
Моделирование и анализ информационных систем. Т. 26, №4 (2019), с. 488–501
Modeling and Analysis of Information Systems. Vol. 26, No 4 (2019), pp. 488–501

c○Baar T., Schulte H., 2019

DOI: 10.18255/1818-1015-2019-4-488-501

UDC 004.052

Safety Analysis of Longitudinal Motion Controllers
during Climb Flight

Baar T., Schulte H.

Received September 30, 2019
Revised November 19, 2019
Accepted November 27, 2019

Abstract. During the climb flight of big passenger airplanes, the airplane’s vertical movement,
i.e. its pitch angle, results from the elevator deflection angle chosen by the pilot. If the pitch angle
becomes too large, the airplane is in danger of an airflow disruption at the wings, which can cause the
airplane to crash. In some airplanes, the pilot is assisted by a software whose task is to prevent airflow
disruptions. When the pitch angle becomes greater than a certain threshold, the software overrides the
pilot’s decisions with respect to the elevator deflection angle and enforces presumably safe values. While
the assistance software can help to prevent human failures, the software itself is also prone to errors
and is - generally - a risk to be assessed carefully. For example, if software designers have forgotten
that sensors might yield wrong data, the software might cause the pitch angle to become negative.
Consequently, the airplane loses height and can - eventually - crash.

In this paper, we provide an executable model written in Matlab/Simulink R○ for the control system
of a passenger airplane. Our model takes also into account the software assisting the pilot to prevent
airflow disruptions. When simulating the climb flight using our model, it is easy to see that the airplane
might lose height in case the data provided by the pitch angle sensor are wrong. For the opposite case
of correct sensor data, the simulation suggests that the control system works correctly and is able to
prevent airflow disruptions effectively.

The simulation, however, is not a guarantee for the control system to be safe. For this reason, we
translate the Matlab/Simulink R○-model into a hybrid program (HP), i.e. into the input syntax of the
theorem prover KeYmaera. This paves the way to formally verify safety properties of control systems
modelled in Matlab/Simulink R○. As an additional contribution of this paper, we discuss the current
limitations of our transformation. For example, it turns out that simple proportional (P) controllers
can be easily represented by HP programs, but more advanced PD (proportional-derivative) or PID
(proportional-integral-derivative) controllers can be represented as HP programs only in exceptional
cases.

Keywords: Cyber-Physical System (CPS), Formal Safety Analysis, Hybrid Automaton

For citation: Baar T., Schulte H., “Safety Analysis of Longitudinal Motion Controllers during Climb Flight”, Modeling
and Analysis of Information Systems, 26:4 (2019), 488–501.

On the authors:
Thomas Baar, orcid.org/0000-0002-8443-1558,
Hochschule für Technik und Wirtschaft (HTW) Berlin, Germany,
Campus Wilhelminenhof, Wilhelminenhofstraße 75A, 12459 Berlin, e-mail: thomas.baar@htw-berlin.de

Horst Schulte, orcid.org/0000-0001-5851-3616,
Hochschule für Technik und Wirtschaft (HTW) Berlin, Germany,
Campus Wilhelminenhof, Wilhelminenhofstraße 75A, 12459 Berlin, e-mail: horst.schulte@htw-berlin.de

488

Baar T., Schulte H.
Safety Analysis of Longitudinal Motion Controllers during Climb Flight 489

1. Flight Control Model of Longitudinal Motion
For a complete description of the airplane motion in the three dimensional space, six
variables are needed that denote the degrees of freedom of a rigid body [1]. The airplane
motion is calculable by six nonlinear ordinary differential equations (ODEs) of these
variables. However, under certain assumptions, the ODEs can be decoupled and linearized
into longitudinal and lateral equations. It is common practice to describe the longitudinal
motion by a third order state space model [1], [2]:

𝑥 = [𝛼 𝑞 𝜃]𝑇 (1)

The state vector (1) contains the angle of attack 𝛼, pitch rate 𝑞, and pitch angle 𝜃 (cmp.
Figure 1).

Fig 1. Important parameters of flight model
(Source: http://ctms.engin.umich.edu/CTMS/index.php?example=AircraftPitch
§ion=SystemModeling)

Based on the assumption that the airplane is in steady-cruise at constant velocity,
the longitudinal equations of motion for the airplane in state space form �̇� = 𝑓(𝑥, 𝑢)
with the state vector given in (1) and the input 𝑢 := 𝛿 can be written as

�̇� = 𝜇Ω𝜎
[︀
− (𝐶𝐿 + 𝐶𝐷)𝛼 +

1

(𝜇− 𝐶𝐿)
𝑞 − (𝐶𝑊 sin 𝛾)𝜃 + 𝐶𝐿

]︀
(2)

𝑞 =
𝜇Ω

2𝐼𝑦𝑦

(︁[︀
𝐶𝑀 − 𝜂(𝐶𝐿 + 𝐶𝐷)

]︀
𝛼 +

[︀
𝐶𝑀 + 𝜎𝐶𝑀(1 − 𝜇𝐶𝐿)

