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Two resources (submarkings) are called similar if in any marking any one of them can be replaced by another one with-

out a�ecting the observable behavior of the net (regarding marking bisimulation). It is known that resource similarity is

undecidable for general labelled Petri nets. In this paper we study the properties of the resource similarity and resource

bisimulation (a subset of complete similarity relation closed under transition �ring) in Petri nets with invisible transitions

(where some transitions may be labelled with an invisible label (� ) that makes their �rings unobservable for an external

observer). It is shown that for a proper subclass (p-saturated nets) the resource bisimulation can be e�ectively checked. For

a general class of Petri net with invisible transitions it is possible to construct a sequence of so-called (n,m)-equivalences

approximating the largest � -bisimulation of resources.
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Два ресурса (подразметки) называются подобными, если в любой разметке любой из них может быть заменен

другим, и при этом наблюдаемое поведение сети не изменится (относительно бисимуляции разметок). Известно,

что подобие ресурсов неразрешимо для обыкновенных сетей Петри. В этой статье мы изучаем свойства подобия

ресурсов и бисимуляции ресурсов (подмножество отношения подобия, замкнутое по срабатыванию переходов) в

сетях Петри с невидимыми переходами (где некоторые переходы могут быть помечены специальной меткой (� ),

что делает их срабатывания невидимыми для внешнего наблюдателя). Показано, что для собственного подкласса

(p-насыщенных сетей) бисимуляция ресурсов может быть эффективно проверена. Для общего класса сетей Пет-

ри с невидимыми переходами можно построить последовательность так называемых (n,m)-эквивалентностей,

аппроксимирующую наибольшую � -бисимуляцию ресурсов.

Ключевые слова: ресурс, эквивалентность, сети Петри, невидимые переходы, аппроксимация.
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1. Introduction
In this paper the behavior of Petri nets is investigated from the standpoint of bisimulation equivalence.

�e fundamental notion of bisimulation was introduced by R. Milner [1] and D. Park [2]. Two markings

of a Petri net are called bisimilar if the choice of each of them as an initial marking gives the same visible

behavior of the net. In [3] P. Jančar proved that bisimulation equivalence of markings is undecidable for

a general Petri net.

In [4] C. Autant et al. introduced a notion of place bisimulation — a decidable bisimulation-induced

equivalence on the �nite set of places, that allows to �nd out some non-trivial behavior-preserving net

reductions. �is relation and its applications were studied in [4–6].

�e notion of resource similarity was introduced in [7]. In general a resource is a submarking. Two re-

sources are similar if, having replaced one resource in any marking by another, we obtain the same observed

behavior of the net. Resource bisimulation is a particular case of similarity that is closed under transition

�ring. Place bisimulation is a proper subset of resource bisimulation. Note that, unlike the place bisimulation

[4], resource similarity and bisimulation are de�ned on the in�nite set (of resources/submarkings).

Resource similarity and its modi�cations where studied in [7–9]. In particular it was proven that resource

similarity is undecidable. However, it was shown that resource bisimulation can be e�ectively approximated

and used as a basis of net reductions and adaptive control. For an overview, see [10].

�is article is an extended version of the workshop report [11]. We consider an important generalization

of labelled Petri nets, where some transitions may be labelled with an invisible label (tau), that makes their

�rings unobservable for an external observer. �ite o�en when analyzing the system there is a need to ab-

stract from the excessive information about its behavior. For example, it is convenient to hide all transitions,

corresponding to the internal actions of the system. �e information obtained in this case can be useful, in

particular, to detect additional properties of the system in terms of its interaction with the environment.

Place bisimulations in Petri nets with invisible transitions were studied by C. Autant et al. in [5]. It was

shown that unlabelled sequences of steps signi�cantly complicate the calculations. However, there are spe-

ci�c nontrivial subclasses of Petri nets with invisible transitions, that have some nice properties w.r.t. place

bisimulation.

In this paper we apply a similar approach to the resource equivalences. It is shown that resource bisim-

ulations can be e�ectively computed in some non-trivial subclasses of nets with invisible transitions.

A class of p-saturated nets is studied. In p-saturated nets the �ring of any sequence of transitions with at

most one visible label can be simulated by a simultaneous (independent) �ring of a certain set of transitions

with the same label (called parallel step). In p-saturated Petri nets � -bisimulation coincides with the so-called

�p-bisimulation [5], that takes into account parallel steps instead of transition sequences.

It is shown that in the class of p-saturated nets the weak transfer property of resource �p-bisimulation can

be e�ectively checked. Moreover, we can underapproximate the largest �p-bisimulation by a parameterized

algorithm.

It is shown that for a general class of Petri net with invisible transitions it is possible to construct a se-

quence of so-called (n,m)-equivalences, approximating the largest � -bisimulation of resources.

�e paper is organized as follows. Section 2 contains basic de�nitions. Speci�cally, in Subsection 2.1

we give some technical notions and lemmata on the properties of additively-transitively closed relations

on multisets. Subsection 2.2 contains de�nitions of Petri nets and bisimulations. Subsections 2.3 and 2.4

give a short review on Petri net resources and resource equivalences (similarity and bisimulation). Section 3

deals with invisible transitions. In Subsections 3.1 and 3.2 we de�ne the � -generalizations of resource equiv-

alences and study their properties. It is shown that the straightforward method of bisimulation checking

with a weak transfer property is not applicable here. In Section 4 we study the subclass of p-saturated nets

and the corresponding notion of �p-bisimulation. In Subsection 4.3 we present an algorithm, computing
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the parameterized underapproximation of largest �p-bisimulation. Section 5 is devoted to the general case

of Petri nets with invisible transitions. A parameterized approximation procedure for resource bisimulation

is de�ned and studied. Section 6 contains some conclusions.

2. Preliminaries

2.1. Relations on multisets

Denote by " an empty sequence. Let X and Y be two sets. Let � ∈ X ∗
be a sequence over X . Denote by

�|Y a projection of � onto Y such that for an empty sequence � = " we have �|Y =def " and for a non-empty

sequence � = a� with a ∈ X and � ∈ X ∗
we have �|Y =def a�|Y for a ∈ Y and �|Y =def �|Y for a ∉ Y .

A multiset M over a set X is a mappingM ∶ X → Nat, where Nat is the set of natural numbers (including

zero), i.e. a multiset may contain several copies of the same element.

Size of a multiset is de�ned as follows: |M | = ∑x∈X M(x). A multisetM is �nite if a set {x ∈ X |M(x) > 0}
is �nite. By (X ) we denote the set of all �nite multisets over X . An empty multiset is denoted by ∅.

