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a bijective correspondence requirement between images segments were solved. The algorithm of shapes matching based on
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structures of an object, not only the geometric form is important, but also the signals associated with this form by functional
dependence. To take these signals into account, it is proposed to expand de Rham currents with an additional component
corresponding to the signal structure. To improve the accuracy of shapes matching of the source and terminal images we
determine the functional on the basis of the formation of a squared distance between the shapes of the source and terminal
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OnpenesieHNne pacCTOSHUN MEKAY M300pakeHUMSIMU MEeTOAOM IIOTOKOB

me Pama
C.H. Yykanos' DOL: 10.18255/1818-1015-2020-1-96-107

1I/IHCTI/ITyT martemaruky um. C.JI. Co6oneBa CO PAH, Omckuii ¢puminai, yi. Ilesrosa, 13, r. Omck, 644043, Poccns.

YK 004.932.2 IMosryuena 1 ¢espass 2020 r.
Hayunas crates ITocne mopabotku 27 ¢eBpainsa 2020 r.
TTonHBIN TEKCT HA AHTJIUIICKOM S3BIKe Tlpuusara k my6unkanmm 28 ¢espais 2020 r.

Ilenpio paboThI ABISIETCSA paspaboTKa anropuTMa cpaBHeHMs GopM 1300pakeHNIT 00BEKTOB, OCHOBAHHOTO Ha FeOMETPH-
yecKoM MeTofie IOTOKOB e Pama u npepBapurensHoM adPuHHOM IpeoGpasoBaHMM MCXOLHO (GOPMBI U300pasKeHNs.
Ilpu GpopMupoBaHMY ANTOPUTMA CPABHEHMS peLIeHbl 3aJaun obecleueHns] MHBAPUAHTHOCTY K T€OMETPUUECKUM IIpe-
06pa3oBaHNIM U300paKeH!iT 11 obecrieye s OTCyTCTBIUS TpeGOBaHMSI OMEKTUBHOTO COOTBETCTBIS MEXAY CeTMEHTaMM
JICXOJHOTO U TEPMIHAIIBHOTO M300paskeHuit. AJITOPUTM cpaBHeHUs (GOpM, OCHOBAHHBII Ha METOJe IIOTOKOB, YCTOUMB K
VM3MeHEeHUIO Toronoruy GpopM o0beKTOB U perrapaMerpusanuu. [Ipu aHanuse CTPYKTYp JAHHBIX 06BEKTA MeeT 3HAUEHIIe
He TOJIBKO reoMeTpuueckas popma, HO I CUTHAJIBI, aCCOLIMUPOBAHHBIE C 9TON HOpMOIT GPyHKIMOHATIBHOIT 3aBUCHMOCTBHIO.
It yueTa 9TUX CUTHAJIOB IIPeJIaraeTcsi PacIIMpPUTh ITOTOKM Je PaMa [OIOJHUTENbHBIM KOMIIOHEHTOM, COOTBETCTBY-
IOIUMM CTPYKType curHana. [[Jist IMOBBILIEHNsI TOUHOCTY CpaBHEHMs (POPM MICXOLHOTO ¥ TEPMUHAIBHOTO M300paskKeHMIT
omnpenessercs GyHKIMOHAI Ha OCHOBe (JOPMMPOBAHMS KBaApaTa pacCTOSIHIS MEXAY popMaMy ICXOXHOTO Y TEPMUHAIIb-
HOTO M300pasKeHNII, MOAeNUPyeMbIMU IToTokamu fe Pama. VcxoqHoe n3obpaxkeHe IOABEPraeTcs IpeiBapUTelbHOMY
adrHHOMY IIPE0OpPa30BAHMIO VIS MUHIMMI3ALUY KBapaTa PACCTOSHIIS MEKAY Ae(OpPMUPOBAHHBIM U TEPMUHAIBHBIM
1300paKEeHISIMMI.
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Introduction

Analysis and matching of image shapes of objects is an important problem in pattern recognition [1], im-
age registration [2], biometrics [3], computational anatomy [4]. The determination of distances for matching
the shapes of objects is one of the methods for analyzing shapes in pattern recognition. Known distances
used in pattern recognition are: Hausdorff, Frechet, Procrustes, Wasserstein and others [5]. One of the most
effective methods for matching the shapes of objects is the LDDMM method (Large deformation diffeo-
morphic metric mapping [6]), in which the distance between the shapes is determined by the minimized
functional consisting of the integral of the deformation energy of the original image and the terminal and
the sum squared of deviations between the resulting deformable and terminal image.