]︀
𝑞 + (𝜂𝐶𝑊 sin 𝛾)𝛿

)︁
𝜃 = Ω𝑞

where

Ω =
2𝑈

𝑐
, 𝜇 =

𝜌𝑆𝑐

4𝑚
, 𝜎 =

1

1 + 𝜇𝐶𝐿

, 𝜂 = 𝜇𝜎𝐶𝑀 , (3)

with the equilibrium flight speed 𝑈 and 𝛾 as the flight path angle. The parameter 𝜌
denotes the density of air, 𝑆 denotes the platform area of the wing, 𝑐 denotes the average

490
Моделирование и анализ информационных систем. Т. 26, №4 (2019)

Modeling and Analysis of Information Systems. Vol. 26, No 4 (2019)

chord length and 𝑚 denotes the mass of the airplane, 𝐶𝑊 denotes the coefficient of
weight, 𝐶𝑀 denotes coefficient of pitch moment, and 𝐼𝑦𝑦 denotes the normalized moment
of inertia. The aerodynamic coefficients of thrust, drag and lift are 𝐶𝑇 , 𝐶𝐷, 𝐶𝐿. Based on
the above assumptions, the dynamics of the airplane around a stationary operating point
𝑝𝑐 = (𝛼𝑐, 𝑞𝑐, 𝜃𝑐, 𝛿𝑐) for an equilibrium flight speed is obtained by Taylor linearization of
𝑓(𝑥, 𝑢)

𝐴 =
𝜕𝑓

𝜕𝑥
|𝑝𝑐 =

⎛⎝ −0.313 56.7 0
−0.0139 −0.426 0

0 56.7 0

⎞⎠ , 𝐵 =
𝜕𝑓

𝜕𝑢
|𝑝𝑐 =

⎛⎝ 0.232
0.0203

0

⎞⎠ (4)

and can be described as follows

�̇� = −0.313𝛼 +56.7 𝑞 +0.232 𝛿

𝑞 = −0.0139𝛼 −0.426 𝑞 +0.0203 𝛿 (5)

𝜃 = 56.7 𝑞

2. Control loop designed in Matlab/Simulink R○

2.1. Description of the designed structure

For the flight model introduced above, we have developed a series of controllers using
Matlab/Simulink R○ whose aim is to keep the pitch angle 𝜃 below a maximum value 𝜃𝑚𝑎𝑥

to prevent airflow disruption at the wings. We have selected the period of a climb flight
and assume, that the pilot selects a constant deflection angle 𝛿𝑚𝑎𝑛 as manual input, what
might cause pitch angle 𝜃 to increase. If 𝜃 becomes greater than an upper bound, the
anti-stall mode is activated and the controller computes a corrective 𝛿𝑐𝑜𝑟𝑟. When – as a
consequence – 𝜃 falls again below a lower bound (due to hysteresis, the lower bound is
slightly different from upper bound), the anti-stall mode is switched off again and the
pilot’s 𝛿𝑚𝑎𝑛 become again the input for the airplane. An overview of the entire control
system is shown in Figure 2.

Our closed loop control system follows the classical approach and can be split into
a plant model and a controller system. The plant model is depicted in Figure 2 by
the orange block (1) with input 𝑑𝑒𝑙𝑡𝑎 and outputs 𝑞 and 𝑡ℎ𝑒𝑡𝑎. This block realizes the
linearized airplane model specified by equation Eq.(5).

The controller system consists of a total of three blocks (cmp. Figure 2) including
the following functions: (2) Computation of the anti-stall mode, (3) computation of the
delta correction value 𝛿𝑐𝑜𝑟𝑟, and (4) selection of the delta value 𝛿 as actuating input of
the airplane model block (1).

The decision making in block (2) is based on a comparison between the currently
measured pitch angle 𝜃 and the maximum value 𝜃𝑚𝑎𝑥. To avoid chattering, a distinction
is made between a lower 𝜃𝑚𝑎𝑥,𝑙𝑜𝑤 and an upper threshold 𝜃𝑚𝑎𝑥,𝑢𝑝. Thereby the anti-stall
mode is activated if 𝜃 > 𝜃𝑚𝑎𝑥,𝑢𝑝 is valid and is deactivated again if 𝜃 < 𝜃𝑚𝑎𝑥,𝑙𝑜𝑤 is fulfilled.

Block (3) realizes the computation of the delta correction value 𝛿𝑐𝑜𝑟𝑟 by applying the
simple proportional (P) control law

𝛿𝑐𝑜𝑟𝑟 = 𝑘𝑝 𝑒 (6)

Baar T., Schulte H.
Safety Analysis of Longitudinal Motion Controllers during Climb Flight 491

Fig 2. Overview of the entire control system designed in Matlab/Simulink R○

where 𝑒 = 𝜃𝑑 − 𝜃 denotes the control error and 𝑘𝑝 > 0 denotes the real-valued controller
gain.

In many cases, a system behaves smoother and has more performance if instead the
simple P-control law the PD (proportional-derivative) or the PID (proportional-integral-
derivative) control law is applied. While the implementation of the PD / PID control law
within block (3) in Matlab/Simulink R○ can be done easily, the transformation of this new
Matlab/Simulink R○-model into a hybrid program (HP) as input for the theorem prover
KeYmaera as described in Section 3. faces some serious problems. These problems are
discussed in Section 4.

