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out affecting the observable behavior of the net (regarding marking bisimulation). It is known that resource similarity is
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(where some transitions may be labelled with an invisible label (7) that makes their firings unobservable for an external
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approximating the largest r-bisimulation of resources.
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Hayunas craresa ITocne mopaborku 18 mast 2020 .
ITonHBIN TEKCT HA AaHTJIUIICKOM S3bIKE Ilpuusara k my6ankanmu 20 Mast 2020 T.

IIBa pecypca (mogpa3MeTKy) HasbIBAIOTCS IIOXOOHBIMI, €CJIM B JIF00O0I pa3MeTKe JI000i M3 HUX MOXeT OBbITh 3aMeHeH
IOpPYTUM, U IIpU 9TOM HabI0gaeMoe IoBeieHIe CeTU He M3MeHUTCS (OTHOCUTENBHO OUCHMYISIiny pasMeTok). V3BecTHO,
4uTO IOA00Me pecypcoB HepaspellnMo i OObIKHOBEHHBIX ceTeil IleTpu. B aToit cTaThe MbI M3yuaeM CBOIICTBA IOHOOMS
PecypcoB 1 GUCUMYJISALNIA PeCypcoB (IIOMHOXECTBO OTHOIIEHMS II0X00MsI, 3aMKHYTOE I10 CpabaThIBAHMIO IIEPEXOIOB) B
cersix IleTpu ¢ HEBMAMMBIMIY Iepexofamu (Ijfe HEKOTOphIe IIepeXOabl MOI'YT ObITh IIOMEYEHBI CIIEeLMAIbHOM MeTKOII (7),
UTO [eJlaeT UX cpabaThIBaHMs HEeBUAMMBIMU AJIs BHeIIHero Habmonaress). IlokasaHo, 4To A1t COGCTBEHHOrO IOAKIIAcCa
(p-HachIILIEHHBIX CeTell) OUCUMYJIIAIVISL pecypcoB MokeT ObITh apdekTuBHO mpoBepeHa. [t ob1uero kiacca cereit Iler-
P C HEBUAMMBIMU II€EPEXOJAaMIU MOXHO IIOCTPOMTH IIOCJIEeJ0BATEIBHOCTh TaK Ha3bIBAeMBIX (7, M)-9KBUBAJIEHTHOCTEI],
aIIIPOKCUMUPYIOLIYI0 HaNOOIBIIYIO T-OMCUMYJISLIIO PECYPCOB.
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1. Introduction

In this paper the behavior of Petri nets is investigated from the standpoint of bisimulation equivalence.
The fundamental notion of bisimulation was introduced by R. Milner [1] and D. Park [2]. Two markings
of a Petri net are called bisimilar if the choice of each of them as an initial marking gives the same visible
behavior of the net. In [3] P. Jancar proved that bisimulation equivalence of markings is undecidable for
a general Petri net.

In [4] C. Autant et al. introduced a notion of place bisimulation — a decidable bisimulation-induced
equivalence on the finite set of places, that allows to find out some non-trivial behavior-preserving net
reductions. This relation and its applications were studied in [4-6].

The notion of resource similarity was introduced in [7]. In general a resource is a submarking. Two re-
sources are similar if, having replaced one resource in any marking by another, we obtain the same observed
behavior of the net. Resource bisimulation is a particular case of similarity that is closed under transition
firing. Place bisimulation is a proper subset of resource bisimulation. Note that, unlike the place bisimulation
[4], resource similarity and bisimulation are defined on the infinite set (of resources/submarkings).

Resource similarity and its modifications where studied in [7-9]. In particular it was proven that resource
similarity is undecidable. However, it was shown that resource bisimulation can be effectively approximated
and used as a basis of net reductions and adaptive control. For an overview, see [10].

This article is an extended version of the workshop report [11]. We consider an important generalization
of labelled Petri nets, where some transitions may be labelled with an invisible label (tau), that makes their
firings unobservable for an external observer. Quite often when analyzing the system there is a need to ab-
stract from the excessive information about its behavior. For example, it is convenient to hide all transitions,
corresponding to the internal actions of the system. The information obtained in this case can be useful, in
particular, to detect additional properties of the system in terms of its interaction with the environment.

Place bisimulations in Petri nets with invisible transitions were studied by C. Autant et al. in [5]. It was
shown that unlabelled sequences of steps significantly complicate the calculations. However, there are spe-
cific nontrivial subclasses of Petri nets with invisible transitions, that have some nice properties w.r.t. place
bisimulation.

In this paper we apply a similar approach to the resource equivalences. It is shown that resource bisim-
ulations can be effectively computed in some non-trivial subclasses of nets with invisible transitions.

A class of p-saturated nets is studied. In p-saturated nets the firing of any sequence of transitions with at
most one visible label can be simulated by a simultaneous (independent) firing of a certain set of transitions
with the same label (called parallel step). In p-saturated Petri nets r-bisimulation coincides with the so-called
Tp-bisimulation [5], that takes into account parallel steps instead of transition sequences.

It is shown that in the class of p-saturated nets the weak transfer property of resource 7p-bisimulation can
be effectively checked. Moreover, we can underapproximate the largest 7p-bisimulation by a parameterized
algorithm.

It is shown that for a general class of Petri net with invisible transitions it is possible to construct a se-
quence of so-called (n, m)-equivalences, approximating the largest r-bisimulation of resources.

The paper is organized as follows. Section 2 contains basic definitions. Specifically, in Subsection 2.1
we give some technical notions and lemmata on the properties of additively-transitively closed relations
on multisets. Subsection 2.2 contains definitions of Petri nets and bisimulations. Subsections 2.3 and 2.4
give a short review on Petri net resources and resource equivalences (similarity and bisimulation). Section 3
deals with invisible transitions. In Subsections 3.1 and 3.2 we define the r-generalizations of resource equiv-
alences and study their properties. It is shown that the straightforward method of bisimulation checking
with a weak transfer property is not applicable here. In Section 4 we study the subclass of p-saturated nets
and the corresponding notion of 7p-bisimulation. In Subsection 4.3 we present an algorithm, computing
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the parameterized underapproximation of largest rp-bisimulation. Section 5 is devoted to the general case
of Petri nets with invisible transitions. A parameterized approximation procedure for resource bisimulation
is defined and studied. Section 6 contains some conclusions.