�e operations and relations of set theory are naturally extended to �nite multisets. Let M1, M2, M3 ∈
(X ). �en:

• M1 = M2 ⇔def ∀x ∈ X M1(x) = M2(x);
• M1 ⊆ M2 ⇔def ∀x ∈ X M1(x) ≤ M2(x);
• M1 ⊂ M2 ⇔def M1 ⊆ M2 ∧ ∃x ∈ X M1(x) ≤ M2(x);
• M1 = M2 +M3 ⇔def ∀x ∈ X M1(x) = M2(x) +M3(x);
• M1 = M2 ∩M3 ⇔def ∀x ∈ X M1(x) = min{M2(x), M3(x)};

• M1 = M2 −M3 ⇔def ∀x ∈ X M1(x) = max{0, M2(x) −M3(x)};

• M1 = kM2, k ∈ Nat ⇔def ∀x ∈ X M1(x) = kM2(x);
• M1 = (M2)|Y , Y ⊆ X ⇔def ∀x ∈ X M1(x) = M2(x) for x ∈ Y and M1(x) = 0 otherwise.

Non-negative integer vectors are o�en used to encode multisets. Actually, the set of all multisets over

�nite X is a homomorphic image of Nat|X |.
A binary relation B ⊆ Natk ×Natk is a congruence if it is an equivalence relation and whenever (v, w) ∈ B

then (v +u, w +u) ∈ B (here ‘+’ denotes coordinate-wise addition).
1

It was proven by L. Redei [12] that every

congruence on Natk is generated by a �nite set of pairs. Later P. Jančar [3] and J. Hirshfeld [13] presented

a shorter proof and also showed that every congruence on Natk is a semilinear relation, i.e. it is a �nite union

of linear sets.

Let BAT denote the additive-transitive closure (AT-closure) of the relation B ⊆ (X )×(X ) (the minimal

congruence, containing B).

Let B ⊆ (X ) × (X ) be a binary relation on multisets. A relation B′ is called an AT-basis of B i�

(B′)AT = BAT . An AT-basis B′ is called minimal i� there is no B′′ ⊂ B′ such that (B′′)AT = BAT .

Now we construct a special kind of minimal AT-basis for B. De�ne a partial order ⊑ on the set B ⊆
(X ) ×(X ) of pairs of multisets as follows:

1. For loop (i.e. re�exive) pairs let

(r1, r1) ⊑ (r2, r2)
def⇔ r1 ⊆ r2;

2. For two non-loop pairs, the maximal loop constituents and the addend pairs of nonintersecting mul-

tisets are compared separately

(r1 + o1, r1 + o′1) ⊑ (r2 + o2, r2 + o′2)
def⇔

def⇔ o1 ∩ o′1 = ∅ & o2 ∩ o′2 = ∅ & r1 ⊆ r2 & o1 ⊆ o2 & o′1 ⊆ o′2.

1
Note that it can be easily seen that if B is a congruence and (v, w), (u, x) ∈ B then also (v + u, w + x) ∈ B.
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3. a loop pair and a non-loop pair are always incomparable.

Let Bs denote the set of all minimal (with respect to ⊑) elements of BAT .

�eorem 1. [8] Let B ⊆ (X ) ×(X ) be a symmetric and re�exive relation. �en Bs is an AT-basis of B and
Bs is �nite.

We call Bs the ground basis of B. Obviously, it is �nite.

�ere is also a useful

Lemma 1. [8] Let B ⊆ (X ) × (X ) be a symmetric and re�exive relation, (r , s) ∈ BAT . �en there exists
a �nite chain of pairs

(r , a1), (a1, a2),… , (ak−1, ak), (ak , s) ∈ (Bs)A,
where (Bs)A is the additive closure of Bs .

2.2. Labelled Petri nets and bisimulations

Let P and T be disjoint sets of places and transitions and let F ∶ (P ×T )∪(T ×P ) → Nat. �enN = (P, T , F )
is a Petri net. a marking in a Petri net is a function M ∶ P → Nat, mapping each place to some natural

number (possibly zero). �us a marking may be considered as a multiset over the set of places. Pictorially,

P-elements are represented by circles, T -elements by boxes, and the �ow relation F by directed arcs. Places

may carry tokens represented by �lled circles. a current marking M is designated by pu�ing M(p) tokens

into each place p ∈ P . Tokens residing in a place are o�en interpreted as resources of some type consumed

or produced by a transition �ring. a marked Petri net (N ,M0) is a Petri net N together with a given initial

marking M0.

For a transition t ∈ T the preset ∙t and the postset t ∙ are de�ned as the multisets over P such that

∙t(p) = F (p, t) and t ∙(p) = F (t, p) for each p ∈ P .

A transition t ∈ T is enabled in a marking M i�
∙(t) ⊆ M . An enabled transition t may �re yielding a new

marking M ′ =
def

M − ∙t + t ∙, i.e. M ′(p) = M(p) − F (p, t) + F (t, p) for each p ∈ P (denoted M t→ M ′
).

Let � ∈ T ∗
be a sequence of transition (possibly empty), t ∈ T – a transition. �e pre- and postcondition

for a non-empty sequence are de�ned inductively:

∙(t� ) =def ∙t + (∙� − t ∙), (�t)∙ =def t ∙ + (� ∙ − ∙t).

A sequence � ∈ T ∗
is enabled in M i�

∙� ⊆ M. An enabled sequence may �re yielding a new marking

M ′ =
def

M − ∙� + � ∙
(denoted M �→ M ′

).

A multiset of transitions may �re in parallel (concurrently), if there are enough tokens for all of them.

a transition may �re in parallel with itself. �e concurrent �ring of a multiset of transitions is called a parallel
step. �e pre- and postcondition for a multiset of transitions U ∈ (T ) are:

∙U =def ∑
t∈T

U (t) × ∙t, U ∙ =def ∑
t∈T

U (t) × t ∙.

A parallel step U ∈ (T ) is enabled in M i�
∙U ⊆ M. An enabled parallel step may �re yielding a new

marking M ′ =
def

M − ∙U + U ∙
(denoted M U→ M ′

).