In block (4), the delivery of the actuating signal either from the manual demand of
the pilot 𝛿𝑚𝑎𝑛 or from the anti-stall controller 𝛿𝑐𝑜𝑟𝑟 takes place. The implementation of
block (4) is illustrated in detail in Figure 3, where the switching between 𝛿𝑚𝑎𝑛 and 𝛿𝑐𝑜𝑟𝑟
is realized by a crisp mode-dependent function.

Fig 3. Control block (4) of Figure 2: Selection of the delta value by crisp function

492
Моделирование и анализ информационных систем. Т. 26, №4 (2019)

Modeling and Analysis of Information Systems. Vol. 26, No 4 (2019)

2.2. System analysis by simulation

The standard technique to analyse Matlab/Simulink R○-models is simulation. For a simula-
tion, concrete values for constants (e.g. 𝑘𝑝) and for input parameters (𝛿𝑚𝑎𝑛, 𝜃𝑑) are
chosen and the system is executed. The system behaviour can be depicted by function
graphs showing the values of system variables over time (cmp. Figure 4, Figure 5).

We actually simulate two versions of the system: the first version assumes correct
measurement of the output 𝜃 of block (1), as described above and as depicted in Figure 2.

In the second simulation, we assume that output 𝜃 of block (1) is not measured
correctly by sensors. This is modelled by applying an error function on 𝜃 before it becomes
the input for block (2) and block (3). Applying error functions is a standard modelling
technique in Matlab/Simulink R○.

2.2.1. Assuming correct sensor measuring for 𝜃

The pitch angle 𝜃 is one of the outputs of the plant model realized by block (1) and
the input for the control loop consisting of blocks (2-4). Based on 𝜃, the input 𝛿 (pitch
elevator angle) is computed for the next cycle.

Assuming that the angle 𝜃 is correctly measured by sensors, the simulation of the
system as shown in Figure 4 does not detect any point in time in which pitch angle 𝜃
becomes negative. Note that if pitch angle 𝜃 would become negative, the airplane would
lose height and might eventually crash.

Observing only non-negative values for 𝜃 in a simulation is not a guarantee that 𝜃
never becomes negative, but it is already a good starting point for formal verification of
the system’s safety (cmp. Section 3.).

Fig 4. Simulation results for correct (fault free) sensor measuring of 𝜃

Baar T., Schulte H.
Safety Analysis of Longitudinal Motion Controllers during Climb Flight 493

2.2.2. Assuming incorrect sensor measuring for 𝜃

When building safety critical systems, engineers should always take into account that
sensors might provide wrong data. We have modelled in a second Matlab/Simulink R○-
model a faulty sensor just by substituting the output 𝜃 of the plant model in block (1)
by 𝜃+𝜃offset, where 𝜃offset is a predefined constant. When simulating this second model, it
can be immediately seen that 𝜃 becomes soon negative, i.e. the airplane can lose height.
This simulation is shown in Figure 5.

Fig 5. Simulation results for incorrect sensor measuring of 𝜃

3. Logical Analysis of Flight Control Models

As detailed in the previous section, the Matlab/Simulink R○ toolkit is able to simulate the
modelled system. As one can easily see, the airplane might lose height when sensors for
measuring pitch angle 𝜃 provide wrong data. However, for the opposite case of having a
(presumably) correct system, simulation is not a sufficient technique to ensure the correct
system behaviour under all possible circumstances. In our case, the correct behaviour
means that pitch angle 𝜃 remains always positive (recall that we model the phase of
climb flight).

In this section, we present a translation of the Matlab/Simulink R○ model into a hybrid
program (HP), a notion similar to well-known hybrid automata [7]. Since the notion of
HP is supported by the theorem prover KeYmaera [4, 3], our transformation paves the
way to formally verify safety properties of hybrid systems [6, 5].

494
Моделирование и анализ информационных систем. Т. 26, №4 (2019)

Modeling and Analysis of Information Systems. Vol. 26, No 4 (2019)

3.1. KeYmaera

A proof task for KeYmaera has to be formulated in differential dynamic logic (DDL),
which is an extension of classical dynamic logic (DL) [9].

Classical DL allows to prove pre-/post-condition contracts (known from Design-by-
Contract) for programs written in a simple while-language, i.e. a programming language
supporting the classical concepts of imperative programming, such as assignment to a
variable, sequential execution, iterative execution, and case distinction. The programming
language handled by the theorem prover KeYmaera - known as Hybrid Program (HP) -
also supports to a certain degree nondeterministic execution, as realized by the statements
nondeterministic assignment (x = *), nondeterministic choice (𝛼∪𝛽), and nondetermi-
nistic iteration ((𝛼)*).

Technically, classical DL is a modal logic with modalities box ([𝛼]𝜓) and diamond
(< 𝛼 > 𝜓), where 𝛼 is a program and 𝜓 a logical formula expressing a property on the
state of the machine, on which the program is executed. The state of the machine is
defined as the value vector of all program variables occurring in program 𝛼. Note that
in HP all variables are of type Real and represent only one single scalar value. This is
an important difference to Matlab/Simulink R○, where a variable can be of type vector
or matrix and can represent a list of scalar values or even a (numerically represented)
function.

For the rest of the paper, only the box-modality is applied; the formula [𝛼]𝜓 states
that in each possible post-state after program 𝛼 has terminated the formula 𝜓 holds.
Please note that termination of 𝛼 is not claimed! Please further note that since 𝛼 can
contain nondeterministic statements the execution of 𝛼 can indeed result in multiple
post-states.

