \cdot (2^{q+1})^2 + (2^qp^4 - 2 \cdot p^4) \cdot (2^q)^2.$$
(3)

Таблица количеств корней из элементов группы G:

Таблица 4.

Количества корней элементов группы $G = (E_1 \times E_2) \rtimes D_{2^{q+1}}$				
расположение $g \in G$	число таких g	$ \sqrt{g} $		
1	1	$p^4 + 2^q p^2 + 1$		
$\{v \in V^{\sharp} \mid C_G(v) \not\subseteq V\}$	$2^q(p^2-1)$	$p^2 + 1$		
$\{v \in V^{\sharp} \mid C_G(v) \subseteq V\}$	$p^4 - 2^q(p^2 - 1) - 1$	1		
$g \in G' \setminus V$	$2^{q-1}p^4 - p^4$	2		
$g \in G \setminus G'$	$2^{q+1}p^4 - 2^{q-1}p^4$	0		

Из таблицы 4 получаем выражение для левой части неравенства Вигнера группы G:

$$\sum_{g \in G} |\sqrt{g}|^3 = 1 \cdot (p^4 + 2^q p^2 + 1)^3 + 2^q (p^2 - 1) \cdot (p^2 + 1)^3 + (p^4 - 2^q (p^2 - 1) - 1) \cdot (1)^3 + (2^{q-1} p^4 - p^4) \cdot (2)^3.$$
 (4)

Приравняем теперь выражения (3) и (4) и сделаем замену $2^q = p + 1$. После упрощений получим:

$$p^{5}(p+3)(p+1)(p-1)^{3} = 0.$$

Поскольку p>2, последнее равенство не может иметь места. Итак, G не является SR-группой. \square

Доказательство теоремы 1. Пусть G — несверхразрешимая SR-группа. Положим $S \in Syl_2(G)$. Если O(G) = 1, то, согласно [7], группа G является 2-скованной, поэтому $C_G(O_2(G)) \le O_2(G)$. Откуда $O_2(G) \triangleleft S$. Но $O_2(G)$ может быть либо четверной группой $T \cong C_2 \times C_2$ (при $|S| \leqslant 8$), либо диэдральной меньшего порядка, либо циклической группой. Рассмотрим эти случаи отдельно. Если $O_2(G) \cong T$, тогда $G/T \le Aut(T) \cong S_3$. Откуда либо $G \cong A_4$, либо $G \cong S_4$. Так как A_4 не является SR-группой, то получаем, что $G \cong S_4$. Пусть теперь $O_2(G)$ циклическая или диэдральная, где $|O_2(G)| > 4$. Тогда $Aut(O_2(G))$ является 2-группой и потому G не имеет нетривиальных элементов нечетного порядка, т.е. G является 2-группой. Итак, из $G/O(G) \ne S_4$ и $O(G) \ne 1$ следует, что G имеет нормальное 2-дополнение. Случай, когда $O_p(G) = O(G) \ne 1$, невозможен, согласно лемме 4. Таким образом, если G не 2-нильпотентна, то $G/O(G) \cong S_4$.

Пусть группа G 2-нильпотентна. Это значит, что $G=P\rtimes S$, где $P\in Syl_p(G),\,S\in Syl_2(G)$. Обозначим $P=Syl_p(G)$. Имеем $G=P\rtimes S$. По условию $\Phi(G)=1$, отсюда $\Phi(P)\leq \Phi(G)=1$, $\Phi(P)=1$. Значит, $P=E_{p^m}$ — элементарная абелева группа. Имеем $G=E_{p^m}\rtimes D_{2^n}$.

Группа P раскладывается в произведение $T = E_1 \times ... \times E_k$ нормальных подгрупп группы G, где E_i — минимальная нормальная подгруппа в G. Положим $\hat{E}_i = E_1 \times ... \times E_{i-1} \times E_{i+1} \times ... \times E_k$, тогда $G/\hat{E}_i \cong E_i \rtimes D_{2^n}$ — атомарная группа.

В лемме 3 было доказано, что атомарная группа является несверхразрешимой SR-группой тогда и только тогда, когда p — простое число Мерсенна. Значит, без ограничения общности можно считать, что минимальным контрпримером является группа $G \cong (E_1 \times E_2) \rtimes D_{2^n}$, где $E_1 \rtimes D_{2^n}$, и $E_2 \rtimes D_{2^n}$ — атомарные группы. В лемме 4 мы показали, что такая группа не является SR-группой, что завершает доказательство теоремы 1.

Автор выражает глубокую благодарность своему научному руководителю Л.С. Казарину за полезные советы и обсуждения, способствовавшие улучшению этой работы.

Список литературы

- 1. Струнков, С.П. О расположении характеров просто приводимых групп / С.П. Струнков // Математические заметки. 1982. Т. 31, № 3 С. 357 362.
- 2. The GAP Group. GAP Groups, Algorithms and Programming, Version 4.4.9, Aachen, St.Andrews, 2006. [Электронный ресурс]. Режим доступа: http://www.gap-system.org
- 3. $Кертис, \ Ч. \ Теория представлений групп и ассоциативных алгебр / <math>\ Ч. \ Kертис, \ И. \ Райнер. \ М.:$ Наука, 1969.
- 4. *Хамермеш*, *М.* Теория групп и ее применение к физическим проблемам / *М. Хамермеш*. М.: Мир, 1966.

- 5. Huppert, B. Endliche Gruppen I. / B. Huppert. Berlin; Heidelberg; New York: Springer, 1967.
- 6. Huppert, B. Finite Groups II / B. Huppert, N. Blackburn. Berlin e.a.: Springer, 1982.
- 7. Gorenstein D. Finite groups / D. Gorenstein N.Y.: Harper and Row, 1968.

SR-groups of Order 2^np^m with Dihedral Sylow 2-subgroup

Yanishevskiy V.V.

The structure of SR-groups with dihedral Sylow 2-subgroup modulo Frattini subgroup is described. It is proved that if a group G is a non-supersolvable SR-group of order 2^np^m with dihedral Sylow 2-subgroup, p is Mersenne prime.