The traditional methods of matching image shapes in pattern recognition problems have the following
disadvantages. Firstly, the lack of invariance of methods in affine transformations of the shapes of images of
objects; secondly, the requirement of bijective correspondence between image segments; thirdly, the lack of
accounting of the orientation of the shapes of the source and terminal images; fourthly, the lack of accounting
of the functional dependence of image segments.

1. Problem statement

Purpose of this paper is to develop an algorithm for matching the image shapes of objects, which is
devoid of the above disadvantages. An algorithm for matching shapes based on the geometric de Rham
current method [7] and preliminary affine transformation of the original image form is proposed. The method
of currents can be used to represent and analyze forms of various nature: point landmarks, curves, surfaces,
signals. If QF (M) is the space of continuous differential k-forms  in M € R?, then the space of de Rham
k-currents (Qk ) (M) is the dual space to the space Q¥ (M); k-current T () € (Qk ) (M) is a linear functional
mapping a differential k-form w € Q¥ (M): w — T (w) € R. For any hypersurface S € RF we can associate
such current Ts (-) € (Qk)* that [7]:

Ts (w) € /a) €V e QF.
S

In the formation of the matching algorithm, the following problems were solved: ensuring the invari-
ance to geometric image transformations, ensuring the absence of a bijective correspondence requirement
between image segments [8-10]. Using the de Rham current algorithm allow us to increase the accuracy
of matching by taking into account the orientation of the segments of the image shape. The algorithm for
matching shapes based on the current method is stable when changing the topology of the shapes of objects
and changing parameterization.

The problem of correctly determination the distance between currents that decode the shapes of objects
is solved by imbedding the space of de Rham currents in RKHS (reproducing kernel Hilbert spaces) [11].
The study of the shapes of objects is proposed to be carried out by forming test vector fields. Since the
de Rham current is not a scalar, for working with currents it is necessary to use vector-valued RKHS [12, 13].

When analyzing the data structures of an object, not only the geometric shape is important, but also
the signals associated with this shape with functional dependence. Signals can include structures that are
more complicated than real numbers; e.g. vector, tensor signals, quaternions, etc. To take these signals into
account, it is proposed to expand de Rham currents with an additional component corresponding to the
signal structure.

The results of a diffeomorphic matching of the shapes of objects with an extension of the LDDMM
algorithm to the case of metamorphosis, in which there may be no bijective correspondence between the
segments of the source and final images, are presented in the article [14]. In this case, a functional is formed
that corresponds to the image deformation and determines the distance between the shapes of the initial
and terminal images. In order to increase the accuracy of matching the shapes of the source and terminal
images in this paper, we determine the functional on the basis of the formation of the squared distance
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between the shapes of the source and terminal images modeled by de Rham currents. The source image
undergoes a preliminary affine transformation formalized by Lie groups to minimize the squared distance
between the two shapes. The minimization of the functional of the squared distance between the image
shapes constructed using de Rham currents is based on the QPSO algorithm.

2. Hamiltonian mechanics of image points

Representation of an image after a diffeomorphic transformation can be considered as an evolution of
point landmarks of an image based on the principles of Hamilton mechanics. Consider the parameterization
of the image by particles. Let ¢;(t); i=1,...,N be the position vector of the particle i and p; (t);i =
1,..., N be the corresponding momentum vector in time t. If we assume that the moments and velocities
of particles are interconnected by the relation: p; = L - v;, where L is an invertible linear operator, then
the inverse operator £L7!: v; = L7 - p; = KCp;. For an operator £ = id - (xVZ in space R?, the inverse operator

