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�e goal of the paper is to develop an algorithm for matching the shapes of images of objects based on the geometric
method of de Rham currents and preliminary a�ne transformation of the source image shape. In the formation of the
matching algorithm, the problems of ensuring invariance to geometric image transformations and ensuring the absence of
a bijective correspondence requirement between images segments were solved. �e algorithm of shapes matching based on
the current method is resistant to changes of the topology of object shapes and reparametrization. When analyzing the data
structures of an object, not only the geometric form is important, but also the signals associated with this form by functional
dependence. To take these signals into account, it is proposed to expand de Rham currents with an additional component
corresponding to the signal structure. To improve the accuracy of shapes matching of the source and terminal images we
determine the functional on the basis of the formation of a squared distance between the shapes of the source and terminal
images modeled by de Rham currents. �e original image is subjected to preliminary a�ne transformation to minimize the
squared distance between the deformed and terminal images.
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Определение расстояний между изображениями методом потоков
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Целью работы является разработка алгоритма сравнения форм изображений объектов, основанного на геометри-
ческом методе потоков де Рама и предварительном аффинном преобразовании исходной формы изображения.
При формировании алгоритма сравнения решены задачи обеспечения инвариантности к геометрическим пре-
образованиям изображений и обеспечения отсутствия требования биективного соответствия между сегментами
исходного и терминального изображений. Алгоритм сравнения форм, основанный на методе потоков, устойчив к
изменению топологии форм объектов и репараметризации. При анализе структур данных объекта имеет значение
не только геометрическая форма, но и сигналы, ассоциированные с этой формой функциональной зависимостью.
Для учета этих сигналов предлагается расширить потоки де Рама дополнительным компонентом, соответству-
ющим структуре сигнала. Для повышения точности сравнения форм исходного и терминального изображений
определяется функционал на основе формирования квадрата расстояния между формами исходного и терминаль-
ного изображений, моделируемыми потоками де Рама. Исходное изображение подвергается предварительному
аффинному преобразованию для минимизации квадрата расстояния между деформированным и терминальным
изображениями.
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Introduction
Analysis and matching of image shapes of objects is an important problem in pa�ern recognition [1], im-

age registration [2], biometrics [3], computational anatomy [4]. �e determination of distances for matching
the shapes of objects is one of the methods for analyzing shapes in pa�ern recognition. Known distances
used in pa�ern recognition are: Hausdor�, Frechet, Procrustes, Wasserstein and others [5]. One of the most
e�ective methods for matching the shapes of objects is the LDDMM method (Large deformation di�eo-
morphic metric mapping [6]), in which the distance between the shapes is determined by the minimized
functional consisting of the integral of the deformation energy of the original image and the terminal and
the sum squared of deviations between the resulting deformable and terminal image.

�e traditional methods of matching image shapes in pa�ern recognition problems have the following
disadvantages. Firstly, the lack of invariance of methods in a�ne transformations of the shapes of images of
objects; secondly, the requirement of bijective correspondence between image segments; thirdly, the lack of
accounting of the orientation of the shapes of the source and terminal images; fourthly, the lack of accounting
of the functional dependence of image segments.

1. Problem statement
Purpose of this paper is to develop an algorithm for matching the image shapes of objects, which is

devoid of the above disadvantages. An algorithm for matching shapes based on the geometric de Rham
current method [7] and preliminary a�ne transformation of the original image form is proposed. �e method
of currents can be used to represent and analyze forms of various nature: point landmarks, curves, surfaces,
signals. If Ωk (M) is the space of continuous di�erential k-forms ! in M ∈ ℝd , then the space of de Rham
k-currents (Ωk)

∗ (M) is the dual space to the space Ωk (M); k-current T (⋅) ∈ (Ωk)
∗ (M) is a linear functional

mapping a di�erential k-form ! ∈ Ωk (M): ! → T (!) ∈ ℝ. For any hypersurface S ∈ ℝk we can associate
such current TS (⋅) ∈ (Ωk)

∗ that [7]:

TS (!) ∈ ∫
S

! ∈; ∀! ∈ Ωk .

In the formation of the matching algorithm, the following problems were solved: ensuring the invari-
ance to geometric image transformations, ensuring the absence of a bijective correspondence requirement
between image segments [8–10]. Using the de Rham current algorithm allow us to increase the accuracy
of matching by taking into account the orientation of the segments of the image shape. �e algorithm for
matching shapes based on the current method is stable when changing the topology of the shapes of objects
and changing parameterization.