Obviously, we have
∙(U +W ) = ∙U + ∙W, (U +W )∙ = U ∙ +W ∙.
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To observe the net behavior transitions are labelled by special labels representing observable actions or

events. Let Act be a set of action names. A labelled Petri net is a tuple N = (P, T , F , l), where (P, T , F ) is a Petri

net and l ∶ T → Act is a labelling function. It can be generalized to non-empty sequences:

for � ∈ T ∗
s.t. � = t� with t ∈ T and � ∈ T ∗

we have l(�) =def l(t)l(�).

And also to multisets of transitions (note that in this case labels are not sequences but multisets of action

names):

for U ∈ (T ) l(U ) =def ∑t∈T U (t) × l(t).

Let N = (P, T , F , l) be a labelled Petri net. We say that a relation B ⊆ (P ) × (P ) conforms to the

transfer property i� for all (M1, M2) ∈ B and for every step t ∈ T , s.t. M1
t→ M ′

1, there exists an imitating step

u ∈ T , s.t. l(t) = l(u), M2
u→ M ′

2 and (M ′
1, M ′

2) ∈ B.

A relation B is called a marking bisimulation, if both B and B−1 conform to the transfer property.

It is known that a union of two marking bisimulations is a marking bisimulation. Hence for every labelled

Petri net there exists the largest marking bisimulation (a union of all bisimulations; denoted by ∼) and this

bisimulation is an equivalence. It was proved by P. Jančar [3], that the marking bisimulation is undecidable

for Petri nets. More precisely, it is undecidable whether two markings (of the same net) are marking bisimilar,

even if restricted to nets with only two unbounded places.

2.3. Resource similarity

Informally, resources are parts of markings which may or may not provide some particular kind of

observable net behavior.

De�nition 1. [8] Let N = (P, T , F , l) be a labelled Petri net. a resource R ∈ (P ) in a Petri net N is a multiset
over the set of places P .

Resources r and s in N are called similar (denoted r ≈ s) i� for every marking R ∈ (P ), r ⊆ R implies
R ∼ R − r + s.

�us if two resources are similar, then in every marking each of these resources can be replaced by the

other without changing the observable behavior of the system. Here we consider the observability modulo

action names: the external observer can see events (labels of �red transitions) but cannot distinguish local

states (tokens). Some examples of similar resources are shown in Fig. 1.

Figure a) shows a Petri net containing two transitions labeled with the same label a and leading to the

same marking p3. Here the resources p1 and p2 are similar, as they lead to a completely identical observable

behavior — action a producing a single token in p3. Moreover, all the resources containing the same number

of tokens in p1 and p2 are similar.

Figure b) shows a simple net consisting of a single transition. In this case the resource p2 is similar to an

empty resource, since it does not a�ect the behavior of the net (the place p2 is redundant).

Figure c) depicts a cycle consisting of one transition and one place. Note that the set of markings of this

net can be divided into two disjoint subsets — empty marking and all the others. With empty marking, the

transition can not �re, for all others — it can �re any number of times. Note that for this net the largest

marking bisimulation and the resource similarity coincide. Also note that marking bisimulation takes into

account only steps made of single transitions hence no auto-concurrency can be considered here.

Figure d) shows a more complex situation. We have p1 ≈ p2 + p3, that is, replacing one token in p1 by

two tokens (one in p2 and one in p3) does not a�ect the observable behavior of the net as a whole.
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p1 ≈ p2

kp1 ≈ kp2,

a�
��
-

p1
�
��

-

p2

p2 ≈ ∅

where k > 0

Fig. 1. Examples of similar resources Рис. 1. Пример подобных ресурсов

�e similarity relation is an equivalence [8]. Moreover, it is a congruence w.r.t. multiset addition:

Proposition 1. [8] Let N = (P, T , F , l) be a labelled Petri net, let r , s, u, v be resources of the net N . �en
r ≈ s & u ≈ v ⇒ r + u ≈ s + v.

Hence it has a �nite ground basis. Unfortunately, from the undecidability of a stronger relation of place

fusion [6] we get

�eorem 2. [8] �e resource similarity is undecidable for labelled Petri nets.

2.4. Resource bisimulation

�e resource similarity is quite fundamental, but the undecidability makes it not very useful in prac-

tice. So we studied a number of other non-trivial �nitely-based resource equivalence relations, retaining

the observable system’s behavior. �e most interesting of them is a resource bisimulation:

De�nition 2. [8] Let N = (P, T , F , l) be a labelled Petri net. An equivalence relation B ⊆ (P ) ×(P ) is called
a resource bisimulation if BAT is a marking bisimulation.

Note that an AT-closure of a resource similarity relation is not necessarily a marking bisimulation (it

is still an open question [10]). However, we already know that each resource bisimulation B is a subset of

resource similarity relation (≈). �e following theorem states this and some other important properties of

resource bisimulations.

�eorem 3. [8] Let N = (P, T , F , l) be a labelled Petri net. �en
1. if B ⊆ (P ) ×(P ) is a resource bisimulation and (r1, r2) ∈ B then r1 ≈ r2;
2. if B1, B2 are resource bisimulations for N then B1 ∪ B2 is a resource bisimulation for N ;
3. for any N there exists the largest resource bisimulation (denoted by B(N )), and it is an equivalence.
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�erefore B(N ) (as well as any other resource bisimulation) also has a �nite ground basis.

�e AT-closure of a resource bisimulation is a marking bisimulation, and hence, it conforms to the trans-

fer property. Resource bisimulations satisfy a weak variant of the transfer property, considering only mini-

mal pairs of markings that contain the corresponding resources and enable the corresponding transitions.

We say that a relation B ⊆ (P ) ×(P ) conforms to the weak transfer property if for all (r , s) ∈ B, for

each t ∈ T , such that
∙t ∩ r ≠ ∅, there exists an imitating transition u ∈ T , such that l(t) = l(u) and, writing

M1 for
∙t ∪ r and M2 for

∙t − r + s, we have M1
t→ M1′ and M2

u→ M2′ with (M ′
1, M ′

2) ∈ BAT .

�eorem4. [8] LetN = (P, T , F , l) be a labelled Petri net. A relation B ⊆ (P )×(P ) is a resource bisimulation
i� B is an equivalence relation and it conforms to the weak transfer property.

Due to this theorem to check whether a given �nite relation B is a resource bisimulation, one needs

to verify the weak transfer property for only a �nite number of pairs of resources. In [8] we have shown

that the largest resource bisimulation for resources with a bounded number of tokens can be e�ectively

constructed (more precisely, it requires O(max{|P |9, |T |2|P |7}) steps, where  is the number of resources

in the consideration).