K = L£7! can be approximated by the Gauss function: K (qi ) Be® *(qi-q)) " (- %),
We construct a functional J corresponding to the deformation of the image represented by a set of points:

/{”Z:lp p}dt

Minimization J, is carried out according to the values of the components of the momentum vectors
pipjsi,j = 1...N. The minimization problem for Jy can be represented as the optimal control problem with
the Hamiltonian: H (g, p) = Z pIK (q, qj) p;. If the Hamiltonian of the system is taken in the form:
1]—
N
H(q.p)=Hy(qg.p)+ 0o’

>
i=1

then the Hamilton equations for derivatives p = (p1, ..., pn),q = ({1, --- » gn) Will take the form [14] :

. oH N

pi=--_ ==X p/VaK (4~ @) pp
ql Jj=1

qizapl ]gl ( >p+0pl

3. Matching the shapes of objects

The theory of currents was developed by G. de Rham [7]. The denomination “current” is chosen by
analogy with electromagnetism. For example, in accordance with the law of induction of M. Faraday, the in-
tensity of the current in the wire loop caused by a change in the magnetic field is proportional to the change
in the flux of this magnetic field through the surface bounded by the loop. This means that if you measure
the current strength in the wire for all possible changes in the magnetic field, you can get the loop geome-
try. In the works [15-17] presents the concept of currents for the formation of a measure of the difference
between simplicial complexes, which does not imply a bijective correspondence between the structures of
objects. The concept of using currents is to study the shape of objects by forming test vector fields.

Let QF (M) be the space of continuous differential k-forms  in M € R?. The space of k-currents is the
dual space to the space of differential k-forms; k-current is a linear functional mapping a differential k-form
w: @ — T(w) € R. The form » € Q"' can be integrated over a hypersurface S, which is associated with
(n-1)-current Ts € ()" in such a way that: Ts(w) = [ ®, Yo € Q"' Suppose that a hypersurface Sis

s
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parameterized by a surface r: D ¢ R*! — R", with r (D) = S. Then:

Ts(w)= [ w= [ w(r(x) (rx1 A A rxH) dxy ...dxp_1,
[}

or |

where ry, = a—;l =1,...,n-1.
i

Consider the case of plane closed curves and compact surfaces. Let [ : L = [a, b] — R? be a parametrized

curve in R?. We associate with [ such a current T;(-) that when T;(-) acting on ® we get:

Ti(w) = [ (@) - 7() 22dt, where 7 (t) is the tangent vector to [ at the point t, @ is the vector field in R?
L

corresponding @. Let S be a surface in R3, with parameterization r : (4, v) c RZ — R®; r(u, v) = S. We as-

sociate with S such a current T (-) that when acting Ts (-) on w we get: Ts(w) = [ @ (r (u, v)) - (ry x ry) dudo,
U
where & is the vector field in R?, corresponding to w, "x” is the vector product operator.

Let (W,<-,->y) be a test Hilbert space of vector fields R — R". We introduce W* - the space of
currents dual to the space W, that is, the space of continuous linear mappings: W — R. For any cur-
rent Ts (-) € W*, there is such a representation K" Ts € W that Ts (o) = <KWT5, a)> wo Vo € W.The space
W is a vector-valued RKHS (see Appendix 1), W equipped with an inner product
<KW ¢, x)a, KV (-, y)ﬁ>W = a’KW (x, y) B, that is defined for the fields K" (-, x) « and K" (-, y) B. If we
denote K" (-, y) B as @ , then we obtain the reproducing property: <KW (. x) e, a)> W= alw(x);Yo € W.

There is a linear mapping: Ly : W — W”, between space W and the corresponding space of currents:
W* i Ly (w) (a)’) = <a), a/>W ,Yo, w’ € W. The inner product <, >y, can be mapped to the current space
W* using linear mapping Ly . Then the inner product is between two currents T,T:
(T.T ). = Lig (1), Ly (T') ) -

In space W, the basic elements are fields of the form K w (-, x) @, and the corresponding basic ele-
ments in space W* are the Dirac §-currents: 6% = L} (K W, x) 0{) . From the definition 8¢ and Ly we
get: 67 (w) = <KW (,x) a, w>W = a’w(x). Inner product between Dirac §-currents:

88,80y . =<K (.x) &K (y) Bry = a" K™ (x,) B.