2. Preliminaries
2.1. Relations on multisets

Denote by ¢ an empty sequence. Let X and Y be two sets. Let 0 € X be a sequence over X. Denote by
oly a projection of o onto Y such that for an empty sequence o = ¢ we have o)y =4, ¢ and for a non-empty
sequence o = ad with a € X and § € X" we have oy =4¢ ady for a € Y and oy =4¢f §y fora g Y.

A multiset M over a set X is a mapping M : X — Nat, where Nat is the set of natural numbers (including
zero), i.e. a multiset may contain several copies of the same element.

Size of a multiset is defined as follows: |[M| = )’ v M(x). A multiset M is finite if a set {x € X | M(x) > 0}
is finite. By M(X) we denote the set of all finite multisets over X. An empty multiset is denoted by @.

The operations and relations of set theory are naturally extended to finite multisets. Let M, My, M5 €
M(X). Then:

o My =M; =g Vx € X Mi(x) = Ma(x);

« My € My <= gef VX € X Mi(x) < My(x);

o« My c My =g My c M, A 3x € X My(x) = My(x);

o My =M;+ Mz =4, Vx € X My(x) = Mp(x) + M3(x);

o My =MynMs =g Vx € X M(x) = min{My(x), M3(x)};

o My =M, - Ms S def Vx € X Ml(x) = max{O, M2(X) - Mg(x)};

« My = kM, k € Nat < g.p Vx € X My(x) = kMa(x);

e My =(My)y, Y X =g Vx € X My(x) = My(x) for x € Y and M;(x) = 0 otherwise.

Non-negative integer vectors are often used to encode multisets. Actually, the set of all multisets over
finite X is a homomorphic image of NatX|.

A binary relation B ¢ Nat* x Nat* is a congruence if it is an equivalence relation and whenever (v, w) € B
then (v + u, w+u) € B (here ‘+” denotes coordinate-wise addition).! It was proven by L. Redei [12] that every
congruence on Nat* is generated by a finite set of pairs. Later P. Jancar [3] and J. Hirshfeld [13] presented
a shorter proof and also showed that every congruence on Nat® is a semilinear relation, i.e. it is a finite union
of linear sets.

Let BAT denote the additive-transitive closure (AT-closure) of the relation B ¢ M(X)xM(X) (the minimal
congruence, containing B).

Let B ¢ M(X) x M(X) be a binary relation on multisets. A relation B’ is called an AT-basis of B iff
(B)AT = BAT. An AT-basis B is called minimal iff there is no B” c B’ such that (B”)AT = BAT,

Now we construct a special kind of minimal AT-basis for B. Define a partial order = on the set B ¢
M(X) x M(X) of pairs of multisets as follows:

1. For loop (i.e. reflexive) pairs let

def
(r,r) e(rr) < ncn;

2. For two non-loop pairs, the maximal loop constituents and the addend pairs of nonintersecting mul-
tisets are compared separately

def
(rp + 01,11+ 0]) E(rp + 02,12 + 03) <

def / / / /
= 01nN0j=0&0,n0,=0&r cry & 01 €0y & 0] €O,

'Note that it can be easily seen that if B is a congruence and (v, w), (&, x) € B then also (v + u, w + x) € B.
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3. aloop pair and a non-loop pair are always incomparable.
Let B denote the set of all minimal (with respect to c) elements of BAT.

Theorem 1. [8] Let B < M(X) x M(X) be a symmetric and reflexive relation. Then Bg is an AT-basis of B and
B is finite.

We call Bs the ground basis of B. Obviously, it is finite.
There is also a useful

Lemma 1. [8] Let B ¢ M(X) x M(X) be a symmetric and reflexive relation, (r,s) € BAT. Then there exists
a finite chain of pairs
(r.a1). (a1, @), ... (-1, @), (ax, s) € (Bs)*,

where (Bs)? is the additive closure of Bs.

2.2. Labelled Petri nets and bisimulations

Let P and T be disjoint sets of places and transitionsandlet F : (PxT)u(TxP) — Nat. Then N = (P, T, F)
is a Petri net. a marking in a Petri net is a function M : P — Nat, mapping each place to some natural
number (possibly zero). Thus a marking may be considered as a multiset over the set of places. Pictorially,
P-elements are represented by circles, T-elements by boxes, and the flow relation F by directed arcs. Places
may carry tokens represented by filled circles. a current marking M is designated by putting M(p) tokens
into each place p € P. Tokens residing in a place are often interpreted as resources of some type consumed
or produced by a transition firing. a marked Petri net (N, M) is a Petri net N together with a given initial
marking M.

For a transition ¢ € T the preset "t and the postset t* are defined as the multisets over P such that
‘t(p) = F(p, t) and t'(p) = F(t, p) for each p € P.

A transition t € T is enabled in a marking M iff *(¢) ¢ M. An enabled transition ¢ may fire yielding a new
marking M’ =4.¢ M - "t + ', i.e. M'(p) = M(p) - F(p, t) + F(t, p) for each p € P (denoted M R M.

Let o € T" be a sequence of transition (possibly empty), t € T — a transition. The pre- and postcondition
for a non-empty sequence are defined inductively:

(to) =gqef 't+ (o - 1), (1) =gef t" + (0" = "1).
A sequence o € T is enabled in M iff "0 < M. An enabled sequence may fire yielding a new marking
M’ =g M - "0 + 0" (denoted M Z M),
A multiset of transitions may fire in parallel (concurrently), if there are enough tokens for all of them.

a transition may fire in parallel with itself. The concurrent firing of a multiset of transitions is called a parallel
step. The pre- and postcondition for a multiset of transitions U € M(T) are:

U =def Z U(t)x"t, U’ =def Z U(t)xt.

teT teT

A parallel step U € M(T) is enabled in M iff 'U c M. An enabled parallel step may fire yielding a new

marking M’ =44 M - U + U’ (denoted M A M).
Obviously, we have (U + W) ="U+ " W, (U+ W) =U"+ W".
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To observe the net behavior transitions are labelled by special labels representing observable actions or
events. Let Act be a set of action names. A labelled Petri net is a tuple N = (P, T, F, I), where (P, T, F) is a Petri
netand ! : T — Actis a labelling function. It can be generalized to non-empty sequences:

fora € T"st. a = tfwitht € T and B € T" we have I(a) =q4¢r 1(t)I(B).