The main difference of DDL and DL is that the former supports continuous evolution
statements. When a continuous evolution statement is executed, the variables 𝑥1, 𝑥2, . . . , 𝑥𝑛
selected by the statement change their values synchronously according to coupled differential
equations. The value change is restricted by an optional evolution constraint 𝐻. Table 1
summarizes the basic statements of KeYmaera’s programming language HP.

Table 1. Statements of HP (adapted from [6])
HP Notation Operation Effect
𝑥1 := 𝜃1, . . . , 𝑥𝑛 := 𝜃𝑛 discrete jump simultaneously assign 𝜃𝑖 to variable 𝑥𝑖
𝑥 := * nondet. jump assign any value to variable 𝑥
𝑥′1 := 𝜃1, 𝑥

′
2 := 𝜃2, . . . continuous evo. differential equations for 𝑥𝑖 within

. . . , 𝑥′𝑛 := 𝜃𝑛 & 𝐻 evolution domain 𝐻 (first-order formula)
?𝐻 state test test first-order formula 𝐻 at current state
𝛼; 𝛽 seq. composition HP 𝛽 starts after HP 𝛼 finishes
𝛼 ∪ 𝛽 nondet. choice choice between alternatives HP 𝛼 or HP 𝛽
𝛼* nondet. repetition repeats HP 𝛼 n-times for any 𝑛 ∈ N0

For a detailed introduction to DDL, the reader is referred to [6]. In [8], the limitations
of HP with respect to expressiveness and maintainability is investigated.

Baar T., Schulte H.
Safety Analysis of Longitudinal Motion Controllers during Climb Flight 495

3.2. Flight model as KeYmaera-input

Table 2. AirplaneClimbControl (ACC)

𝐴𝐶𝐶 ≡ (𝑐𝑡𝑟𝑙; 𝑝𝑙𝑎𝑛𝑡)* (7)
𝑐𝑡𝑟𝑙 ≡ 𝑏𝑙𝑜𝑐𝑘2; 𝑏𝑙𝑜𝑐𝑘3; 𝑏𝑙𝑜𝑐𝑘4 (8)

𝑏𝑙𝑜𝑐𝑘2 ≡ (?𝜃 > 𝜃𝑚𝑎𝑥,𝑢𝑝; 𝑠𝑤𝑖𝑡𝑐ℎ𝐴𝑛𝑡𝑖𝑆𝑡𝑎𝑙𝑙 := 1)∪ (9)
(?𝜃 < 𝜃𝑚𝑎𝑥,𝑙𝑜𝑤; 𝑠𝑤𝑖𝑡𝑐ℎ𝐴𝑛𝑡𝑖𝑆𝑡𝑎𝑙𝑙 := 0)∪ (10)
(?(𝜃 ≤ 𝜃𝑚𝑎𝑥,𝑢𝑝 ∧ 𝜃 ≥ 𝜃𝑚𝑎𝑥,𝑙𝑜𝑤)) (11)

𝑏𝑙𝑜𝑐𝑘3 ≡ 𝛿𝑐𝑜𝑟𝑟 = 𝑘𝑝 * (𝜃𝑑 − 𝜃) (12)
𝑏𝑙𝑜𝑐𝑘4 ≡ 𝛿 = 𝑠𝑤𝑖𝑡𝑐ℎ𝐴𝑛𝑡𝑖𝑆𝑡𝑎𝑙𝑙 * 𝛿𝑐𝑜𝑟𝑟 + 𝛿𝑚𝑎𝑛 * (1 − 𝑠𝑤𝑖𝑡𝑐ℎ𝐴𝑛𝑡𝑖𝑆𝑡𝑎𝑙𝑙) (13)
𝑝𝑙𝑎𝑛𝑡 ≡ 𝑡 := 0; (14)

(𝑡′ = 1, (15)
𝛼′ = −0.313 * 𝛼 + 56.7 * 𝑞 + 0.232 * 𝛿, (16)
𝑞′ = −0.0139 * 𝛼− 0.426 * 𝑞 + 0.0203 * 𝛿, (17)
𝜃′ = 56.7 * 𝑞 (18)
& 𝑡 <= 𝜖) (19)

The Matlab/Simulink R○-model shown in Figure 2 can be translated into a hybrid
program 𝐴𝐶𝐶 as shown in Table 2. In line (7), the overall structure of 𝐴𝐶𝐶 is shown as
the nondeterministic iteration (operator *) over the sequential composition (operator ;)
of subsystems 𝑐𝑡𝑟𝑙 and 𝑝𝑙𝑎𝑛𝑡. The control part 𝑐𝑡𝑟𝑙 in line (8) is sequentially composed
of 𝑏𝑙𝑜𝑐𝑘2− 𝑏𝑙𝑜𝑐𝑘4, while these HP programs tightly correspond to the blocks (2), (3), (4)
in the Matlab/Simulink R○-model shown in Figure 2.