�e problem of correctly determination the distance between currents that decode the shapes of objects
is solved by imbedding the space of de Rham currents in RKHS (reproducing kernel Hilbert spaces) [11].
�e study of the shapes of objects is proposed to be carried out by forming test vector �elds. Since the
de Rham current is not a scalar, for working with currents it is necessary to use vector-valued RKHS [12, 13].

When analyzing the data structures of an object, not only the geometric shape is important, but also
the signals associated with this shape with functional dependence. Signals can include structures that are
more complicated than real numbers; e.g. vector, tensor signals, quaternions, etc. To take these signals into
account, it is proposed to expand de Rham currents with an additional component corresponding to the
signal structure.

�e results of a di�eomorphic matching of the shapes of objects with an extension of the LDDMM
algorithm to the case of metamorphosis, in which there may be no bijective correspondence between the
segments of the source and �nal images, are presented in the article [14]. In this case, a functional is formed
that corresponds to the image deformation and determines the distance between the shapes of the initial
and terminal images. In order to increase the accuracy of matching the shapes of the source and terminal
images in this paper, we determine the functional on the basis of the formation of the squared distance
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between the shapes of the source and terminal images modeled by de Rham currents. �e source image
undergoes a preliminary a�ne transformation formalized by Lie groups to minimize the squared distance
between the two shapes. �e minimization of the functional of the squared distance between the image
shapes constructed using de Rham currents is based on the QPSO algorithm.

2. Hamiltonian mechanics of image points
Representation of an image a�er a di�eomorphic transformation can be considered as an evolution of

point landmarks of an image based on the principles of Hamilton mechanics. Consider the parameterization
of the image by particles. Let qi (t); i = 1,… , N be the position vector of the particle i and pi (t) ; i =
1,… , N be the corresponding momentum vector in time t . If we assume that the moments and velocities
of particles are interconnected by the relation: pi =  ⋅ vi , where  is an invertible linear operator, then
the inverse operator −1: vi = −1 ⋅ pi = pi . For an operator  = id − �∇2 in space ℝ2, the inverse operator
 = −1 can be approximated by the Gauss function: K (qi − qj) = �e−�

−2(qi−qj)T (qi−qj).
We construct a functional J0 corresponding to the deformation of the image represented by a set of points:

J0 =
1
2

1

∫
0

{
N
∑
i,j=1

pTi K (qi − qj) pj

}

dt.

Minimization J0 is carried out according to the values of the components of the momentum vectors
pi , pj ; i, j = 1…N . �e minimization problem for J0 can be represented as the optimal control problem with

the Hamiltonian: H0 (q, p) = 1
2

N
∑
i,j=1

pTi K (qi − qj) pj . If the Hamiltonian of the system is taken in the form:

H (q, p) = H0 (q, p) + �−2
N
∑
i=1

(q̇i − vi (q))2,

then the Hamilton equations for derivatives ṗ = (ṗ1,… , ṗN ) , q̇ = (q̇1,… , q̇N ) will take the form [14] :

ṗi = −
)H
)qi

= −
N
∑
j=1
pTi ∇qiK (qi − qj) pj ;

q̇i =
)H
)pi

=
N
∑
j=1
K (qi − qj) pj + �2pi .

(1)

3. Matching the shapes of objects
�e theory of currents was developed by G. de Rham [7]. �e denomination “current” is chosen by

analogy with electromagnetism. For example, in accordance with the law of induction of M. Faraday, the in-
tensity of the current in the wire loop caused by a change in the magnetic �eld is proportional to the change
in the �ux of this magnetic �eld through the surface bounded by the loop. �is means that if you measure
the current strength in the wire for all possible changes in the magnetic �eld, you can get the loop geome-
try. In the works [15–17] presents the concept of currents for the formation of a measure of the di�erence
between simplicial complexes, which does not imply a bijective correspondence between the structures of
objects. �e concept of using currents is to study the shape of objects by forming test vector �elds.