And also to multisets of transitions (note that in this case labels are not sequences but multisets of action
names):

for Ue M(T)  I(U) =aef Tser U(H)  L(0).

Let N = (P, T,F,I) be a labelled Petri net. We say that a relation B ¢ M(P) x M(P) conforms to the
transfer property iff for all (M, M,) € B and for every step t € T, s.t. M; N M, there exists an imitating step
ue T, st I(t) = l(u), My — M} and (M], M}) € B.

A relation B is called a marking bisimulation, if both B and B™! conform to the transfer property.

It is known that a union of two marking bisimulations is a marking bisimulation. Hence for every labelled
Petri net there exists the largest marking bisimulation (a union of all bisimulations; denoted by ~) and this
bisimulation is an equivalence. It was proved by P. Jancar [3], that the marking bisimulation is undecidable
for Petri nets. More precisely, it is undecidable whether two markings (of the same net) are marking bisimilar,
even if restricted to nets with only two unbounded places.

2.3. Resource similarity

Informally, resources are parts of markings which may or may not provide some particular kind of
observable net behavior.

Definition 1. [8] Let N = (P, T, F, 1) be a labelled Petri net. a resource R € M(P) in a Petri net N is a multiset
over the set of places P.

Resources r and s in N are called similar (denoted r ~ s) iff for every marking R € M(P), r c R implies
R~R-r+s.

Thus if two resources are similar, then in every marking each of these resources can be replaced by the
other without changing the observable behavior of the system. Here we consider the observability modulo
action names: the external observer can see events (labels of fired transitions) but cannot distinguish local
states (tokens). Some examples of similar resources are shown in Fig. 1.

Figure a) shows a Petri net containing two transitions labeled with the same label a and leading to the
same marking ps. Here the resources p; and p, are similar, as they lead to a completely identical observable
behavior — action a producing a single token in p;. Moreover, all the resources containing the same number
of tokens in p; and p; are similar.

Figure b) shows a simple net consisting of a single transition. In this case the resource p; is similar to an
empty resource, since it does not affect the behavior of the net (the place p, is redundant).

Figure c) depicts a cycle consisting of one transition and one place. Note that the set of markings of this
net can be divided into two disjoint subsets — empty marking and all the others. With empty marking, the
transition can not fire, for all others — it can fire any number of times. Note that for this net the largest
marking bisimulation and the resource similarity coincide. Also note that marking bisimulation takes into
account only steps made of single transitions hence no auto-concurrency can be considered here.

Figure d) shows a more complex situation. We have p; » p, + ps, that is, replacing one token in p; by
two tokens (one in p; and one in ps) does not affect the observable behavior of the net as a whole.
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a) a concurrent firing b) a deadlock
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where n,m > 0

p3
c) a cycle d) resources of different power
Fig. 1. Examples of similar resources Puc. 1. NMpumMep Nofob6HbLIX pecypcos

The similarity relation is an equivalence [8]. Moreover, it is a congruence w.r.t. multiset addition:

Proposition 1. [8] Let N = (P, T,F, 1) be a labelled Petri net, let r, s, u, v be resources of the net N. Then
ras&uUu~v = r+u~s+ 0.

Hence it has a finite ground basis. Unfortunately, from the undecidability of a stronger relation of place
fusion [6] we get

Theorem 2. [8] The resource similarity is undecidable for labelled Petri nets.

2.4. Resource bisimulation

The resource similarity is quite fundamental, but the undecidability makes it not very useful in prac-
tice. So we studied a number of other non-trivial finitely-based resource equivalence relations, retaining
the observable system’s behavior. The most interesting of them is a resource bisimulation:

Definition 2. [8] Let N = (P, T, F, l) be a labelled Petri net. An equivalence relation B < M(P)x M(P) is called
a resource bisimulation if BAT is a marking bisimulation.

Note that an AT-closure of a resource similarity relation is not necessarily a marking bisimulation (it
is still an open question [10]). However, we already know that each resource bisimulation B is a subset of
resource similarity relation (=). The following theorem states this and some other important properties of
resource bisimulations.

Theorem 3. [8] Let N = (P, T, F, ) be a labelled Petri net. Then
1. if B M(P) x M(P) is a resource bisimulation and (r1, ;) € B then ry = ry;
2. if By, B, are resource bisimulations for N then By u By is a resource bisimulation for N;
3. for any N there exists the largest resource bisimulation (denoted by B(N)), and it is an equivalence.
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Therefore B(N) (as well as any other resource bisimulation) also has a finite ground basis.

The AT-closure of a resource bisimulation is a marking bisimulation, and hence, it conforms to the trans-
fer property. Resource bisimulations satisfy a weak variant of the transfer property, considering only mini-
mal pairs of markings that contain the corresponding resources and enable the corresponding transitions.

We say that a relation B ¢ M(P) x M(P) conforms to the weak transfer property if for all (r, s) € B, for
each t € T, such that "t n r # @, there exists an imitating transition u € T, such that I(t) = [(u) and, writing

M for "t urand M, for 't - r + s, we have M; LR M,’ and M, — M,’ with (M], My) € BAT,

Theorem 4. [8]Let N = (P, T, F, ) be a labelled Petri net. A relation B ¢ M(P)xM(P) is a resource bisimulation
iff B is an equivalence relation and it conforms to the weak transfer property.