If the current T represents a curve (or surface), then it can be decomposed into many tangents (normals).
The dual representation L7 (T) of the current (vector field in W) is the convolution of all tangents (normals)
with the kernel K. Polygons of the curve (surface mesh) can be approximated by a finite sum: T ~ Y 8¢,

k

where xy is the center of each segment (mesh cell) and ¢y is the tangent (normal to the surface) at the point

Xk The value a; encodes the size of the segment (surface mesh). The dual representation of the current at

any point x is given by the sum: " K" (x, x) ax. The integrals of currents in the discrete approximation are
k

replaced by the sums for the curves: T;(w) ~ ), © (xk)T Tk, Where 7 is the tangent at a point xi; for surfaces:
k

Ts(w) ~ Y o (xk)T nk, where ny is the normal to the surface at a point x;.
k

4. The distance between the shapes of objects
The inner product between two sets of Dirac currents: T =), 5,?? D) 5[5]’.' , can be determined from
- L Oy

J
the relation: <T, T’>W* = ]L{,.}] /= Yy KV (Xi,yj) Bj-
ij
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We define the square of the distance between two shapes simulated by currents:

2

AT = |T- T = (T-T) 1 (T-T) -
N N

"2 Lk () o @
NY T W NY T w

-2), Y a,K (% ¥q) @y + X %, a,,K (s ¥4) @yg>
p=1g=1 p=1g=1

where K" (xp,xq) = exp (— |x - xq“2 /1;3) . To take into account the diffeomorphic deformation of the

source shape, it is necessary to add the functional Jy multiplied by the regularization coefficient to the squared
distance d (T, T’ )2.

If the curve [ is given by simplicial complexes with points (xi, y1), ..., (XN, YN), (XN+1, YN+1), then the cen-

ters of the segments between adjacent points of the corresponding complexes: cy; = W, cyi = (MZM

and the tangents formed by these segments: ax,-=(x"*f27_x"), ay,-=w;i=l,2,...,N. Then:

5

N
I - Tj(w) ), K (cj, ) (aj) . If S 1is an oriented triangulated surface defined by points:
j=1
(%1, ¥1,21) 5 -+ » (XN VN> 2N)s  (XN+1, YN+1, ZN+1), Where each j-th triangle is represented by the center:
Cy, = w ¢y, = M ¢, = M and by a normal vector n; to the j-th triangle, whose
N
norm encodes the area of the triangle. Then: S — Ts () Y. K (x;,-) (n)).
j=1

If the set (xp, ap) contains functions fy, representing signals at the points x): (xp, ap, fxp>

p=1.N p=1..N’
then the square of the distance |}T - T’H%w in (2) can be represented as:
)2 /112 g f T W
d (T’ T ) = ||T_ T ”W = ;72::1 qZZ:IK (fxp’fxq) ’ Otpr (xP’XQ) Oxq~
N N
_2172;'1 21 Kf (fxp,fyq> . a)z;)KW (xp,yq) tyq+ (3)
N N

© 3R () oK (33)

where: K/ ( Jrps fxq) = exp (— ( fr, = fxp)z AJZ2>, At is the standard deviation f,, in the space of functions.

4.1. Example 1

Consider an example of matching the shapes of objects. Let a simplicial complex with a set of points

X, ..., X, be given. If the complex is approximated by a curve, then the centers of the segments and the
tangents have the form: ¢; = (xi+2x"*1) , Q= (xi“z_x"), respectively.