3. Petri nets with invisible transitions
In this section we investigate the possibilities of e�ectively constructing bisimulation-preserving rela-

tions for an extended class of systems — Petri nets with invisible transitions.

To distinguish visible and invisible transitions, a special � symbol is added to the set of labels:

Act� = Act ∪ {�}.

De�nition 3. A labelled Petri net with invisible transitions is a tuple N = (P, T , F , l), where (P, T , F ) is a Petri
net and l ∶ T → Act� is an extended labelling function.

Let �, � ′ ∈ (Act� )∗ be sequences of action labels. Denote � =� � ′ ⇔def �|Act = � ′ |Act (“equal modulo

�”). For example, “��a�” =� “a”.

Similarly, let U , U ′ ∈ (Act� ) be multisets of action labels. Denote U =� U ′ ⇔def U|Act = U ′ |Act.
For example, {a, � , a, b, �} =� {a, a, b}.

3.1. � -bisimulation

Let N = (P, T , F , l) be a labelled Petri net with invisible transitions. We say that a relation B ⊆ (P ) ×
(P ) conforms to the � -transfer property i� for all (M1, M2) ∈ B and for every step t ∈ T , s.t. M1

t→ M ′
1,

there exists an imitating sequence of steps � ∈ T ∗
s.t. l(t) =� l(� ), M2

�→ M ′
2 and (M ′

1, M ′
2) ∈ B.

A relation B is called a marking � -bisimulation, if both B and B−1 conform to the � -transfer property. �e

largest � -bisimulation is denoted by ∼� .

Marking bisimulation is a special case of marking � -bisimulation (for nets with no � -s). It is a stronger

relation. Consider as an example the net depicted in Fig. 2. Markings p1 and p2 are not bisimilar, because

at p2 no transition with label a is active. But they are � -bisimilar, because the invisible �ring of t2 changes

the marking from p2 to p1.
In particular, this implies the undecidability of marking � -bisimulation in Petri nets with invisible tran-

sitions [3].
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Fig. 2. � -bisimulation is weaker than bisimulation Рис. 2. � -бисимуляция слабее, чем обычная
бисимуляция

3.2. Resource similarity and bisimulation

�e de�nition of resource similarity can be naturally generalized to the case of nets with invisible tran-

sitions:

De�nition 4. Let N = (P, T , F , l) be a labelled Petri net with invisible transitions. Resources r and s are called
� -similar (denoted r ≈� s) i� for every marking R, r ⊆ R implies R ∼� R − r + s.

We can show that resource � -similarity has all basic properties of resource similarity:

Proposition 2. 1. Resource � -similarity is closed under addition and is transitive; hence it has �nite
AT-basis.

2. Resource � -similarity is undecidable.

Proof. 1) From the de�nitions.

2) From �. 2 (note that � -similarity is a generalization of basic resource similarity).

�e de�nition of resource bisimulation also can be easily generalized:

De�nition 5. Let N = (P, T , F , l) be a labelled Petri net with invisible transitions. An equivalence relation
B ⊆ (P ) ×(P ) is called a resource � -bisimulation if BAT is a marking � -bisimulation.

Proposition 3. Let N = (P, T , F , l) be a labelled Petri net with invisible transitions. �en

1. if B ⊆ (P ) ×(P ) is a resource � -bisimulation and (r1, r2) ∈ B then r1 ≈� r2;
2. if B1, B2 ⊆ (P ) ×(P ) are resource � -bisimulations then B1 ∪ B2 is a resource � -bisimulation;

3. for any N there exists the largest resource � -bisimulation (denoted by B� (N )), and it is an equivalence.

Proof. 1) We need to prove that r1 ≈� r2 ∶ for any R ∈ (P ) s.t. r1 ⊆ R we have R ∼� R − r1 + r2.
Denote r ′ = R−r1.�e pair (R, R−r1+r2) can be represented as (r1+r ′, r2+r ′), therefore it belongs to BAT .

Since B is a resource � -bisimulation, BAT is a marking � -bisimulation, and hence it is a subset of a largest

marking � -bisimulation (∼� ). So, we obtained R ∼� R − r1 + r2.
2) Denote B = B1 ∪ B2. We need to prove that B is a resource � -bisimulation: for any (M1, M2) ∈ BAT we

have M1 ∼� M2.
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Consider the structure of (M1, M2). From Lm. 1 we have

(M1, a1), (a1, a2),… , (ak−1, ak), (ak , M2) ∈ (Bs)A

for some �nite k, where (Bs)A is the additive closure of Bs .
It can be easily seen that Bs ⊆ (B1)s ∪ (B2)s , hence for any (X, Y ) ∈ (Bs)A we have X = X1 +X2, Y = Y1 + Y2

s.t. (X1, Y1) ∈ ((B1)s)A and (X2, Y2) ∈ ((B2)s)A.
From the re�exivity of B1 and B2 and additive closureness of (B1)AT and (B2)AT we have (X1+X2, Y1+X2) ∈

(B1)AT and (Y1 + X2, Y1 + Y2) ∈ (B2)AT . Both B1 and B2 are resource � -bisimulations, so (B1)AT and (B2)AT are

marking � -bisimulations. �erefore they are both contained in the largest � -bisimulation (∼� ), so we have

X1 + X2 ∼� Y1 + X2 and Y1 + X2 ∼� Y1 + Y2. �e bisimulation is transitive, hence X1 + X2 ∼� Y1 + Y2.
So for any (X, Y ) ∈ (Bs)A we have X ∼� Y . Applying this reasoning to the pairs in our chain, we obtain

M1 ∼� a1, a1 ∼� a2,… , ak−1 ∼� ak , ak ∼� M2. Hence, M1 ∼� M2.
3) �e third statement is an immediate corollary of the second one. �e largest resource � -bisimulation

can be constructed as the union of all resource � -bisimulations for N .

De�nition 6. We say that a relation B ⊆ (P ) × (P ) conforms to the weak � -transfer property if for all
(r , s) ∈ B, t ∈ T s.t. ∙t ∩ r ≠ ∅, there exists an imitating sequence of transitions � ∈ T ∗ s.t. l(t) =� l(� ) and,
denoting M1 = ∙t ∪ r and M2 = ∙t − r + s, we have M1

t→ M1′ and M2
�→ M2′ with (M ′

1, M ′
2) ∈ BAT .

�. 4 in the case of Petri nets with invisible transitions works only in one direction:

Proposition 4. If the relation conforms to the � -transfer property then it conforms to the weak � -transfer
property; there exist relations, conforming to the weak � -transfer property and not conforming to the � -transfer
property.