Due to this theorem to check whether a given finite relation B is a resource bisimulation, one needs
to verify the weak transfer property for only a finite number of pairs of resources. In [8] we have shown
that the largest resource bisimulation for resources with a bounded number of tokens can be effectively
constructed (more precisely, it requires O(max{|P| R?, |T|?|P| R"}) steps, where R is the number of resources
in the consideration).

3. DPetri nets with invisible transitions

In this section we investigate the possibilities of effectively constructing bisimulation-preserving rela-
tions for an extended class of systems — Petri nets with invisible transitions.

To distinguish visible and invisible transitions, a special 7 symbol is added to the set of labels:
Act; = Actu {1}.

Definition 3. A labelled Petri net with invisible transitions is a tuple N = (P, T, F, I), where (P, T, F) is a Petri
netandl : T — Act, is an extended labelling function.

Let 0,0’ € (Act;)" be sequences of action labels. Denote 0 =; 0" <= 4¢f 0jact = 0”|act (‘equal modulo
7). For example, “rrar” =; “a”.
Similarly, let U, U” € M(Act;) be multisets of action labels. Denote U =; U’ =gt Uner = U'jac.

For example, {a, 7,4, b, 7} =; {a, a, b}.

3.1. r-bisimulation

Let N = (P, T, F,I) be a labelled Petri net with invisible transitions. We say that a relation B ¢ M(P) x
M(P) conforms to the r-transfer property iff for all (M;, M;) € B and for every step ¢t € T, s.t. M, N M,
there exists an imitating sequence of steps o € T" s.t. I(t) =, I(0), M, 7 M} and (M7, Mj) € B.

A relation Bis called a marking t-bisimulation, if both B and B™! conform to the 7-transfer property. The
largest 7-bisimulation is denoted by ~.

Marking bisimulation is a special case of marking z-bisimulation (for nets with no z-s). It is a stronger
relation. Consider as an example the net depicted in Fig. 2. Markings p; and p, are not bisimilar, because
at p, no transition with label a is active. But they are r-bisimilar, because the invisible firing of ¢, changes
the marking from p; to p;.

In particular, this implies the undecidability of marking z-bisimulation in Petri nets with invisible tran-
sitions [3].
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Fig. 2. r-bisimulation is weaker than bisimulation Puc. 2. r-6ucnmynaumsa cnabee, 4yem obbluHas
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3.2. Resource similarity and bisimulation
The definition of resource similarity can be naturally generalized to the case of nets with invisible tran-

sitions:

Definition 4. Let N = (P, T, F, ) be a labelled Petri net with invisible transitions. Resources r and s are called
r-similar (denoted r ~, s) iff for every marking R, r ¢ R impliesR ~. R—r + s.

We can show that resource 7-similarity has all basic properties of resource similarity:

Proposition 2. 1. Resource t-similarity is closed under addition and is transitive; hence it has finite
AT-basis.
2. Resource t-similarity is undecidable.

Proof. 1) From the definitions.
2) From Th. 2 (note that r-similarity is a generalization of basic resource similarity). O

The definition of resource bisimulation also can be easily generalized:

Definition 5. Let N = (P, T,F, ) be a labelled Petri net with invisible transitions. An equivalence relation
B < M(P) x M(P) is called a resource t-bisimulation if BAT is a marking t-bisimulation.

Proposition 3. Let N = (P, T, F, ) be a labelled Petri net with invisible transitions. Then

1. if B¢ M(P) x M(P) is a resource r-bisimulation and (ry, ;) € B then r; ~; ry;
2. if By, By ¢ M(P) x M(P) are resource r-bisimulations then B, u B is a resource 7-bisimulation;
3. for any N there exists the largest resource 7-bisimulation (denoted by B;(N)), and it is an equivalence.

Proof. 1) We need to prove that r; ~; r, : for any R € M(P)s.t.  c Rwehave R~ R—r + .

Denote r’ = R-r;. The pair (R, R-r; +r;) can be represented as (r; + r/, rp + r’), therefore it belongs to BAT,
Since B is a resource 7-bisimulation, BT is a marking 7-bisimulation, and hence it is a subset of a largest
marking r-bisimulation (~;). So, we obtained R ~; R — 1y + r».

2) Denote B = By u B;. We need to prove that B is a resource r-bisimulation: for any (M;, M) € BAT we
have M; ~; M.
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Consider the structure of (M, M,). From Lm. 1 we have

(Mla al)’ (ala aZ); cees (ak—I: ak)’ (ak’ MZ) € (BS)A

for some finite k, where (B;)? is the additive closure of Bi.

It can be easily seen that By c (B;);s u (By)s, hence for any (X, Y) € (B)Awehave X = X1 + X, Y = V1 + Y,
st. (X1, Y1) € ((By)s)* and (X;, Y2) € ((B2)s)™.

From the reflexivity of B; and B, and additive closureness of (B; YAT and (B,)AT we have (X; +X,, Y1 +X;) €
(B)AT and (Y7 + Xz, Y1 + Y3) € (B,)AT. Both B, and B, are resource 7-bisimulations, so (B;)A” and (B,)A7 are
marking 7-bisimulations. Therefore they are both contained in the largest 7-bisimulation (~;), so we have
Xi+Xy~; Y1+ Xy and Y] + X5 ~; Y7 + Y. The bisimulation is transitive, hence Xj + Xy ~; Y; + Y.

So for any (X, Y) € (B;)* we have X ~, Y. Applying this reasoning to the pairs in our chain, we obtain
My ~; a1, ay ~; ap, ..., k-1 ~¢ A, A ~r My. Hence, M; ~; Ms.

3) The third statement is an immediate corollary of the second one. The largest resource 7-bisimulation
can be constructed as the union of all resource r-bisimulations for N. O

Definition 6. We say that a relation B ¢ M(P) x M(P) conforms to the weak t-transfer property if for all
(r,s) € Byt € T st ‘tnr # @, there exists an imitating sequence of transitions c € T" s.t. I(t) =, l(o) and,

t
denoting My ="tur and My ="t - r + s, we have M; — M,” and M, s My’ with (M], M) € BT,
Th. 4 in the case of Petri nets with invisible transitions works only in one direction:

Proposition 4. If the relation conforms to the r-transfer property then it conforms to the weak t-transfer
property; there exist relations, conforming to the weak t-transfer property and not conforming to the t-transfer

property.