In 𝑏𝑙𝑜𝑐𝑘2, the flag 𝑠𝑤𝑖𝑡𝑐ℎ𝐴𝑛𝑡𝑖𝑆𝑡𝑎𝑙𝑙 is either switched on (line (9)) or switched off (line
(10)) after comparing the current value of pitch angle 𝜃 with predefined threshold values
𝜃𝑚𝑎𝑥,𝑢𝑝, 𝜃𝑚𝑎𝑥,𝑙𝑜𝑤. The program structure of 𝑏𝑙𝑜𝑐𝑘2 is basically an if-then-else and therefore
we have to specify in line (11) that in all remaining cases the value of 𝑠𝑤𝑖𝑡𝑐ℎ𝐴𝑛𝑡𝑖𝑆𝑡𝑎𝑙𝑙

remains the same.
In 𝑏𝑙𝑜𝑐𝑘3, the correction value 𝛿𝑐𝑜𝑟𝑟 is computed in terms of a simple proportional (P)

controller (line (12)).
In 𝑏𝑙𝑜𝑐𝑘4, the actual plant input 𝛿 is computed by switching between 𝛿𝑐𝑜𝑟𝑟 and 𝛿𝑚𝑎𝑛

depending on the value of 𝑠𝑤𝑖𝑡𝑐ℎ𝐴𝑛𝑡𝑖𝑆𝑡𝑎𝑙𝑙 (line (13)).
Subprogram 𝑝𝑙𝑎𝑛𝑡 is the sequential composition of the reset of auxiliary variable 𝑡 to

0 (line (14)) and a continuous evolution statement (lines (15) - (19)). This continuous
evolution statement encodes exactly the linearized airplane model specified in equation
Eq.(5). The domain constraint 𝑡 < 𝜖 (line (19)) together with the ODE 𝑡′ = 1 (line (15))
has the effect that the system remains at longest time 𝜖 in the evolution state.

496
Моделирование и анализ информационных систем. Т. 26, №4 (2019)

Modeling and Analysis of Information Systems. Vol. 26, No 4 (2019)

3.3. Proof task for correct behaviour

We can now formally formulate the safety property we would like to show for our hybrid
program 𝐴𝐶𝐶:

𝜃 > 0 → [𝐴𝐶𝐶] 𝜃 > 0 (20)

In words, (20) reads as: whenever the system (including its controller) is started in a
situation in which the pitch angle is positive, then after every control loop (which takes
mostly time 𝜖), the pitch angle remains positive.

Note that it is not the goal of this paper to actually establish a formal proof for (20)
using the theorem prover KeYmaera. This task has been postponed to future work.

4. Lessons Learned
In Section 3.2. we presented based on an example a transformation of Matlab/Simulink R○-
models into input artefacts for the theorem prover KeYmaera, which are written in HP

Source and target notation of this transformation have a semantic gap that cannot
always be bridged by a clever encoding in the target notation HP. The most striking
difference are the allowed types for variables and the predefined operations on these
types. In KeYmaera, every variable is of type Real, for which only common arithmetic
operation such as + ,− , * , / and comparison operation < ,≤ , > ,≥ ,= are provided. In
Matlab, variables can be of a numerical type or of an n-dimensional list (aka. vector,
matrix, grid) or even of a function type. The list of operations supported by these
types is much longer than in HP: arithmetic operation, trigonometric function, matrix
multiplication, and many more.

Another important difference is that in HP the derivation operator ’ can only be
applied in a continuous evolution statement, whose ODEs are restricted to the form
𝑥′𝑖 = 𝜃𝑖, while 𝜃𝑖 must not contain any derivative term. In Matlab, the derivation operator
can be applied much more freely, e.g. in the plant model as well as in the controller
system.

Let us illustrate these problems with a concrete example. In our Matlab/Simulink R○-
model presented above, the computation of 𝛿𝑐𝑜𝑟𝑟 is done by applying the P control law
𝛿𝑐𝑜𝑟𝑟 = 𝑘𝑝 𝑒 (cmp. Eq. (6)). This law is transformed to 𝑏𝑙𝑜𝑐𝑘3 with implementation
𝛿𝑐𝑜𝑟𝑟 = 𝑘𝑝 * (𝜃𝑑 − 𝜃) (comp. line (12) in Table 2).

Suppose, we would like to substitute in the Matlab/Simulink R○-model the P by a PD
control law, which would be implemented by

𝛿𝑐𝑜𝑟𝑟 = 𝑘𝑝 𝑒+ 𝑘𝑑 �̇� (21)

where 𝑒 = 𝜃𝑑 − 𝜃 denotes the control error and 𝑘𝑝 > 0 and 𝑘𝑑 > 0 denote real-valued
controller gains. For such a system definition, our transformation would yield for 𝑏𝑙𝑜𝑐𝑘3
the implementation

𝛿𝑐𝑜𝑟𝑟 = 𝑘𝑝 * (𝜃𝑑 − 𝜃) + 𝑘𝑑 * (𝜃𝑑 − 𝜃)̇ (22)

The problem now is that Eq. (22) cannot be directly transformed into a HP since
the derivation operator ’ must only occur in form 𝑣𝑎𝑟′ = <exp> within a continuous
evolution statement and this form is not met by Eq. (22).