Proof. (⇒) Since the weak � -transfer property is the � -transfer property for a bounded (�nite) subset of

pairs of resources.

(:) Consider the net depicted in Fig. 3 (this example is taken from [5]) and a relation

B = I d(P ) ∪ {(p1, p2), (p2, p1), (p3, p4), (p4, p3)},

where I d(P ) is an identity relation s.t. ∀x, y ∈ P (x, y) ∈ I d(P ) ⇔ x = y.
B conforms to the weak � -transfer property. At the same time B is not a resource � -bisimulation. Con-

sider markings M1 = p1 +p3 and M2 = p2 +p4. �e pair (M1, M2) belongs to the relation BAT , but the markings

are not bisimilar, because an action a is possible at M2 (transition t3) and is impossible at M1.

Hence the weak � -transfer property can not be used to construct bisimulation. In the case of systems

with invisible transitions it is even more important to strengthen the considered relations and/or to restrict

the considered class of Petri nets.
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4. Underapproximations of � -similarity in saturated nets

4.1. Saturated nets

�ere exists a wide and important subclass of Petri nets with invisible transitions for which resource � -

bisimulation can be constructed using weak transfer property — so-called “p-saturated nets”. In p-saturated

nets [5] the �ring of any sequence of transitions with at most one visible label can be simulated by a simul-

taneous (independent) �ring of a certain set of transitions with the same label (called “parallel step”).

Denote the set of non-empty transition sequences with at most one visible label:

T × =def {� ∈ T ∗ ∣ l(� ) ∈ Act�}.

De�nition 7. A labelled Petri net with invisible transitions N = (P, T , F , l) is called p-saturated (or simply
saturated), if for any sequence of transitions � ∈ T × there exists a parallel step U ∈ (T ) s.t. ∙U = ∙�, U ∙ = � ∙

and, denoting by U� the multiset of transitions, participating in �, we have l(U ) =� l(U� ).
In addition to saturated nets, there is an even broader class of saturable Petri nets. �ese are nets that

can be transformed into saturated by adding a �nite number of transitions while preserving the behavior of

the net (in the sense of � -bisimilarity). In Fig. 4 a saturated net is shown, obtained by adding the transition

t3 to the unsaturated net.

It is known [5] that a net is p-saturated i� it is 2p-saturated, i.e. all sequences of length 2 are saturated

by parallel steps.

Not all nets are saturable [5]. An example is given in Fig. 5. Here all transition sequences has the same

precondition (a single token in the upper place) and di�erent postconditions. So there is an in�nite set of

di�erent transition sequences with di�erent postconditions. On the other hand, the structure of the net also

implies that all possible parallel steps with the same precondition (a single token in the upper place) would

necessarily contain a single transition. Hence the number of di�erent imitating parallel steps is always �nite

and equal to the number of existing transition. �e saturation would not help, because it can not introduce

an in�nite number of new transitions.

It is also easy to see that the net is saturable i� its “invisible subnet” is saturable (an invisible subnet is

a net, obtained by removing all visible transitions).
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Fig. 4. An example of net saturation Рис. 4. Пример насыщения сети

4.2. �p-bisimulation

In [5] an equivalence stronger than � -bisimulation was de�ned, called �p-bisimulation of markings. �e

transition in this case is modeled not by a sequence of transitions, but by a parallel step.

De�nition 8. [5] Let N = (P, T , F , l) be a labelled Petri net with invisible transitions. We say that a relation
B ⊆ (P )×(P ) conforms to the �p-transfer property if for all (M1, M2) ∈ B and for each t ∈ T s.t. M1

t→ M ′
1,

there exists an imitating parallel step U ∈ (T ) s.t. {l(t)} =� l(U ), M2
U→ M ′

2 and (M ′
1, M ′

2) ∈ B.

De�nition 9. [5] A relation B is called a marking �p-bisimulation, if both B and B−1 conform to the �p-transfer
property.

It is known [5] that for any net there exists the largest �p-bisimulation (denoted by ∼�p).

In saturated Petri nets �p-bisimulation coincides with � -bisimulation [5]:

M1 ∼�p M2 ⇔ M1 ∼� M2.

Now we are ready to de�ne a resource �p-similarity:

De�nition 10. Let N = (P, T , F , l) be a saturated labelled Petri net with invisible transitions. Resources r and
s are called �p-similar (denoted r ≈�p s) i� for every marking R, r ⊆ R implies R ∼�p R − r + s.

From the equality of ∼�p and ∼� in saturated nets we immediately have:

Corollary 1. Let N = (P, T , F , l) be a saturated labelled Petri net with invisible transitions, r , s ∈ (P ).�en

r ≈�p s ⇔ r ≈� s.

So, in saturated nets it is su�cient to look for �p-similarities.
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De�nition 11. Let N = (P, T , F , l) be a saturated labelled Petri net with invisible transitions. An equivalence
relation B ⊆ (P ) ×(P ) is called a resource �p-bisimulation if BAT is a marking �p-bisimulation.

In the case of �p-relations all basic properties also hold:

Proposition 5. 1. Resource �p-similarity is closed under addition and transitivity; so it has �nite AT-basis.
2. Resource �p-similarity is undecidable.
3. If B ⊆ (P ) ×(P ) is a resource �p-bisimulation and (r1, r2) ∈ B then r1 ≈�p r2.
4. If B1, B2 ⊆ (P ) ×(P ) are resource �p-bisimulations then B1 ∪ B2 is a resource �p-bisimulation;
5. For any N there exists the largest resource �p-bisimulation (denoted by B�p(N )), and it is an equivalence.

Proof. 1) Immediately from the de�nition of resource �p-similarity.

2) From Cor. 1 and Prop. 2.2 (the undecidability of (≈� )).
3) Immediately from the de�nitions.

4) �e proof is almost the same as in Prop. 3: the only di�erence is that we consider not an imitating

transition but an imitating parallel step.

5) Note that we can take a union of all resource �p-bisimulations.

De�nition 12. Let N = (P, T , F , l) be a saturated labelled Petri net with invisible transitions. We say that
a relation B ⊆ (P ) ×(P ) conforms to the weak �p-transfer property if for all (r , s) ∈ B, t ∈ T s.t. ∙t ∩ r ≠ ∅,
there exists an imitating parallel step U ∈ (T ) s.t. l(t) =� l(U ) and, denoting M1 = ∙t ∪ r and M2 = ∙t − r + s,
we have M1

t→ M1′ and M2
U→ M2′ with (M ′

1, M ′
2) ∈ BAT .