Let us consider a matching of the shapes of objects: a square T with vertices: x = (( 1 ) , ( 3 ) , ( -l ) , ( L )) ,

centers of edges: ¢* = ((9),(%').(%).(4)), covectors corresponding to tangents to edges:

3 3
a¥ = (("OI)T, (,Ol)T, (é)T, (?)T> and a triangle T’ with vertices: y = ((‘1))(_ {3 ) ( ) ))
2
] A3
centers of edges: ¢’ = (( 143 ) ( 0 )( ;13 )) , covectors corresponding to tangents to edges:
1

1
2

- () () (1))

The square of the distance d (T, T’)z =|T - T’H2W* with Ay = 1, according to (2), is equal to

w

d (T, T/ )2 = 1,748. If there are functions f;, representing signals at the vertices x:
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Jru =L fy, =2, fx, =3, fx, = 4; and the functions f,, representing the signals in y,: fy, = 1, f}, = 2, f), = 3, are
included in the sets (xp, ap)p:1 . and (Yp”ﬁp’)ple 3 then the square of the distance d (T’ T,)z = HT - T’”%/V*
with A = 1, according to (3), is equal d (T, T’)2 =1, 966.

4.2. Example 2

Let us consider an example of a diffeomorphic deformation of the image shape of a symbol of an indefinite
shape into an image shape of the shape of number 2 (Fig. 1), number 7 (Fig. 2) and number 8 (Fig. 3).

The evolution of deformations of a diffeomorphic shape was determined based on the solution of equa-
tions (1). The functional is minimized by values using the QPSO algorithm (see Appendix 2, [18] ). Infig. 1, 2,3
shows intermediate shapes of images for times: ¢t = 0 (source image shape), t = 0,5 (intermediate image
shape), t = 1 (terminal image shape).

6 6 6
0 0 0
-6 -6 -6
-5 0 -5 0 -5 0 5
(a)t=0 (b) t=0,5 (c)t=1
Fig. 1. Deformation of the shape of the symbol in Fig 1. ledopmauns popmel cimeona B popmy
the shape of number 2 undpbl 2
6 6 6
0 0 0
- - -6
-5 0 -5 0 -5 0 5
(a)t=0 (b) t=0,5 (c)t=1
Fig. 2. Deformation of the shape of the symbol in Fig 2. lebopmauns popmbl cimeona B popmy
the shape of number 7 undpbl 7
6 6 6
0 0 0
U5 0 5y 50 5
(a)t=0 (b) t=0,5 (e)t=1

Fig. 3. Deformation of the shape of the symbol in

the shape of the number 8
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The Determination of Distances between Images by de Rham Currents Method

In this case, the values of the squared distance between the source image and the terminal shape d? (T, T’ ),
determined from relation (2) with Ay = 1, are:

« for the case of deformation of the shape of the symbol in the shape of numbers 2: d? (T, T ) =78, 6;

« for the case of deformation of the shape of the symbol in the shape of the number 7: d? (T, T/ ) =78,0;

« for the case of deformation of the shape of the symbol in the shape of the figure 8: d* (T, T ) = 16, 8.

Therefore, the algorithm recognizes the character as the number 8.

It should be noted that during deformation of the shape of the symbol into the shape of the figure 8,
the topological genus of the shape changes from 0 to 1, that is, the deformation is not a diffeomorphism, but
a metamorphosis.

5. Normalization of images based on affine
transformations

To improve the accuracy of matching of source and terminal images, these images should be normalized.
Below we propose such a normalization method, in which the original image undergoes affine transforma-
tion and the functional between the converted original and terminal images is minimized. After that, the
normalized original image undergoes a diffeomorphic transformation, while the distance (2) between the
converted and terminal images is reduced, which will increase the accuracy of the matching.

An affine transformation is a special case of a diffeomorphic transformation. An affine transformation
can be represented in the form [19]:

X—y=M-x+b,

where M € R™" is an invertible matrix, b € R", x, y are vectors in an affine space X € R".

In the case of an affine transformation of a curve (surface) point p approximating the shape of a de-
formable object, it can be represented as: y, — M-x, +b, p=1,..., P. As the minimized functional, we
choose the square of the distance between the points of the source and final images: J (M,b) = d (T, T )2 ,
where d (T, T )2 it is determined in accordance with (2), T is the current corresponding to the initial shape
of the object, T’ is the current corresponding to the shape of the deformable object after affine transforma-
tion. Let & be the parameters of the affine transformation: & € Z;j = 1,..., N, where Z, is the set of matrix
components M and vector components b.