Baar T., Schulte H.
Safety Analysis of Longitudinal Motion Controllers during Climb Flight 497

Fortunately, since 𝜃𝑑 is a predefined constant, we can now rewrite within Eq. (22)
subterm (𝜃𝑑 − 𝜃)̇ by −𝜃 and get

𝛿𝑐𝑜𝑟𝑟 = 𝑘𝑝 * (𝜃𝑑 − 𝜃) − 𝑘𝑑 * 𝜃 (23)

Now we remember the last line of Eq.(5) 𝜃 = 56.7 𝑞 and get finally

𝛿𝑐𝑜𝑟𝑟 = 𝑘𝑝 * (𝜃𝑑 − 𝜃) − 𝑘𝑑 * 56.7 * 𝑞 (24)

If the PD control law is formulated in this form, it can be directly transformed into
HP since not derivation operator is applied any longer.

5. Related Work
Safety analysis of flight control systems has a long tradition in the academic control
community. Based on linear models which describe the dynamics of the aircraft for
individual degrees of freedom, formal methods of control theory such as stability analysis,
model-based fault detection and isolation (FDI) and fault tolerant control (FTC) are
applied [16],[29]. Due to the nonlinear behaviour of aircraft dynamics, the assumption
of an approximate description with linear models is only valid in a small working range.
In the case of an fault, however, this range is left. For this reason, model classes such
as quasi-LPV (linear parameter variable) [30] and Takagi-Sugeno systems have been
investigated in recent years. These techniques allow to describe nonlinear dynamics in
such a way that formal safety system analysis is feasible [31]. In order to be able to
compare the different approaches in an objective way, benchmarks have been established
in cooperation with industry [20], [17], [18]. For this purpose, generic flight models or
models that describe common target aircraft are used.

For the safety analysis of a longitudinal motion controller, a logic based verification
technique has been chosen in this paper. The core of our approach is based on differential
dynamic logic (DDL) [3], for which the prover KeYmaera has been developed. Numerous
case studies from different domains have been conducted, in which KeYmaera proved to
be powerful enough to verify real-world cyber-physical systems [22], [23], [24].

An alternative logic-based verification backend would be HyComp [27], which is also
able to verify hybrid automata. HyComp is an SMT-based model checker and expects a
system description in terms of the HyDI symbolic language.

One of the bottlenecks for applying KeYmaera is the necessity to describe the system
(both plant and controller) in form of a hybrid program, which is a rather archaic, text
oriented notation. In this paper, we have provided – based on an example – a translation
from the notation Matlab/Simulink R○ into a hybrid program. While this translation is
for many constructs straightforward, special attention is needed to translate how the
controller computes the corrective input for the plant. In practice, this is often done by
applying a P-, PD-, or PID-controller law.

In [6], the integration of a PD-controller is illustrated in Example 9b (page 18), but
the PD-controller becomes part of the plant and not of the controller. Thus, to our
knowledge, it is still an unsolved problem how to model PD- and PID-controller in terms
of hybrid programs.

498
Моделирование и анализ информационных систем. Т. 26, №4 (2019)

Modeling and Analysis of Information Systems. Vol. 26, No 4 (2019)

Instead of using logic-based verification methods, tools such as SpaceEx [25] and
Flow* [26] apply reachability analysis as verification method. The goal of reachability
analysis is to obtain a verification whether a hybrid automaton never reaches an unsafe
state configuration [11]. In contrast to logic analysis, the verification of the reachability
for hybrid systems is based on the level set techniques [12], which determines an implicit
representation of the boundary of this reachable set.

For systems with complex dynamics, some approximation methods are needed for
reachability computations [13]: A group of methods seeks an efficient over-approximation
of the reachable set for hybrid systems, whose continuous dynamics is defined by linear
differential equations. Such systems can be implemented using tools like d/dt [14] or the
MATLAB-based tool CheckMate [28]. Here, sets are represented as convex polyhedra.
The propagation of these polyhedra under linear dynamics could result in over-approxi-
mations of nonlinear dynamics along each surface of the polyhedra.

Conclusion

In this paper, we have investigated safety critical software for controlling the flight
of modern airplanes. Such control software is usually developed using tools such as
Matlab/Simulink R○. We present a possible controller for the computation of the pitch
elevator angle, but this controller has been completely designed by ourselves. The sole
purpose of our model is to provide an example at which quality assurance techniques
can be applied and demonstrated.

For the controller of our example, we review two main safety properties: Does the
controller effectively prevent airflow disruption, which is the main purpose of the controller.
However, there is another safety property, which can be easily overlooked when airplane
software is hastily developed: Is it possible that the controller software could cause the
airplane to lose height, which - eventually - might cause the airplane to crash.

The simulations of our controller suggest, that both safety properties are met. However
and not surprisingly, the controller can cause airplane crashes when the sensor measuring
the pitch angle 𝜃 does not provide correct data.

For the case that the sensor works correctly, we have translated the Matlab/Simulink R○-
model successfully into a HP model. This paves the way to verify using the theorem
prover KeYmaera that for all possible situations the system is safe (not only for the few
situations captured by the simulation). Finding an actual proof for the described safety
properties was not the goal of this paper.

As discussed in Section 4., a successful transformation is only possible if the source
model meets some restrictions. Whenever functions are used in the source model for
which there is no corresponding function in HP, the generated target model cannot be
parsed by KeYmaera. Likewise, the derivation operator should be used in the source
model only at locations, which are mapped to continuous evolutions statements in HP.
As the example given in Section 4. illustrates, all other occurrences of the derivation
operator have to be manually substituted by equivalent terms prior to transformation,
but this seems to be not always possible.

Baar T., Schulte H.