Let Ωk (M) be the space of continuous di�erential k-forms ! in M ∈ ℝd . �e space of k-currents is the
dual space to the space of di�erential k-forms; k-current is a linear functional mapping a di�erential k-form
!: ! → T (!) ∈ ℝ. �e form ! ∈ Ωn−1 can be integrated over a hypersurface S, which is associated with
(n − 1)-current TS ∈ (Ω∗)n−1 in such a way that: TS (!) = ∫

S
!, ∀! ∈ Ωn−1. Suppose that a hypersurface Sis
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parameterized by a surface r : D ⊂ ℝn−1 → ℝn, with r (D) = S. �en:

TS (!) = ∫
S

! = ∫
D

! (r (x)) (rx1 ∧ … ∧ rxn−1) dx1… dxn−1,

where rxi =
)r
)xi

; i = 1,… , n − 1.

Consider the case of plane closed curves and compact surfaces. Let l ∶ L = [a, b]→ ℝ2 be a parametrized
curve in ℝ2. We associate with l such a current Tl (⋅) that when Tl (⋅) acting on ! we get:
Tl (!) = ∫

L
(!̄ (l (t)) ⋅ � (t)) )l(t))t dt , where � (t) is the tangent vector to l at the point t , !̄ is the vector �eld in ℝ2

corresponding !. Let S be a surface in ℝ3, with parameterization r ∶ (u, v) ⊂ ℝ2 → ℝ3 ; r(u, v) = S. We as-
sociate with S such a current TS (⋅) that when acting TS (⋅) on ! we get: TS(!) = ∫

U
!̄ (r (u, v)) ⋅ (ru × ru) dudv,

where !̄ is the vector �eld in ℝ3, corresponding to !, ”×” is the vector product operator.
Let (W, ⟨⋅, ⋅⟩W ) be a test Hilbert space of vector �elds ℝn → ℝn. We introduce W ∗ – the space of

currents dual to the space W , that is, the space of continuous linear mappings: W → ℝ. For any cur-
rent TS (⋅) ∈ W ∗, there is such a representation KWTS ∈ W that TS (!) = ⟨KWTS , !⟩W , ∀! ∈ W. �e space
W is a vector-valued RKHS (see Appendix 1), W equipped with an inner product
⟨KW (⋅, x) �, KW (⋅, y) �⟩W = �TKW (x, y) �, that is de�ned for the �elds KW (⋅, x) � and KW (⋅, y) � . If we
denote KW (⋅, y) � as ! , then we obtain the reproducing property: ⟨KW (⋅, x) �, !⟩W = �T! (x) ; ∀! ∈ W.

�ere is a linear mapping: LW ∶ W → W ∗, between space W and the corresponding space of currents:
W ∗ ∶ LW (!) (!′) = ⟨!, !′⟩W , ∀!, !′ ∈ W. �e inner product ⟨⋅, ⋅⟩W can be mapped to the current space
W ∗ using linear mapping LW . �en the inner product is between two currents T , T ′:
⟨T , T ′⟩W ∗ = ⟨L−1W (T ) , L−1W (T ′)⟩W .

In space W , the basic elements are �elds of the form KW (⋅, x) � , and the corresponding basic ele-
ments in space W ∗ are the Dirac �-currents: ��x = L−1W (KW (⋅, x) �) . From the de�nition ��x and LW we
get: ��x (!) = ⟨KW (⋅, x) �, !⟩W = �T! (x) . Inner product between Dirac �-currents:

⟨��x , �
�
y⟩W ∗ = ⟨K (⋅, x) �, K (⋅, y) �⟩W = �TKW (x, y) �.

If the current T represents a curve (or surface), then it can be decomposed into many tangents (normals).
�e dual representation −1W (T ) of the current (vector �eld in W ) is the convolution of all tangents (normals)
with the kernel KW . Polygons of the curve (surface mesh) can be approximated by a �nite sum: T ∼ ∑

k
��kxk ,

where xk is the center of each segment (mesh cell) and �k is the tangent (normal to the surface) at the point
xk . �e value �k encodes the size of the segment (surface mesh). �e dual representation of the current at
any point x is given by the sum: ∑

k
KW (x, xk) �k . �e integrals of currents in the discrete approximation are

replaced by the sums for the curves: Tl (!) ∼ ∑
k
! (xk)T �k , where �k is the tangent at a point xk ; for surfaces:

TS (!) ∼ ∑
k
! (xk)T nk , where nk is the normal to the surface at a point xk .