In saturated nets the weak �p-transfer property is a necessary and su�cient condition for its extended

version, which guarantees the imitation of a parallel step rather than a single transition:

De�nition 13. Let N = (P, T , F , l) be a saturated labelled Petri net with invisible transitions. We say that
a relation B ⊆ (P ) ×(P ) conforms to the extended weak �p-transfer property if for all (r , s) ∈ B and any
parallel step V ∈ (T ) s.t. ∙V ∩ r ≠ ∅, there exists an imitating parallel step U ∈ (T ) s.t. l(V ) =� l(U ) and,
denoting M1 = ∙V ∪ r and M2 = ∙V − r + s, we have M1

V→ M1′ and M2
U→ M2′ with (M ′

1, M ′
2) ∈ BAT .

Lemma 2. Let N = (P, T , F , l) be a saturated labelled Petri net with invisible transitions. �e relation B ⊆
(P ) ×(P ) conforms to the weak �p-transfer property i� it conforms to the extended weak �p-transfer prop-
erty.
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Proof. (⇐) Since the weak transfer property is a special case of the extended weak transfer property.

(⇒) We need to show that for any (M1, M2) ∈ BAT and a parallel step V = {t1,… , tk} ∈ (T ) with

M1
V→ M ′

1 there exists an imitating parallel step U ∈ (T ) with the same visible label l(V ) =� l(U ) s.t. and

M2
U→ M ′

2 and (M ′
1, M ′

2) ∈ BAT .

Consider the transition �ring M1
t1→ M1

1 . From the weak �p-transfer property it follows that this transi-

tion has an imitating parallel step M2
W1→ M1

2 such that (M1
1 , M1

2 ) ∈ BAT .

Note that V = {t1,… , tk} is a parallel step at markingM1, hence a�er the �ring of one of these transitions

all other are still enabled. �erefore we can repeat the previous reasoning for the new pair of markings

(M1
1 , M1

2 ) ∈ BAT and transition t2. And continue this until tk :

M1 BAT M2

t1 ↓ ↓ W1

M1
1 BAT M1

2

t2 ↓ ↓ W2

… …
tk ↓ ↓ Wk

M ′
1 = Mk

1 BAT Mk
2 = M ′

2

At the end we got a sequence of parallel steps

M2
W1→ M1

2
W2→ M2

2
W3→ … Wk→ Mk

2 = M ′
2,

imitating the �ring of parallel step M1
V→ M ′

1. �e net is saturated so for any sequence of transitions (note

that a parallel step also can be considered as a sequence of transitions) there exists an imitating parallel step

U with the same label, precondition and postcondition (M2
U→ M ′

2).

Note that, unlike the weak transfer property, the extended weak transfer property can not be e�ectively

checked by the search of resource pairs, since the set of parallel steps is in�nite.

�eorem 5. Let N = (P, T , F , l) be a saturated labelled Petri net with invisible transitions. An equivalence
relation B ⊆ (P ) ×(P ) conforms to the weak �p-transfer property i� B is a resource �p-bisimulation.

Proof. (⇐) Since the weak �p-transfer property is the �p-transfer property for a bounded (�nite) subset of

pairs of resources.

(⇒) �e proof is similar to the proof of �. 4, with the additional use of Lm. 2. We need to show that

BAT conform to the �p-transfer property, i.e. for any (M1, M2) ∈ BAT and t ∈ T with M1
t→ M ′

1 there exists

an imitating parallel step U ∈ (T ) with l(t) = l(U ), M2
U→ M ′

2 and (M ′
1, M ′

2) ∈ BAT .

Consider a pair of markings (M1, M2) ∈ BAT . From Lm. 1 this pair can be obtained by a transitive closure

of several pairs from BA (additive closure of B):

(H1, H2), (H2, H3),… , (Hk−1, Hk) ∈ BA, where H1 = M1, Hk = M2.

Consider the pair (H1, H2).

(H1, H2) = (r1 + r2 +⋯ + rl , s1 + s2 +⋯ + sl ), where (ri , si) ∈ B
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H1 = ∙t ∪ r1 + F1. Due to the weak transfer property for the pair (r1, s1) there exists an imitating parallel

step V ∈ (T ) s.t. l(t) = l(V ),∙t ∪ r1
t→ G1 and

∙t − r1 + s1
V→ G2, where (G1, G2) ∈ BAT .

Since
∙t ∪ r1 ⊆ H1, we can add the resource F = H1 − ∙t ∪ r1 to preconditions and postconditions:

∙t ∪ r1 + F
t→ G1 + F

∙t − r1 + s1 + F
V→ G2 + F

From the re�exivity of B and the additive closure of BAT the new pair of markings is also decomposable

by B : (G1 + F , G2 + F ) ∈ BAT .

We obtained a new marking H ′
1 = ∙t − r1 + s1 + F = H1 − r1 + s1. Note that it still contains r2 + ⋯ + rl .

�erefore, we can apply the same reasoning one more time, replacing resource r2 by the bisimilar resource

s2, now using Lm. 2 and constructing an imitating parallel step not for a transition but for a parallel step V .

Apply this l − 1 times. Using transitive closure of BAT , at the end we obtain a parallel step W that can

imitate t at marking H2.
Now proceed to the next pair (H2, H3) and repeat the procedure for the parallel step W . And so on, until

the last pair (Hk−1, Hk). Finally we obtain a parallel step U that can imitate t at marking Hk = M2.

�us, in saturated nets the weak �p-transfer property can be used in the construction of resource �p-

bisimulation.

4.3. Underapproximation

As in ordinary Petri nets (without invisible transitions), in the case of saturated (saturable) nets with in-

visible transitions there is a way of constructing an approximation of the maximal resource �p-bisimulation.

If we consider not an in�nite set of network resources, but only its �nite subset, then it will be possible to

check the weak �p-transfer property.

Let N = (P, T , F , l) be a saturated labelled Petri net with invisible transitions, q ∈ Nat — some parameter.

By q(P ) we denote the set of all resources, containing not more than q tokens in the net: q(P ) = {r ∈
(P ) ∶ |r | ≤ q}.

Denote by B�p(N , q) the union of all resource �p-bisimulations on q(P ). Since the union of two re-

source �p-bisimulations is always a resource �p-bisimulation (Prop. 5.4) we obtain the largest resource

�p-bisimulation on q(P ).
Since q(P ) is �nite, we can use the weak transfer property to compute B�p(N , q).