Safety Analysis of Longitudinal Motion Controllers during Climb Flight 499

References
[1] Stengel R. F., Flight Dynamics, Princeton University Press, 2004.

[2] Yechout T.R., Introduction to Aircraft Flight Mechanics, American Institute of Aeronau-
tics & Astronautics, 2003.

[3] Platzer A., Logical Foundations of Cyber-Physical Systems, Springer, Heidelberg, 2018.

[4] Platzer A., Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics,
Springer, Heidelberg, 2010.

[5] Platzer A., “Logic and Compositional Verification of Hybrid Systems (Invited Tutorial)”,
In: Gopalakrishnan G., Qadeer S. (eds) Computer Aided Verification. CAV 2011. LNCS.
Springer, Berlin, Heidelberg, 6806 (2011), 28–43.

[6] Quesel J.D., Mitsch S., Loos S., Aréchiga N., Platzer A., “How to Model and Prove Hybrid
Systems with KeYmaera: A Tutorial on Safety”, International Journal on Software Tools
for Technology Transfer, 18:1 (2016), 67–91.

[7] Henzinger T.A., “The Theory of Hybrid Automata”, Proceedings, 11th Annual IEEE
Symposium on Logic in Computer Science, New Brunswick, New Jersey, USA, 1996, 278–
292.

[8] Baar T., “A Metamodel-Based Approach for Adding Modularization to KeYmaera’s Input-
Syntax”, Proceedings, 11th A. P. Ershov Informatics Conference, Akademgorodok, Novosi-
birsk, Russia. 2019.

[9] Harel D., Kozen D., Tiuryn J., Dynamic Logic, MIT Press Cambridge, 2000.

[10] Frehse G., Kekatos N., Nickovic D., Oehlerking J., Schuler S., Walsch A., Woehrle M.,
“A Toolchain for Verifying Safety Properties of Hybrid Automata via Pattern Templates”,
Proceedings, Annual American Control Conference (ACC), Milwaukee, USA, 2018, 2384–
2391.

[11] Alur R., Courcoubetis C., Henzinger T.A., Ho P.H., “Hybrid Automata: An Algorithmic
Approach to the Specification and Verification of Hybrid Systems”, International Hybrid
Systems Workshop. LNCS, Springer, Berlin, Heidelberg, 736 (1991), 209–229.

[12] Osher S., Sethian J.A., “Fronts Propagating with Curvature-dependent Speed: Algorithms
Based on Hamilton-Jacobi Formulations”, Journal of Computational Physics, 79:1 (1988),
12–49.

[13] Tomlin C. J., Mitchell I., Bayen A.M., Oishi M., “Computational Techniques for the Ver-
ification of Hybrid Systems”, Proceedings of the IEEE, 91:7 (2003), 986–1001.

[14] Asarin E., Bournez O., Dang T., Maler O., “Approximate Reachability Analysis of
Piecewise-Linear Dynamical Systems”, In: Lynch N., Krogh B.H. (eds) Hybrid Systems:
Computation and Control. HSCC 2000. LNCS, Springer, Berlin, Heidelberg, 1790 (2000),
20–31.

[15] Clarke Jr. E.M., Grumberg O., Kroening D., Peled D., Veith H., Model Checking (second
edition), MIT Press, 2018.

[16] Chen J., Patton R. J., Robust Model-Based Fault Diagnosis for Dynamic Systems, Kluwer
Academic Publishers Norwell, MA, USA, 1999.

[17] Goupil P., Marcos A., Advanced Diagnosis for Sustainable Flight Guidance and Control:
The European ADDSAFE Project, SAE technical paper 2011-01-2804, 2011.

[18] Goupil P., Marcos A., “Industrial Benchmarking and Evaluation of ADDSAFE FDD De-
sign”, In Proc. of 8th IFAC Symposium on Fault Detection, Supervision and Safety of
Technical Processes, 45:20 (2012), 1131–1136.

[19] Grenaille S., Henry D., Zolghadri A., “A method for designing fault diagnosis filters for
LPV polytopic systems”, Journal of Control Science and Engineering, 2008.

[20] Christopher E., Thomas L., Hafid S., “Fault Tolerant Flight Control: A Benchmark Chal-
lenge”, Lecture Notes in Control and Information Sciences, 399 (2010).

[21] Witczak M., “Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Sys-
tems”, Lecture Notes in Electrical Engineering, Springer, 266 (2014), 375–392.

500
Моделирование и анализ информационных систем. Т. 26, №4 (2019)

Modeling and Analysis of Information Systems. Vol. 26, No 4 (2019)

[22] Mitsch S., Loos S.M., Platzer A., “Towards Formal Verification of Freeway Traffic Con-
trol”, In Proc. of the 2012 IEEE/ACM Third International Conference on Cyber-Physical
Systems(ICCPS), 2012, 171–180.

[23] Jeannin J. B., Ghorbal K., Kouskoulas Y., Gardner R., Schmidt A., Zawadzki E.,
Platzer A., “A Formally Verified Hybrid System for the Next-Generation Airborne Col-
lision Avoidance System”, In Proc. of International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), 2015, 21–36.

[24] Platzer A., Quesel J.D., “European Train Control System: A Case Study in Formal Verifi-
cation”, In: Breitman K., Cavalcanti A. (eds) Formal Methods and Software Engineering.
ICFEM 2009. LNCS, Springer, 5885 (2009), 246–265.