The values of the parameters ¢; of the particle i can be found using the QPSO algorithm (quantum particle
swarm optimization, see Appendix 2, [18]) to minimize the functional J (). We denote the value of the
minimized functional E, on the set: §lj W E€EZE, =] (f{,n, . §{’n), where n is the iteration step number, and
i € [1...I] is the particle number. Let P;, be the values of the parameters that provide the smallest value
of the functional E, for the particle i after the n-th iteration, and G, be the values of the parameters that
provide the smallest value of the functional E, for all particles after the n-th iteration. We choose the values
of the best values of the parameters from the relation:

Pin = ¢i,n : Pi,n + (1 - ¢i,n) : Gn,

where ¢; , € [0...1] is a random number of a uniform distribution. The parameters & of the particle i at the
next iteration step (n + 1) can be determined from the relation:

if (¢i,n <0, 5) then fij;nﬁ—l = p{n - ﬁ ' ‘glj,n - P{n -In (u{:,n+1) ;

else gij;rwl = P{n + ﬁ : ‘glj,n - p{n -In (uinﬂ) >

4

where ¥;, € [0...1], u{n € [0...1] are random numbers of uniform distribution.
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(a) (b)

Fig. 4. Example of affine transformation Fig 4. NMpumep adpPnHHOro npeobpasoBaHms

5.1. Example 3

Consider the example of the affine transformation of a quadrangle T with vertices
x=((%) (&) (4) (%)), into a square T/ with vertices x=((1) (%) (%) (%)) :
X — y = M- x + b; (see fig. 4).

Before the affine transformation, the value d (T, T’ ) (see (2)) is equal d (T, T’) = 8, 2. After carrying out
the affine transformation and minimizing the distance d (T, T’ ) , we obtain the required components of the
matrix M : M = (01”328 _8:56) , and the vector b : b= (00)” . Preliminary affine transformation reduced the
distance to d (T, T’) =0, 67.

Conclusion

The paper considered an algorithm for matching image shapes, based on the de Rham currents method
and preliminary affine transformation of the source image shape. The de Rham current method can be used to
represent shapes of various nature: point landmarks, curves, surfaces, signals. Using the proposed matching
algorithm allows us to solve the problem of ensuring invariance to geometric transformations of images and
ensuring the absence of a bijective correspondence requirement between image segments. The algorithm for
matching shapes based on the current method is stable when changing the topology of the shapes of objects
and changing parameterization. An application of the method of reproducing kernel Hilbert space (RKHS)
to obtain metrics of the shape of an object is proposed.

To increase the accuracy of matching the shapes of the source and terminal images, it is proposed that
the source image be subjected to preliminary affine transformation. The problem of invariance to geometric
transformations of images (translation, rotation, scaling, skew) is solved. The minimization of the functional
of the squared distance between the image shapes is based on the QPSO algorithm.

The results of a diffeomorphic matching of the shapes of objects with the extension of the LDDMM (large
deformation diffeomorphic metric mapping) algorithm to the case of metamorphosis, in which there may
be a bijective correspondence between the segments of the source and terminal images, are presented. To
improve the accuracy of matching the shapes of the source and terminal images, we determine the functional
on the basis of the formation of a squared distance between the shapes of the source and terminal images
modeled by de Rham currents.
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Appendix 1. Reproducing kernel Hilbert spaces

RKHS (reproducing kernel Hilbert spaces) is a Hilbert space of functions in which a point esti-mation
is a continuous linear functional [11]. If two functions in RKHS are close in norm: |f - g| — 0, then
If (x) — g (x)] — 0;Vx. For kernel k (x, x/ ), we construct a Hilbert space so that k (x, x’) is a scalar prod-
uct in this space. For given points xi, xy, ..., X, we define the Gram matrix: Kj; = k (xi, xj) . We say that a
kernel is positive definite if its Gram matrix is positive definite for all x;, xj; i, j = 1,..., n. We define a linear
functional Ly in a Hilbert space H that estimates each function at a point x: Ly : f — f (x),Vf € H. Space
H is generated by the reproducing kernel, if L, (f) is a continuous function for all x € X. The estimation
of functional L, can be represented by taking the inner product of the function f with the function of the
reproducing kernel k (-, x) € H. Define amap ® : x — k(-, x).i.e. with each point x in the source space we
associate a function k (-, x) with a reproducing property: f(x) = Ly(f) = {f, k(-,x)); Vf € H,Vx € X. Since
k(,x)€ H, then: k(y,x)=L,(k(,x))=<k(,x),k(,y)>, where k(-,y) € H is the element associated
with L,. This allows us to define the reproducing kernel for H as a function K : X x X — R:
k(x,y)=<k(,x),k(-,y)). We construct a vector space RKHS containing all linear combinations of