4. �e distance between the shapes of objects

�e inner product between two sets of Dirac currents: T = ∑
i
��ixi , T

′ = ∑
j
��jyj , can be determined from

the relation: ⟨T , T ′⟩W ∗ = TL−1WT ′ = ∑
i
∑
j
�Ti KW (xi , yj) �j .
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We de�ne the square of the distance between two shapes simulated by currents:

d (T , T ′)
2 = ‖‖T − T

′‖‖
2
W ∗ = (T − T ′) L−1W (T − T ′) =

=
N
∑
p=1

N
∑
q=1

�TxpKW (xp , xq) �xq−

−2
N
∑
p=1

N
∑
q=1

�TxpKW (xp , yq) �yq +
N
∑
p=1

N
∑
q=1

�TypKW (yp , yq) �yq ,

(2)

where KW (xp , xq) = exp(− ‖‖xp − xq‖‖
2 �−2W) . To take into account the di�eomorphic deformation of the

source shape, it is necessary to add the functional J0 multiplied by the regularization coe�cient to the squared
distance d (T , T ′)

2.
If the curve l is given by simplicial complexes with points (x1, y1) ,… , (xN , yN ), (xN+1, yN+1), then the cen-

ters of the segments between adjacent points of the corresponding complexes: cxi = (xi+xi+1)
2 , cyi = (yi+yi+1)

2 ,
and the tangents formed by these segments: �xi = (xi+1−xi )

2 , �yi = (yi+1−yi )
2 ; i = 1, 2,… , N . �en:

l → Tl (!)
N
∑
j=1
K (cj , ⋅) (�j) . If S is an oriented triangulated surface de�ned by points:

(x1, y1, z1) ,… , (xN , yN , zN ), (xN+1, yN+1, zN+1) , where each j-th triangle is represented by the center:
cxj =

(xj+xj+1+xj+2)
3 , cyj =

(yj+yj+1+yj+2)
3 , czj =

(zj+zj+1+zj+2)
3 , and by a normal vector nj to the j-th triangle, whose

norm encodes the area of the triangle. �en: S → TS (!)
N
∑
j=1
K (xj , ⋅) (nj).

If the set (xp , �p)p=1…N contains functions fxp representing signals at the points xp : (xp , �p , fxp)p=1…N ,
then the square of the distance ‖‖T − T

′‖‖
2
W ∗ in (2) can be represented as:

d (T , T ′)
2 = ‖‖T − T

′‖‖
2
W ∗ =

N
∑
p=1

N
∑
q=1

K f (fxp , fxq) ⋅ �TxpKW (xp , xq) �xq−

−2
N
∑
p=1

N
∑
q=1

K f (fxp , fyq) ⋅ �TxpKW (xp , yq) �yq+

+
N
∑
p=1

N
∑
q=1

K f (fyp , fyq) ⋅ �TypKW (yp , yq) �yq ,

(3)

where: K f (fxp , fxq) = exp(− (fxp − fxp)
2 �−2f ), �f is the standard deviation fxp in the space of functions.

4.1. Example 1

Consider an example of matching the shapes of objects. Let a simplicial complex with a set of points
x1,… , xn be given. If the complex is approximated by a curve, then the centers of the segments and the
tangents have the form: ci = (xi+xi+1)

2 , �i = (xi+1−xi )
2 , respectively.

Let us consider a matching of the shapes of objects: a square T with vertices: x = (( 11 ) , ( −11 ) , ( −1−1 ) , ( 1
−1 )) ,

centers of edges: cx = (( 01 ) , ( −10 ) , ( 0
−1 ) , ( 10 )) , covectors corresponding to tangents to edges:

�x = ((
−1
0 )

T , ( 0
−1 )

T , ( 10 )
T , ( 01 )

T
) , and a triangle T ′ with vertices: y = ((

0
1 ) ,(

−
√
3
2

− 12 ) ,(
√
3
2
− 12 ))

,

centers of edges: cy = ((
−

√
3
4
1
4

) ,(
0
− 12 ) ,(

√
3
4
1
4
)) , covectors corresponding to tangents to edges:

�y = ((
−

√
3
4

− 34 )
T
,(

√
3
2
0 )

T
,(

−
√
3
4
3
4

)
T

) .