[25] Frehse G., Le Guernic C., Donzé A.,Cotton S., Ray R., Lebeltel O., Ripado R., Girard A.,
Dang Th. Maler O., “SpaceEx: Scalable Verification of Hybrid Systems”, In: Gopalakrish-
nan G., Qadeer S. (eds) Computer Aided Verification. CAV 2011. LNCS, Springer, 6806
(2011), 379–395.

[26] Chen X., Ábrahám E., Sankaranarayanan S., “Flow*: An Analyzer for Non-linear Hy-
brid Systems”, In: Sharygina N., Veith H. (eds) Computer Aided Verification. CAV 2013.
LNCS, Springer, 8044 (2013), 258–263.

[27] Cimatti A., Griggio A., Mover S., Tonetta S., “HyComp: An SMT-Based Model Checker
for Hybrid Systems”, In: Baier C., Tinelli C. (eds) Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), LNCS, Springer, 9035 (2015), 52–67.

[28] “Formal Verification of Hybrid Systems Using CheckMate: A Case Study”, Proceedings of
the 2000 American Control Conference, 3 (2000), 1679–1683.

[29] Zolghadri A., “Advanced Model-Based FDIR Techniques for Aerospace Systems: Today
Challenges and Opportunities”, Progress in Aerospace Sciences, Elsevier, 53 (2012), 18–
29.

[30] Grenaille S., Henry D., Zolghadri A., “A Method for Designing Fault Diagnosis Filters for
LPV Polytopic Systems”, Journal of Control Science and Engineering, 2008, 1–11.

[31] Witczak M., Dziekan L., Puig V., Korbicz J., “Design of a Fault-Tolerant Control Scheme
for Takagi-Sugeno Fuzzy Systems”, In Proc. 16th Mediterranean Conference on Control
and Automation, 2008, 280–285.

Баар Т., Шульте Х., "Анализ безопасности контроллеров продольного движе-
ния во время набора высоты", Моделирование и анализ информационных систем,
26:4 (2019), 488–501.

DOI: 10.18255/1818-1015-2019-4-488-501

Аннотация. Во время набора высоты на больших пассажирских самолетах вертикальное дви-
жение самолета, то есть его угол наклона, зависит от угла отклонения руля высоты, выбранного
пилотом. Если угол наклона становится слишком большим, самолет рискует нарушить воздушный
поток на крыльях, что может привести к его падению. В некоторых самолетах пилоту помога-
ет программное обеспечение, задачей которого является предотвращение нарушения воздушного
потока. Когда угол наклона становится больше определенного порога, программное обеспечение
отменяет решения пилота относительно угла отклонения руля высоты и обеспечивает предполо-
жительно безопасные значения. Хотя вспомогательное программное обеспечение может помочь
предотвратить человеческие сбои, само программное обеспечение также подвержено ошибкам и,
как правило, представляет собой риск для тщательной оценки. Например, если разработчики про-
граммного обеспечения забыли, что датчики могут давать неправильные данные, программное
обеспечение может привести к тому, что угол наклона станет отрицательным. Следовательно, са-
молет теряет высоту и может – в конечном итоге – разбиться.
В этой статье мы представляем исполняемую модель, написанную на Matlab/Simulink R○ для си-
стемы управления пассажирским самолетом. Наша модель также учитывает программное обес-
печение, помогающее пилоту предотвращать нарушение воздушного потока. При моделировании

Baar T., Schulte H.
Safety Analysis of Longitudinal Motion Controllers during Climb Flight 501

набора высоты с использованием нашей модели легко увидеть, что самолет может потерять высоту,
если данные, предоставленные датчиком угла наклона, неверны. Для противоположного случая
правильных данных датчика, моделирование предполагает, что система управления работает пра-
вильно и способна эффективно предотвращать нарушение воздушного потока.
Однако симуляция не является гарантией безопасности системы управления. По этой причине
мы переводим Matlab/Simulink R○-модель в гибридную программу (НР), т. е. во входной синтаксис
средства доказательства теорем KeYmaera. Это открывает путь для формальной проверки свойств
безопасности систем управления, смоделированных в Matlab/Simulink R○. В качестве дополнитель-
ного вклада в эту статью мы обсудим текущие ограничения нашей трансформации. Например,
оказывается, что простые пропорциональные (Р) контроллеры могут быть легко представлены
программами НР, но более продвинутые контроллеры РD (пропорционально-производные) или
РID (пропорционально-интегрально-производные) могут быть представлены как программы НР
только в исключительных случаях.

Ключевые слова: киберфизическая система (CРS), анализ формальной безопасности, гибрид-
ный автомат
Об авторах:
Томас Баар, orcid.org/0000-0002-8443-1558,
Hochschule für Technik und Wirtschaft (HTW) Berlin, Germany,
Кампус Wilhelminenhof, Wilhelminenhofstraße 75A, 12459 Берлин, e-mail: thomas.baar@htw-berlin.de

Хорст Шульте, orcid.org/0000-0001-5851-3616,
Hochschule für Technik und Wirtschaft (HTW) Berlin, Germany,
Кампус Wilhelminenhof, Wilhelminenhofstraße 75A, 12459 Берлин, e-mail: horst.schulte@htw-berlin.de