functions k(-,x) : f(-) = ), ik (-, x;). Let be: g () = Y Bik (xj’) define the inner product:
J=1 Jj=1

f.g>y =) Y bk (xi.x)).

i=1 j=1

For any function: f () = ) a;k (-, x;), the following relation is valid:
=1

k(%) f> =) aik(xi,x) = f (x).
i=1
The kernels are analogues of Dirac § -functions. In space L;:

<5<~,x>,f>:/f<t>5<r,x>dt:f<x>,

where § (t, x) is the Dirac §-function.

105



Chukanov S. N.

Appendix 2.
Quantum particle swarm optimization algorithm

The PSO algorithm is presented in [20]. The PSO algorithm considers a set of particles; each particle is
a suitable solution to the optimization problem. In terms of classical mechanics, a particle is represented
by a vector of its position and a velocity vector, which determine the trajectory of the particle. In quantum
mechanics, the term “trajectory” does not make sense, since, in accordance with the principle of uncertainty,
the coordinates and velocities of particles cannot be deter-mined simultaneously. A model with a quantum-
mechanical potential well based on E. Schrédinger equation [18] is considered below. In quantum mechanics,
the state of a particle is deter-mined by the wave function ¢ (x,t). In one-dimensional space, the wave
function of a particle determines Q (x, t): |/ (x, t)|* dx = Q (x, t) dx, where Q (x, t) dx is the probability that
a measurement of the particle’s position at a certain point in time will find it in a neighborhood relative to
a point x with the volume of the neighborhood dx. The probability density function satisfies the relation:

/oo|¢|2dx=/oonx=1.

—00

The wave function ¥ (x,t) changes in time in accordance with E. Schrodinger equation:
ih% ¥ (x,t) = HY (x, t). For a particle of mass m in a potential field V (x), the Hamilton operator H is given

by the formula: H-= —%W + V (x), where h is Planck’s constant.

Suppose that each particle moves in an d-potential well in the search space whose center is a point p.
The potential energy of a particle in a one-dimensional §-potential well is represented in the form:
V(x)=-y-8(x-p).Letbe: y = x—p. Solving the Schrodinger equation for y # 0, we obtain the probability
density function:

Q) =y =L exp (-2|y|L7"),

where L is the characteristic “length” of the §-potential well. Let s be a uniformly distributed random number:
s = L u; u = rand (0, 1). Replacing |/ (y)|* with s, we get: s = L™! - exp (—2 ly| L‘l) ;y=x-p= i% In (u‘l) ,

L
consequently: x = p = > In (u‘l) . We form L at the k-th step of the iteration: L = f - |xx — p|, where f is the

parameter that controls the search process.

Let P;, be the values of the parameters that provide the smallest value of the functional E, for the
particle i after the n-th iteration, and G, be the values of the parameters that provide the smallest value of
the functional E, for all particles after the n-th iteration. We choose the values of the best values of the
parameters from the relation: p;, = ¢ - Pip + (1 = ¢in) - Gy, where ¢;,, € [0...1] is a random number of
a uniform distribution. The parameters &; of the particle i at the next iteration step (n + 1) can be determined
from the relation:

Jo_ Pl
in in

if (Yin<0,5) then&,,, =pl, -p- n (] )

else Srz!,n+1 = pg,n + ﬁ :

ij;n - pg,n -In (u;,n+1) >

where ;, € [0...1], u’ € [0...1] are random numbers of uniform distribution.
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