Proof. (=) Since the weak r-transfer property is the z-transfer property for a bounded (finite) subset of
pairs of resources.
(¢#) Consider the net depicted in Fig. 3 (this example is taken from [5]) and a relation

B = Id(P) u {(p1, p2), (P2, p1), (p3, pa), (ps, p3) },

where Id(P) is an identity relation s.t. Vx,y € P (x,y) € [d(P) = x = y.

B conforms to the weak r-transfer property. At the same time B is not a resource 7-bisimulation. Con-
sider markings M; = p; + ps and M, = p, + ps. The pair (M;, M) belongs to the relation BAT but the markings
are not bisimilar, because an action a is possible at M, (transition #;) and is impossible at M;. O

Hence the weak 7-transfer property can not be used to construct bisimulation. In the case of systems
with invisible transitions it is even more important to strengthen the considered relations and/or to restrict
the considered class of Petri nets.
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Fig. 3. Th. 4 does not hold for Petri nets with Puc. 3. Teopema 4 He BbINOSIHAETCA 415 CeTell
invisible transitions MeTpw C HEBUANMBIMU MepexojamMm

4. Underapproximations of r-similarity in saturated nets
4.1. Saturated nets

There exists a wide and important subclass of Petri nets with invisible transitions for which resource z-
bisimulation can be constructed using weak transfer property — so-called “p-saturated nets”. In p-saturated
nets [5] the firing of any sequence of transitions with at most one visible label can be simulated by a simul-
taneous (independent) firing of a certain set of transitions with the same label (called “parallel step”).

Denote the set of non-empty transition sequences with at most one visible label:

T* =45 {0 € T"| (o) € Act, }.

Definition 7. A labelled Petri net with invisible transitions N = (P, T, F, 1) is called p-saturated (or simply
saturated), if for any sequence of transitions ¢ € T* there exists a parallel step U € M(T) s.t. 'U ="0,U" = ¢"
and, denoting by U, the multiset of transitions, participating in o, we have [(U) =, I(Uy).

In addition to saturated nets, there is an even broader class of saturable Petri nets. These are nets that
can be transformed into saturated by adding a finite number of transitions while preserving the behavior of
the net (in the sense of 7-bisimilarity). In Fig. 4 a saturated net is shown, obtained by adding the transition
t3 to the unsaturated net.

It is known [5] that a net is p-saturated iff it is 2p-saturated, i.e. all sequences of length 2 are saturated
by parallel steps.

Not all nets are saturable [5]. An example is given in Fig. 5. Here all transition sequences has the same
precondition (a single token in the upper place) and different postconditions. So there is an infinite set of
different transition sequences with different postconditions. On the other hand, the structure of the net also
implies that all possible parallel steps with the same precondition (a single token in the upper place) would
necessarily contain a single transition. Hence the number of different imitating parallel steps is always finite
and equal to the number of existing transition. The saturation would not help, because it can not introduce
an infinite number of new transitions.

It is also easy to see that the net is saturable iff its “invisible subnet” is saturable (an invisible subnet is
a net, obtained by removing all visible transitions).
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O—f—O—a—0
P1 t1 P2 to p3

a) not saturated net

p1 t1 P2 to p3
b) saturated net

Fig. 4. An example of net saturation Puc. 4. lMpnmep HacbILeHNs ceTn

4.2. tp-bisimulation

In [5] an equivalence stronger than 7-bisimulation was defined, called 7p-bisimulation of markings. The
transition in this case is modeled not by a sequence of transitions, but by a parallel step.

Definition 8. [5] Let N = (P, T, F, 1) be a labelled Petri net with invisible transitions. We say that a relation
B ¢ M(P)x M(P) conforms to the tp-transfer property if for all (M, My) € B and foreacht € T s.t. My N M,
there exists an imitating parallel step U € M(T) s.t. {I(t)} =; l(U), M, LA M} and (M], M3) € B.

Definition 9. [5] A relation B is called a marking 7p-bisimulation, if both B and B! conform to the T p-transfer
property.

It is known [5] that for any net there exists the largest 7p-bisimulation (denoted by ~;).
In saturated Petri nets rp-bisimulation coincides with r-bisimulation [5]:

My ~p My = M ~; M.

Now we are ready to define a resource 7p-similarity:

Definition 10. Let N = (P, T, F, ) be a saturated labelled Petri net with invisible transitions. Resources r and
s are called Tp-similar (denoted r =, s) iff for every marking R, r ¢ R implies R ~;, R~ 1 +s.

From the equality of ~;, and ~; in saturated nets we immediately have:

Corollary 1. Let N = (P, T, F,l) be a saturated labelled Petri net with invisible transitions, r, s € M(P). Then
r=e;ps < T=;s.

So, in saturated nets it is sufficient to look for 7p-similarities.
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Fig. 5. Not saturable net Puc. 5. He Hacbliwaemas ceTb

Definition 11. Let N = (P, T, F, ) be a saturated labelled Petri net with invisible transitions. An equivalence
relation B < M(P) x M(P) is called a resource 7p-bisimulation if BAT is a marking tp-bisimulation.

In the case of rp-relations all basic properties also hold:

Proposition 5. 1. Resource tp-similarity is closed under addition and transitivity; so it has finite AT-basis.
2. Resource tp-similarity is undecidable.
3. If B< M(P) x M(P) is a resource tp-bisimulation and (r1,r;) € B then ry =, 1.
4. If By, B, € M(P) x M(P) are resource tp-bisimulations then By u B, is a resource Tp-bisimulation;
5. For any N there exists the largest resource tp-bisimulation (denoted by B.,(N)), and it is an equivalence.

Proof. 1) Immediately from the definition of resource rp-similarity.

2) From Cor. 1 and Prop. 2.2 (the undecidability of (=,)).

3) Immediately from the definitions.

4) The proof is almost the same as in Prop. 3: the only difference is that we consider not an imitating
transition but an imitating parallel step.