De�nition 14. (Underapproximation of largest resource �p-bisimulation)
Input: a saturated labelled Petri net with invisible transitions N = (P, T , F , l), parameter q ∈ Nat.
Output: Relation B�p(N , q).
Step 1: Let C = ∅ — an empty set of pairs (considered as a binary relation overq(P ); it will be used as

a set of discovered pairs of non-similar resources).
Step 2: Compute B = (q(P ) ×q(P )) ⧵ C . Sinceq(P ) is �nite the set of pairs B is also �nite.
Step 3: Compute Bs — the ground basis of B.
Step 4: Check, whether Bs conforms to the weak �p-transfer property: it is su�cient to test all non-re�exive

elements of Bs (denote a set of all non-re�exive elements of Bs by Bnrs ).
∙ If all pairs conforms to the weak �p-transfer property then stop and return B — the bisimulation.
∙ Otherwise there are (r , s) ∈ Bnrs and t ∈ T with ∙t ∩ r ≠ ∅, s.t. the �ring M1

t→ M1′ with M1 = ∙t ∪ r
can not be imitated by a parallel step U with the same label and with precondition M2 = ∙t − r + s s.t.
M2

U→ M2′ with (M1′, M2′) ∈ BAT . Add (r , s) and (s, r) to C and go back to Step 2.
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(termination) For any marking the set of active parallel steps is �nite. Also note that the set q(P ) ×
q(P ) is �nite. Hence the algorithm always stops.

(correctness) Note that the algorithm stops only if Bs conforms to the weak �p-transfer property. Hence

the result is always a resource �p-bisimulation.

(largest equivalence) Assume that not all pairs from the largest resource �p-bisimulation on q(P )
are found. Hence each of the lost pairs was removed from the consideration (added to C) at some iteration of

algorithm. Consider the �rst of these iterations. �e pair is removed because it doesn’t satisfy the weak �p-

transfer property w.r.t. the current con�guration of Bs . On the other hand, we know that it satis�es the weak

�p-transfer property w.r.t. B�p(N , q). Since current iteration is �rst when we remove the “wrong” pair, it is

clear that B�p(N , q) ⊆ (Bs)AT . Hence the pair of resources should satisfy the weak �p-transfer property w.r.t.

(Bs)AT – a contradiction.

Denote by  = |q(P )| the size of the set of considered resources.

At the Step 2 we search through the set of all parallel steps with at most one visible label, that can �re at

marking M2. Each invisible transition can participate in the parallel step at most |M2| times, since it uses at

least one input token.
2

�ere is also at most one visible transition. Hence we have to check at most |T ||M2||T |
multisets of transitions.

�e size of marking M2 = ∙t − r + s can be evaluated as O(|s|) = O(q).
Using our previous estimations of complexity for ground basis calculation (polynomial w.r.t. ) and the

complexity of other steps of algorithm (polynomial w.r.t. the size of the net), we obtain the overall complexity

of

O(max{|P |9, |T |2q|T ||P | 7}).
Here the �rst and the second components of max are estimations for Step 3 and Step 4 respectively. So in

the case of nets with invisible transitions the complexity of the algorithm increased signi�cantly (the linear

dependence on |T | was replaced by an exponential one). Such a jump is explained by the transition from sets

of transitions to multisets.

2
Without loss of generality we can assume that a net contains no invisible transitions with empty preconditions. In any reachable

marking an unobservable sequence of such generating transitions can increase the marking of any of their post-place to a value, ex-

ceeding any given natural number. �erefore the places that participate in the postconditions of such generating transitions actually

do not a�ect the observable behavior of the net (and hence the bisimulations), and can be removed along with the corresponding

generating transitions.

249



Bashkin V. A.

Consider an example of calculations (Fig. 6). Two subsequent steps are presented: q = 1 and q = 2. With

q = 1 we found that resource p2 is �p-similar to an empty resource (i.e. the place p2 is redundant). Increasing

the parameter (q = 2), we obtained one more pair of similar resources p1 ≈�p 2p3.

Proposition 6. Let N = (P, T , F , l) be a saturated labelled Petri net with invisible transitions. �en:
1. ∀q ∈ Nat (B�p(N , q))AT ⊆ (B�p(N , q + 1))AT ;
2. ∃qf ∈ Nat ∶ ∀k ∈ Nat B�p(N , qf + k) = B�p(N ).

Proof. (1) By construction of B�p(N , q) for any q the relation (B�p(N , q))AT is a largest resource bisimulation

s.t. the size of its generating elements (of ground basis) is not greater than q. �e union of two resource

bisimulations is also a resource bisimulation, hence B′ = (B�p(N , q) ∪ B�p(N , q + 1))AT is a resource bisimula-

tion. From the de�nition of ground basis the generating elements of B′ have the size not greater than q + 1,
therefore B′ = (B�p(N , q + 1))AT .

(2) Since any resource bisimulation is an AT-closed equivalence and therefore it has a �nite ground basis

(�. 1). �e value of qf is the size of the largest element of the B�p(N ) ground basis.

So at some point qf the sequence {B�p(N , q)}q stabilizes. �e problem of qf computability is still open.

�e hypothesis is that �p-bisimulation of resources is undecidable and hence qf is uncomputable.

5. On the approximation of � -similarity in general nets
If a net is not saturable (see de�nition in Section 4.2), then the above procedure cannot be applied.

However, some straightforward approximations still can be computed.

Consider a parameterized version of the weak � -transfer property (Def. 6):

De�nition 15. Let m, n ∈ Nat ∪ {∞}.We say that a relation B ⊆ (P ) ×(P ) conforms to the (m, n)-weak

� -transfer property if for all (r , s) ∈ BAT , t ∈ T s.t. ∙t ∩ r ≠ ∅ and max{|r |, |s|} ≤ m, there exists an imitating
sequence of transitions � ∈ T ∗ s.t. l(t) =� l(� ), |� | ≤ n and, denoting M1 = ∙t ∪ r and M2 = ∙t − r + s, we have
M1

t→ M1′ and M2
�→ M2′ with (M ′

1, M ′
2) ∈ BAT .

�e �rst di�erence is that we check not only elements of B (the base elements of BAT ), but all elements

of BAT with at most m tokens. �e second key property is that we simulate the transition �ring not by an

arbitrary sequence, but by a sequence with at most n transitions.

De�nition 16. A relation B ⊆ (P ) ×(P ) is called an (m, n)-equivalence if both B and B−1 conform to the
(m, n)-weak � -transfer property.