�e square of the distance d (T , T ′)
2 = ‖‖T − T

′‖‖
2
W ∗ with �V = 1, according to (2), is equal to

d (T , T ′)
2 = 1, 748. If there are functions fxp representing signals at the vertices xp :
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fx1 = 1, fx2 = 2, fx3 = 3, fx4 = 4; and the functions fyp representing the signals in yp : fy1 = 1, fy2 = 2, fy3 = 3, are
included in the sets (xp , �p)p=1…4 and (yp′ , �p′)p′=1…3 , then the square of the distance d (T , T ′)

2 = ‖‖T − T
′‖‖
2
W ∗

with �f = 1, according to (3), is equal d (T , T ′)
2 = 1, 966.

4.2. Example 2

Let us consider an example of a di�eomorphic deformation of the image shape of a symbol of an inde�nite
shape into an image shape of the shape of number 2 (Fig. 1), number 7 (Fig. 2) and number 8 (Fig. 3).

�e evolution of deformations of a di�eomorphic shape was determined based on the solution of equa-
tions (1). �e functional is minimized by values using the QPSO algorithm (see Appendix 2, [18] ). In �g. 1, 2, 3
shows intermediate shapes of images for times: t = 0 (source image shape), t = 0, 5 (intermediate image
shape), t = 1 (terminal image shape).

Fig. 1. Deformation of the shape of the symbol in
the shape of number 2

Fig 1. Деформация формы символа в форму
цифры 2

Fig. 2. Deformation of the shape of the symbol in
the shape of number 7

Fig 2. Деформация формы символа в форму
цифры 7

Fig. 3. Deformation of the shape of the symbol in
the shape of the number 8

Fig 3. Деформация формы символа в форму
цифры 8
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In this case, the values of the squared distance between the source image and the terminal shape d2 (T , T ′),
determined from relation (2) with �W = 1, are:

• for the case of deformation of the shape of the symbol in the shape of numbers 2: d2 (T , T ′) = 78, 6;
• for the case of deformation of the shape of the symbol in the shape of the number 7: d2 (T , T ′) = 78, 0;
• for the case of deformation of the shape of the symbol in the shape of the �gure 8: d2 (T , T ′) = 16, 8.
�erefore, the algorithm recognizes the character as the number 8.
It should be noted that during deformation of the shape of the symbol into the shape of the �gure 8,

the topological genus of the shape changes from 0 to 1, that is, the deformation is not a di�eomorphism, but
a metamorphosis.

5. Normalization of images based on a�ne
transformations

To improve the accuracy of matching of source and terminal images, these images should be normalized.
Below we propose such a normalization method, in which the original image undergoes a�ne transforma-
tion and the functional between the converted original and terminal images is minimized. A�er that, the
normalized original image undergoes a di�eomorphic transformation, while the distance (2) between the
converted and terminal images is reduced, which will increase the accuracy of the matching.

An a�ne transformation is a special case of a di�eomorphic transformation. An a�ne transformation
can be represented in the form [19]:

x → y = M ⋅ x + b,

where M ∈ ℝn×n is an invertible matrix, b ∈ ℝn, x, y are vectors in an a�ne space X ∈ ℝn.
In the case of an a�ne transformation of a curve (surface) point p approximating the shape of a de-

formable object, it can be represented as: yp → M ⋅ xp + b , p = 1,… , P . As the minimized functional, we
choose the square of the distance between the points of the source and �nal images: J (M, b) = d (T , T ′)

2 ,
where d (T , T ′)

2 it is determined in accordance with (2), T is the current corresponding to the initial shape
of the object, T ′ is the current corresponding to the shape of the deformable object a�er a�ne transforma-
tion. Let � j be the parameters of the a�ne transformation: � j ∈ Ξ; j = 1,… , N , where Ξ, is the set of matrix
components M and vector components b.

�e values of the parameters �i of the particle i can be found using the QPSO algorithm (quantum particle
swarm optimization, see Appendix 2, [18]) to minimize the functional J (Ξ). We denote the value of the
minimized functional En on the set: � ji,n ∈ Ξ: En = J (�

j
1,n,… , � jI ,n), where n is the iteration step number, and

i ∈ [1… I ] is the particle number. Let Pi,n be the values of the parameters that provide the smallest value
of the functional En for the particle i a�er the n-th iteration, and Gn be the values of the parameters that
provide the smallest value of the functional En for all particles a�er the n-th iteration. We choose the values
of the best values of the parameters from the relation:

pi,n = �i,n ⋅ Pi,n + (1 − �i,n) ⋅ Gn,

where �i,n ∈ [0… 1] is a random number of a uniform distribution. �e parameters �i of the particle i at the
next iteration step (n + 1) can be determined from the relation:

if ( i,n < 0, 5) then � ji,n+1 = p
j
i,n − � ⋅

|||�
j
i,n − p

j
i,n
||| ⋅ ln (u

j
i,n+1) ;

else � ji,n+1 = p
j
i,n + � ⋅

|||�
j
i,n − p

j
i,n
||| ⋅ ln (u

j
i,n+1) ,

(4)

where  i,n ∈ [0… 1], uji,n ∈ [0… 1] are random numbers of uniform distribution.
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Fig. 4. Example of affine transformation Fig 4. Пример аффинного преобразования

5.1. Example 3

Consider the example of the a�ne transformation of a quadrangle T with vertices
x = (( −4−3 ) ( −26 ) ( 43 ) ( 2

−3 )) , into a square T ′ with vertices x = (( 44 ) ( 4
−4 ) ( −4−4 ) ( −44 )) ∶

x → y = M ⋅ x + b; (see �g. 4).
Before the a�ne transformation, the value d (T , T ′) (see (2)) is equal d (T , T ′) = 8, 2. A�er carrying out

the a�ne transformation and minimizing the distance d (T , T ′) , we obtain the required components of the
matrix M ∶ M = ( 1,2 −0,26

0,38 0,8 ) , and the vector b ∶ b = ( 0 0 )T . Preliminary a�ne transformation reduced the
distance to d (T , T ′) = 0, 67.

Conclusion
�e paper considered an algorithm for matching image shapes, based on the de Rham currents method

and preliminary a�ne transformation of the source image shape. �e de Rham current method can be used to
represent shapes of various nature: point landmarks, curves, surfaces, signals. Using the proposed matching
algorithm allows us to solve the problem of ensuring invariance to geometric transformations of images and
ensuring the absence of a bijective correspondence requirement between image segments. �e algorithm for
matching shapes based on the current method is stable when changing the topology of the shapes of objects
and changing parameterization. An application of the method of reproducing kernel Hilbert space (RKHS)
to obtain metrics of the shape of an object is proposed.

To increase the accuracy of matching the shapes of the source and terminal images, it is proposed that
the source image be subjected to preliminary a�ne transformation. �e problem of invariance to geometric
transformations of images (translation, rotation, scaling, skew) is solved. �e minimization of the functional
of the squared distance between the image shapes is based on the QPSO algorithm.

�e results of a di�eomorphic matching of the shapes of objects with the extension of the LDDMM (large
deformation di�eomorphic metric mapping) algorithm to the case of metamorphosis, in which there may
be a bijective correspondence between the segments of the source and terminal images, are presented. To
improve the accuracy of matching the shapes of the source and terminal images, we determine the functional
on the basis of the formation of a squared distance between the shapes of the source and terminal images
modeled by de Rham currents.
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Appendix 1. Reproducing kernel Hilbert spaces
RKHS (reproducing kernel Hilbert spaces) is a Hilbert space of functions in which a point esti-mation

is a continuous linear functional [11]. If two functions in RKHS are close in norm: ‖f − g‖ → 0, then
|f (x) − g (x)| → 0; ∀x. For kernel k (x, x ′), we construct a Hilbert space so that k (x, x ′) is a scalar prod-
uct in this space. For given points x1, x2, ..., xn, we de�ne the Gram matrix: Kij = k (xi , xj) . We say that a
kernel is positive de�nite if its Gram matrix is positive de�nite for all xi , xj ; i, j = 1,… , n. We de�ne a linear
functional Lx in a Hilbert space H that estimates each function at a point x : Lx ∶ f → f (x) , ∀f ∈ H. Space
H is generated by the reproducing kernel, if Lx (f ) is a continuous function for all x ∈ X. �e estimation
of functional Lx can be represented by taking the inner product of the function f with the function of the
reproducing kernel k (⋅, x) ∈ H . De�ne a map Φ ∶ x → k (⋅, x) . i.e. with each point x in the source space we
associate a function k (⋅, x) with a reproducing property: f (x) = Lx (f ) = ⟨f , k (⋅, x)⟩; ∀f ∈ H, ∀x ∈ X. Since
k (⋅, x) ∈ H, then: k (y, x) = Ly (k (⋅, x)) = ⟨k (⋅, x) , k (⋅, y)⟩ , where k (⋅, y) ∈ H is the element associated
with Ly . �is allows us to de�ne the reproducing kernel for H as a function K ∶ X × X → ℝ:
k (x, y) = ⟨k (⋅, x) , k (⋅, y)⟩ . We construct a vector space RKHS containing all linear combinations of

functions k (⋅, x) ∶ f (⋅) =
m
∑
j=1
�ik (⋅, xi). Let be: g (⋅) =

m′

∑
j=1
�jk (⋅, x ′j ); de�ne the inner product:

⟨f , g⟩ =
m
∑
i=1

m′

∑
j=1

�i�jk (xi , x ′j ).