5) Note that we can take a union of all resource 7p-bisimulations. O

Definition 12. Let N = (P, T,F, ) be a saturated labelled Petri net with invisible transitions. We say that
a relation B ¢ M(P) x M(P) conforms to the weak tp-transfer property if for all (r,s) € B,t € T s.t. “tnr # @,
there exists an imitating parallel step U € M(T) s.t. I(t) =; I(U) and, denoting My ="turand My ="t -r+s,

we have M; LN M," and M, KN M, with (M, M}) € BAT,

In saturated nets the weak tp-transfer property is a necessary and sufficient condition for its extended
version, which guarantees the imitation of a parallel step rather than a single transition:

Definition 13. Let N = (P, T,F, ) be a saturated labelled Petri net with invisible transitions. We say that
a relation B < M(P) x M(P) conforms to the extended weak rp-transfer property if for all (r, s) € B and any
parallel step V.€ M(T) s.t. "V nr # @, there exists an imitating parallel step U € M(T) s.t. (V) =, I(U) and,

denoting My ="V urand My ="V - r + s, we have M, Y M," and M, LA M," with (M], M}) € BAT.

Lemma 2. Let N = (P, T, F,I) be a saturated labelled Petri net with invisible transitions. The relation B ¢
M(P) x M(P) conforms to the weak tp-transfer property iff it conforms to the extended weak tp-transfer prop-
erty.
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Proof. (<) Since the weak transfer property is a special case of the extended weak transfer property.
(=) We need to show that for any (M;, My) € BAT and a parallel step V = {t,...,tx} € M(T) with

M, AR M there exists an imitating parallel step U € M(T) with the same visible label I(V) =, I(U) s.t. and
My 2> M and (M, M) € BAT,
Consider the transition firing M; N M]. From the weak 7p-transfer property it follows that this transi-

tion has an imitating parallel step M, Ll M} such that (M}, M}) € BAT.

Note that V = {#, ..., fx } is a parallel step at marking M, hence after the firing of one of these transitions
all other are still enabled. Therefore we can repeat the previous reasoning for the new pair of markings
(M}, M}) € BAT and transition ;. And continue this until #:

M, BAT M,

tl W
M BT M

t ] I W,

te | I Wi

M{=Mmf BT MF=M;

At the end we got a sequence of parallel steps
W W W, W,
My, = M} 5 M2 S 5 MF = M,

14
imitating the firing of parallel step M; — M. The net is saturated so for any sequence of transitions (note
that a parallel step also can be considered as a sequence of transitions) there exists an imitating parallel step

U
U with the same label, precondition and postcondition (M, — Mj). O

Note that, unlike the weak transfer property, the extended weak transfer property can not be effectively
checked by the search of resource pairs, since the set of parallel steps is infinite.

Theorem 5. Let N = (P, T,F, 1) be a saturated labelled Petri net with invisible transitions. An equivalence
relation B ¢ M(P) x M(P) conforms to the weak tp-transfer property iff B is a resource tp-bisimulation.

Proof. (<) Since the weak tp-transfer property is the rp-transfer property for a bounded (finite) subset of
pairs of resources.
(=) The proof is similar to the proof of Th. 4, with the additional use of Lm. 2. We need to show that

BAT conform to the 7p-transfer property, i.e. for any (M;, M;) € BAT and t € T with M, N M there exists

an imitating parallel step U € M(T) with I(¢) = [(U), M, 5 Mj and (M], Mj) € BAT.
Consider a pair of markings (M;, M,) € BAT. From Lm. 1 this pair can be obtained by a transitive closure
of several pairs from B (additive closure of B):

(H1, Hy), (H, Hs), ..., (Hi-1, Hi) € BA, where Hy = My, Hy = M,.
Consider the pair (H;, Hy).

(Hy, Hy) = (ry + ry + =+ + 1, 81 + 83 + - + 1), where (r;, s;) € B
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H; ="t ur + F. Due to the weak transfer property for the pair (ry, s;) there exists an imitating parallel

v
step V.e M(T)s.t. I(t) = I(V), tun R Gy and 't - r; + s; — G, where (G;, G;) € BT,
Since “t v r; ¢ Hy, we can add the resource F = H; - "t u ry to preconditions and postconditions:

t
‘turn+F — G +F
v
‘t-nn+s+F—> Gy +F

From the reflexivity of B and the additive closure of BAT

by B: (G, + F, G, + F) € BAT,

We obtained a new marking H{ = "t - r; + s; + F = Hy - r; + s;. Note that it still contains r, + - + r;.
Therefore, we can apply the same reasoning one more time, replacing resource r, by the bisimilar resource
sz, now using Lm. 2 and constructing an imitating parallel step not for a transition but for a parallel step V.

Apply this [ - 1 times. Using transitive closure of BAT, at the end we obtain a parallel step W that can
imitate ¢ at marking H,.

Now proceed to the next pair (H, H3) and repeat the procedure for the parallel step W. And so on, until
the last pair (Hi_1, Hi). Finally we obtain a parallel step U that can imitate ¢ at marking Hy = M. O

the new pair of markings is also decomposable

Thus, in saturated nets the weak rp-transfer property can be used in the construction of resource rp-
bisimulation.

4.3. Underapproximation

As in ordinary Petri nets (without invisible transitions), in the case of saturated (saturable) nets with in-
visible transitions there is a way of constructing an approximation of the maximal resource rp-bisimulation.
If we consider not an infinite set of network resources, but only its finite subset, then it will be possible to
check the weak rp-transfer property.

Let N = (P, T, F, I) be a saturated labelled Petri net with invisible transitions, ¢ € Nat — some parameter.
By M(P) we denote the set of all resources, containing not more than g tokens in the net: My(P) = {r €
M(P) : |r| =< q}.

Denote by B;,(N, q) the union of all resource 7p-bisimulations on My(P). Since the union of two re-
source Tp-bisimulations is always a resource rp-bisimulation (Prop. 5.4) we obtain the largest resource
Tp-bisimulation on M (P).

Since M(P) is finite, we can use the weak transfer property to compute B;,(N, ).