De�nition 17. Let N be a net with invisible transitions. Denote by B(m,n)� (N ) its largest (m, n)-equivalence.

Proposition 7. 1. B(0,0)� (N ) = (P ) ×(P ).
2. B(∞,∞)

� (N ) = B� (N ).

Proof. (1) From the de�nition of (m, n)-weak � -transfer property.

(2) Note that in this case (B(∞,∞)
� (N ))AT conforms to the � -transfer property, hence it is a marking � -

bisimulation. Moreover, it is the largest bisimulation since any union of marking bisimulations is a marking

bisimulation.
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Obviously, the limit of sequence {B(m,n)� (N )}m,n for m, n → ∞ is B� (N ). Consider two examples of such

a sequence:

Example 1. For the net depicted in Fig. 2 we have:

B(1,1)� (N ) = I d(P )

B(1,2)� (N ) = I d(P ) ∪ {(p1, p2), (p2, p1)}
B(2,2)� (N ) = I d(P ) ∪ {(p1, p2), (p2, p1)} ∪ {(pi , pj + pk), (pj + pk , pi) | i, j, k ∈ {1, 2})}

…
B(m,n)� (N ) = B(2,2)� (N )

…
B(∞,∞)
� (N ) = B(2,2)� (N )

Indeed, only the sequences of length 2 can �nd the similarity between p1 and p2. Hence (p1, p2) is added only
on the second step. On the third step we �nd out that any non-empty multiset of places is equal to any other
non-empty multiset of places — this can be de�ned by pairs (pi , pj + pk) and (pj + pk , pi) (all other elements can
be obtained from these pairs and re�exive pairs with the help of an AT-closure). At the third step the sequence
of sets stabilizes.

So as a result we have a non-contracting sequence:

(B(1,1)� )AT ⊂ (B(1,2)� )AT ⊂ (B(2,2)� )AT = … = (B(∞,∞)
� )AT .

Example 2. Consider the net depicted in Fig. 3. Here we have

B(1,2)� (N ) = I d(P ) ∪ {(p1, p2), (p2, p1), (p3, p4), (p4, p3), (p5,∅), (∅, p5)};

B(2,2)� (N ) = I d(P ) ∪ {(p1 + p4, p2 + p3), (p2 + p3, p1 + p4), (p5,∅), (∅, p5)}.
Only at the second step the (2, 2)-weak � -transfer property allowed us to discover the actual non-bisimilarity of
resources p1 and p2.

�e set of pairs is contracting in this particular case:

(B(1,2)� )AT ⊃ (B(2,2)� )AT .

Example 3. Now consider a net, having two subnets – Fig. 2 and Fig. 3. Obviously, in this case

(B(1,2)� )AT *
+ (B(2,2)� )AT .

So, in general the sequence {B(m,n)� (N )}m,n
m,n→∞←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ B� (N ) is not monotonous even locally. Also note that

B(m,n)� (N ) can be a subset of B� (N ) (Example 1), a superset of B� (N ) (B(1,2)� (N ) in Example 2) and incomparable

to B� (N ) (Example 3).

�ere are two open questions on the structure of {B(m,n)� (N )}m,n sequence:

1. Does it always stabilizes at some (m, n)?
2. If not, does it always become monotonous at some point (w.r.t. m + n)?

�e hypothesis is that the answers are: (1) — negative, (2) — positive. �e rationale for this is that B(m,n)�
is not always a bisimulation (in contrast to B�p(N , q) from the previous section) and hence the in�nite “tail”

of {B(m,n)� (N )}m,n can consist of an in�nite sequence of contracting B� (N ) overapproximations.

However, as it was shown in the previous examples, the (m, n)-equivalences can still be used in practice

as non-trivial approximations of B� (N ). �e (m, n)-weak � -transfer property can be e�ectively checked for

any �nitely-based candidate B (for example, de�ned by a ground base) and �nite m and n.
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De�nition 18. (Computation of an (m, n)-equivalence)
Input: a labelled Petri net with invisible transitions N = (P, T , F , l), parameters m, n ∈ Nat.
Output: Relation B(m,n)� (N ).
Step 1: Compute a tree Tr of all possible ground bases (except the trivial re�exive basis I d(P )) having the

size of their elements not greater thanm. In this tree a basis Bs is a parent node for a basis B′s i� (B′s)AT ⊂ (Bs)AT .
Step 2: Using breadth-�rst search, take the next node Bs from Tr and check, whether Bs conforms to the

(m, n)-weak � -transfer property.
∙ If all pairs conforms to the (m, n)-weak � -transfer property then stop and return Bs .
∙ Otherwise there are (r , s) ∈ (Bs)AT with max{|r |, |s|} ≤ m and t ∈ T with ∙t ∩ r ≠ ∅, such that the �ring
M1

t→ M1′ withM1 = ∙t ∪ r can not be imitated by a sequence � ∈ T ∗ of (at most) n transitions with label
l(t) and precondition M2 = ∙t − r + s such that M2

�→ M2′ with (M1′, M2′) ∈ BAT . In this case go back to
the Step 2.

Step 3: Return I d(P ).

(termination) �e resource size is bounded by m, the length of �ring sequences is bounded by n,
the (m, n)-weak � -transfer property can be checked in a �nite number of steps. �e tree Tr is also �nite.

Hence the algorithm always stops.

(correctness) �e construction of the tree Tr implies that the largest (m, n)-equivalence is always

the closest to the root (note that it contains all other (m, n)-equivalences). Hence the algorithm (breadth-�rst

search) �nds it �rst.

Note that this “algorithm” is simple, but highly ine�ective. �ere are four non-polynomial procedures:

Tr computation, Tr search, the resource pair combination and the transition sequence search.

6. Conclusion
�e proposed methods for �nding pairs of similar resources are of particular interest for certain appli-

cations, such as model reduction (shrinking the net without a�ecting its behavior) and adaptive process

management (resource relocation in the a�ermath of some acute events). In addition, the use of resource

bisimulation allows one to reduce a Petri net with conservation of its behavior. �is reduction is important

when analyzing properties of the Petri net, since the computational complexity of the majority of algorithms

used in analysis depends exponentially on the size of the net.

Important open questions concern decidability and complexity of related algorithmic problems. For

example, we have already shown that all types of resource similarity (ordinary, � -, �p-) are undecidable. On

the other hand, the problem of B(N ) (and B� (N ), and B�p(N )) computability is still open. We have introduced

only the underapproximations.
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