For any function: f (⋅) =
m
∑
j=1
�ik (⋅, xi), the following relation is valid:

⟨k (⋅, x) , f ⟩ =
m
∑
i=1

�ik (xi , x) = f (x) .

�e kernels are analogues of Dirac � -functions. In space L2:

⟨� (⋅, x) , f ⟩ = ∫ f (t) � (t, x) dt = f (x) ,

where � (t, x) is the Dirac �-function.
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Appendix 2.
�antum particle swarm optimization algorithm

�e PSO algorithm is presented in [20]. �e PSO algorithm considers a set of particles; each particle is
a suitable solution to the optimization problem. In terms of classical mechanics, a particle is represented
by a vector of its position and a velocity vector, which determine the trajectory of the particle. In quantum
mechanics, the term ”trajectory” does not make sense, since, in accordance with the principle of uncertainty,
the coordinates and velocities of particles cannot be deter-mined simultaneously. A model with a quantum-
mechanical potential well based on E. Schrödinger equation [18] is considered below. In quantum mechanics,
the state of a particle is deter-mined by the wave function  (x, t). In one-dimensional space, the wave
function of a particle determines Q (x, t): | (x, t)|2 dx = Q (x, t) dx, where Q (x, t) dx is the probability that
a measurement of the particle’s position at a certain point in time will �nd it in a neighborhood relative to
a point x with the volume of the neighborhood dx . �e probability density function satis�es the relation:

∞

∫
−∞

| |2 dx =
∞

∫
−∞

Qdx = 1.

�e wave function  (x, t) changes in time in accordance with E. Schrödinger equation:
i~ )

)t (x, t) = Ĥ (x, t) . For a particle of mass m in a potential �eld V (x) , the Hamilton operator Ĥ is given
by the formula: Ĥ = − ~2

2m∇
2 + V (x) , where ~ is Planck’s constant.

Suppose that each particle moves in an �-potential well in the search space whose center is a point p.
�e potential energy of a particle in a one-dimensional �-potential well is represented in the form:
V (x) = −
 ⋅ � (x − p) . Let be: y = x−p. Solving the Schrödinger equation for y ≠ 0, we obtain the probability
density function:

Q (y) = | (y)|2 = L−1 exp (−2 |y | L−1) ,

where L is the characteristic “length” of the �-potential well. Let s be a uniformly distributed random number:
s = L−1u; u = rand (0, 1). Replacing | (y)|2 with s, we get: s = L−1 ⋅ exp (−2 |y | L−1) ; y = x − p = ±L2 ln (u

−1) ,

consequently: x = p ±
L
2
ln (u−1) . We form L at the k-th step of the iteration: L = � ⋅ |xk − p| , where � is the

parameter that controls the search process.
Let Pi,n be the values of the parameters that provide the smallest value of the functional En for the

particle i a�er the n-th iteration, and Gn be the values of the parameters that provide the smallest value of
the functional En for all particles a�er the n-th iteration. We choose the values of the best values of the
parameters from the relation: pi,n = �i,n ⋅ Pi,n + (1 − �i,n) ⋅ Gn, where �i,n ∈ [0… 1] is a random number of
a uniform distribution. �e parameters �i of the particle i at the next iteration step (n + 1) can be determined
from the relation:

if ( i,n < 0, 5) then � ji,n+1 = p
j
i,n − � ⋅

|||�
j
i,n − p

j
i,n
||| ⋅ ln (u

j
i,n+1) ;

else � ji,n+1 = p
j
i,n + � ⋅

|||�
j
i,n − p

j
i,n
||| ⋅ ln (u

j
i,n+1) ,

where  i,n ∈ [0… 1], uji,n ∈ [0… 1] are random numbers of uniform distribution.
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