Definition 14. (Underapproximation of largest resource tp-bisimulation)

Input: a saturated labelled Petri net with invisible transitions N = (P, T, F, l), parameter q € Nat.

Output: Relation B;,(N, q).

Step 1: Let C = @ — an empty set of pairs (considered as a binary relation over M(P); it will be used as
a set of discovered pairs of non-similar resources).

Step 2:  Compute B = (My(P) x My(P)) \ C. Since My(P) is finite the set of pairs B is also finite.

Step 3: Compute B; — the ground basis of B.

Step 4:  Check, whether B conforms to the weak tp-transfer property: it is sufficient to test all non-reflexive
elements of B, (denote a set of all non-reflexive elements of Bs by B").

« If all pairs conforms to the weak tp-transfer property then stop and return B — the bisimulation.

« Otherwise there are (r,s) € B andt € T with“'tnr # @, s.t. the firing M; R M," withM; = "tur
can not be imitated by a parallel step U with the same label and with precondition M, = 't — r + s s.t.

M, LA M," with (My’, My’) € BAT. Add (r, s) and (s, r) to C and go back to Step 2.
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q:l: p2%7p®

q:2: P1 =rp 2p3

Fig. 6. An example of approximation: resource Puc. 6. MNpumep annpokcmaunn: pecypc
rp-bisimulation of a saturated Petri net Tp-BMCUMYNALMN HaCbILEeHHON ceTu MeTpu
with invisible transitions C HEBUAVMBIMU Mepexosamu

(termination) For any marking the set of active parallel steps is finite. Also note that the set My(P) x
M (P) is finite. Hence the algorithm always stops.

(correctness) Note that the algorithm stops only if B; conforms to the weak rp-transfer property. Hence
the result is always a resource 7p-bisimulation.

(largest equivalence) Assume that not all pairs from the largest resource rp-bisimulation on My(P)
are found. Hence each of the lost pairs was removed from the consideration (added to C) at some iteration of
algorithm. Consider the first of these iterations. The pair is removed because it doesn’t satisfy the weak zp-
transfer property w.r.t. the current configuration of B;. On the other hand, we know that it satisfies the weak
tp-transfer property w.r.t. B;,(N, g). Since current iteration is first when we remove the “wrong” pair, it is
clear that B;5(N, q) = (B,)AT. Hence the pair of resources should satisfy the weak 7p-transfer property w.r.t.
(By)AT - a contradiction.

Denote by R = | M,(P)| the size of the set of considered resources.

At the Step 2 we search through the set of all parallel steps with at most one visible label, that can fire at
marking M,. Each invisible transition can participate in the parallel step at most |M;| times, since it uses at
least one input token.? There is also at most one visible transition. Hence we have to check at most | T||My|!T!
multisets of transitions.

The size of marking M, = "t - r + s can be evaluated as O(|s|) = O(q).

Using our previous estimations of complexity for ground basis calculation (polynomial w.r.t. R) and the
complexity of other steps of algorithm (polynomial w.r.t. the size of the net), we obtain the overall complexity
of

O(max{|P| R, |T[*q'"|P| R"}).

Here the first and the second components of max are estimations for Step 3 and Step 4 respectively. So in
the case of nets with invisible transitions the complexity of the algorithm increased significantly (the linear
dependence on |T| was replaced by an exponential one). Such a jump is explained by the transition from sets
of transitions to multisets.

“Without loss of generality we can assume that a net contains no invisible transitions with empty preconditions. In any reachable
marking an unobservable sequence of such generating transitions can increase the marking of any of their post-place to a value, ex-
ceeding any given natural number. Therefore the places that participate in the postconditions of such generating transitions actually
do not affect the observable behavior of the net (and hence the bisimulations), and can be removed along with the corresponding
generating transitions.
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Consider an example of calculations (Fig. 6). Two subsequent steps are presented: g = 1 and g = 2. With
q = 1 we found that resource p, is tp-similar to an empty resource (i.e. the place p, is redundant). Increasing
the parameter (g = 2), we obtained one more pair of similar resources p; ~;, 2ps.

Proposition 6. Let N = (P, T, F, ) be a saturated labelled Petri net with invisible transitions. Then:
1. Vg€ Nat  (By(N, @))"" < (Bp(N, g + 1)*T;
2. 3qr € Nat :  Vk € Nat By(N, gy + k) = B;p(N).

Proof. (1) By construction of B;,(N, q) for any g the relation (B,,(N, ¢)AT is a largest resource bisimulation
s.t. the size of its generating elements (of ground basis) is not greater than g. The union of two resource
bisimulations is also a resource bisimulation, hence B’ = (B;,(N, q) u B;,(N, g + 1))47 is a resource bisimula-
tion. From the definition of ground basis the generating elements of B’ have the size not greater than g + 1,
therefore B’ = (B.(N, q + 1)),

(2) Since any resource bisimulation is an AT-closed equivalence and therefore it has a finite ground basis
(Th. 1). The value of gy is the size of the largest element of the B,,(N) ground basis. O

So at some point g the sequence {B;,(N, q)}, stabilizes. The problem of gy computability is still open.
The hypothesis is that rp-bisimulation of resources is undecidable and hence gy is uncomputable.

5. On the approximation of r-similarity in general nets

If a net is not saturable (see definition in Section 4.2), then the above procedure cannot be applied.
However, some straightforward approximations still can be computed.
Consider a parameterized version of the weak z-transfer property (Def. 6):

Definition 15. Let m,n € Natu {co}. We say that a relation B ¢ M(P) x M(P) conforms to the (m, n)-weak
r-transfer property if for all (r,s) € BAT, t € T s.t. "t n r # @ and max{|r|,|s|} < m, there exists an imitating
sequence of transitions ¢ € T* s.t. I(t) =; l(0),|o| = n and, denoting My = "t ur and My ="t — r + s, we have

My > My and My 5 My’ with (M/, M) € BAT.

The first difference is that we check not only elements of B (the base elements of BAT), but all elements
of BAT with at most m tokens. The second key property is that we simulate the transition firing not by an
arbitrary sequence, but by a sequence with at most n transitions.

Definition 16. A relation B < M(P) x M(P) is called an (m, n)-equivalence if both B and B™! conform to the
(m, n)-weak t-transfer property.

Definition 17. Let N be a net with invisible transitions. Denote by B(Tm’n)(N) its largest (m, n)-equivalence.

Proposition 7. 1 B(TO’O)(N ) = M(P) x M(P).
2. B®)(N) = B.(N).

Proof. (1) From the definition of (m, n)-weak r-transfer property.

(2) Note that in this case (B(Too’oo)(N )AT conforms to the r-transfer property, hence it is a marking -
bisimulation. Moreover, it is the largest bisimulation since any union of marking bisimulations is a marking
bisimulation. O
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Obviously, the limit of sequence {B(Tm’")(N )} m.n for m,n — oo is B;(N). Consider two examples of such
a sequence:

Example 1. For the net depicted in Fig. 2 we have:
BUD(N) = 1d(P)

BIA(N) = 1d(P) u {(pr, p2), (P2 p1)}
BEA(N) = Id(P) u {(p1. p2), (P2, 1)} U {(Pi. pj + p)s () + P p) | i, K € {1,2})}

BI™(N) = BP?(N)

B™IN) = BE(N)

Indeed, only the sequences of length 2 can find the similarity between p; and p,. Hence (py, p2) is added only
on the second step. On the third step we find out that any non-empty multiset of places is equal to any other
non-empty multiset of places — this can be defined by pairs (p;, p; + px) and (p; + px, pi) (all other elements can
be obtained from these pairs and reflexive pairs with the help of an AT-closure). At the third step the sequence
of sets stabilizes.

So as a result we have a non-contracting sequence:

(Bg.l’l))AT c (BSI,Z))AT c (B(TZ,Z))AT = = (B(Too’oo))AT-
Example 2. Consider the net depicted in Fig. 3. Here we have

BED(N) = 1d(P) 0 {(pr. p2). (P2 p1). (P Pa). (P, p3). (p5. D). (2. ps) }:

BEA(N) = Id(P) u {(p1 + pas 2 + p3), (P2 + P3, 1 + pa), (ps5, D), (D, ps) }.

Only at the second step the (2, 2)-weak t-transfer property allowed us to discover the actual non-bisimilarity of
resources py and p;.
The set of pairs is contracting in this particular case:

(Bgl,Z))AT 5 (B(TZ,Z))AT.
Example 3. Now consider a net, having two subnets — Fig. 2 and Fig. 3. Obviously, in this case

(Bgl,Z))AT % (B(TZ,Z))AT.

So, in general the sequence {B(Tm’n)(N )} m,nﬂ B;(N) is not monotonous even locally. Also note that

B(Tm’n)(N ) can be a subset of B;(N) (Example 1), a superset of B;(N) (B(TI’Z)(N ) in Example 2) and incomparable
to B;(N) (Example 3).

There are two open questions on the structure of {B(Tm’")(N )} m.n Sequence:

1. Does it always stabilizes at some (m, n)?

2. If not, does it always become monotonous at some point (w.r.t. m + n)?

The hypothesis is that the answers are: (1) — negative, (2) — positive. The rationale for this is that B(Tm’")
is not always a bisimulation (in contrast to B;,(N, q) from the previous section) and hence the infinite “tail”
of {B(Tm’n)(N )} m.n can consist of an infinite sequence of contracting B;(N) overapproximations.

However, as it was shown in the previous examples, the (m, n)-equivalences can still be used in practice
as non-trivial approximations of B;(N). The (m, n)-weak r-transfer property can be effectively checked for
any finitely-based candidate B (for example, defined by a ground base) and finite m and n.
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Definition 18. (Computation of an (m, n)-equivalence)
Input: a labelled Petri net with invisible transitions N = (P, T, F, l), parameters m, n € Nat.
Output: Relation B™"(N).
Step 1: Compute a tree Tr of all possible ground bases (except the trivial reflexive basis Id(P)) having the
size of their elements not greater than m. In this tree a basis By is a parent node for a basis B, iff (B,)*T < (By)AT.
Step 2:  Using breadth-first search, take the next node Bs from Tr and check, whether Bs conforms to the
(m, n)-weak t-transfer property.
« If all pairs conforms to the (m, n)-weak t-transfer property then stop and return B;.
- Otherwise there are (r, s) € (B)AT with max{|r|,|s|} < m and t € T with "t nr # @, such that the firing
M, N M,” with My = "tur can not be imitated by a sequence o € T* of (at most) n transitions with label
I(t) and precondition My = "t — r + s such that M, s My with (M, My’) € BAT. In this case go back to
the Step 2.
Step 3:  Return Id(P).

(termination) The resource size is bounded by m, the length of firing sequences is bounded by n,
the (m, n)-weak 7-transfer property can be checked in a finite number of steps. The tree T is also finite.
Hence the algorithm always stops.

(correctness) The construction of the tree Tr implies that the largest (m, n)-equivalence is always
the closest to the root (note that it contains all other (m, n)-equivalences). Hence the algorithm (breadth-first
search) finds it first.

Note that this “algorithm” is simple, but highly ineffective. There are four non-polynomial procedures:
Tr computation, Tr search, the resource pair combination and the transition sequence search.

6. Conclusion

The proposed methods for finding pairs of similar resources are of particular interest for certain appli-
cations, such as model reduction (shrinking the net without affecting its behavior) and adaptive process
management (resource relocation in the aftermath of some acute events). In addition, the use of resource
bisimulation allows one to reduce a Petri net with conservation of its behavior. This reduction is important
when analyzing properties of the Petri net, since the computational complexity of the majority of algorithms
used in analysis depends exponentially on the size of the net.

Important open questions concern decidability and complexity of related algorithmic problems. For
example, we have already shown that all types of resource similarity (ordinary, z-, 7p-) are undecidable. On
the other hand, the problem of B(N) (and B;(N), and B,(N)) computability is still open. We have introduced
only the underapproximations.
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