УДК 513.8

О некоторых следствиях теоремы о трансверсалях

Дольников В. Л. 1

Ярославский государственный университет им. П. Г. Демидова

e-mail: dolnikov@uniyar.ac.ru получена 15 сентября 2012

Ключевые слова: выпуклое множество, транслят, звёздное множество, трансверсаль

Рассматриваются теоремы, являющиеся обобщениями известных следствий теоремы Хелли.

В этой статье будут приведены результаты, которые получаются из теоремы о трансверсалях $[\,1,\,2,\,3\,]$ (см. ниже Теорема 1) путем «экстраполяции» классических следствий теоремы Хелли.

Данная теорема является обобщением теоремы Хелли и теоремы Борсука — Улама и в $[\ 3\]$ приведены теоремы, которые являются «интерполяцией» между следствиями из этих теорем.

Подобные результаты, которые бы доказывались с помощью теоремы Борсука – Улама, не были ранее отмечены (см. например, [4, 5, 6]).

Приведём для полноты изложения теорему о трансверсалях.

Определение. m-трансверсалью семейства выпуклых множеств P в \mathbb{R}^d называется m-мерная плоскость, пересекающая все множества из P.

Определение. Будем говорить, что семейство множеств P имеет свойство Π_k или $P \in \Pi_k$, если любые $\leq k$ множеств семейства P имеют непустое пересечение, и свойство Π ($P \in \Pi$), если пересечение всего семейства непусто.

Теорема 1. Пусть в \mathbb{R}^d даны т таких семейств P_i , $|P_i| \geq d-m+2$, выпуклых компактных множеств в \mathbb{R}^d , $1 \leq i \leq m \leq d$, что $P_i \in \Pi_{d-m+2}$ для всех i, $1 \leq i \leq m$. Тогда семейство $P = \bigcup_{i=1}^m P_i$ имеет (m-1)-трансверсаль.

¹Работа поддержана грантом Правительства РФ по постановлению № 220, договор №11.G34.31.0053, грантом РФФИ №10-01-00096.

Очевидно, что при m=1 из теоремы 1 следует теорема Хелли. Легко видеть, что при m=d из неё следует теорема Борсука – Улама.

Следующие два результата «экстраполируют» теоремы Винчензини и Кли [7], [8] и совпадают с ними при m = 1.

Для их формулировки рассмотрим выпуклый компакт $V_0 \in \mathbb{R}^d$ и m семейств P_1,\ldots,P_m выпуклых множеств в \mathbb{R}^d . Пусть все множества семейств P_1,\ldots,P_m компактны (или все семейства P_1,\dots,P_m — конечны). Предположим также, что $m \le d$ и $|P_i| \ge d - m + 2$, $1 \le i \le m$; тогда верна

Теорема 2. Если в любом семействе P_i для всех подсемейств $Q \subseteq P_i, |Q| \le$ d-m+2, существует транслят 2 множества V_{0} , который:

- (1) пересекает все множества семейства Q;
- (2) или покрывает все множества семейства Q;
- (3) или содержится во всех множествах семейства Q, то существует такая (m-1)-мерная плоскость π , что для всех $V \in P = \bigcup_{i=1}^m P_i$, имеем:
 - (1) $(V_0 + \pi) \cap V \neq \emptyset$;

 - (2) $\bigcup_{V \in P} V \subseteq (V_0 + \pi);$ (3) $V_0 + x \subseteq V$ для некоторого $x \in \pi.$

Доказательство. Доказательство этого результата подобно доказательству из [4] теорем Винчензини и Кли, только вместо теоремы Хелли используются теорема 1. Сопоставим каждому множеству $V \in P = \bigcup_{i=1}^{m} P_i$ – множество

$$V' = \{ x \in \mathbb{R}^d : (x + V_0) \sim V \},$$

где отношение \sim означает «пересекает», «покрывает» или «содержится в»; а каждому семейству P_i — семейство $P'_i = \{V'\}, V \in P_i$.

Легко видеть, что все множества V' — выпуклы, а из условий теоремы следует, что для всех $i, 1 \le i \le m$, семейство $P'_i \in \Pi_{d-m+2}$. Поэтому, по теореме о трансверсалях, семейство $P' = \bigcup_{i=1}^m P_i'$ имеет (m-1)-трансверсаль π , а тогда для всех $V \in P = \bigcup_{i=1}^{m} P_i$ имеем: (1) $(V_0 + \pi) \cap V \neq \emptyset$; (2) или $\bigcup_{V \in P} V \subseteq (V_0 + \pi)$; (3) или $V_0 + x \subseteq V$ для некоторого $x \in \pi$.

Теорема доказана.

Также через L(V) обозначим образ при ортогональной проекции множества Vна подпространство L.

Следствие 1. В условиях теоремы 1 существуют такие (d-m+1)-мерное подпространство L и вектор $x \in L$, что $x + L(V_0) \sim L(V)$ для всех $V \in P = \bigcup_{i=1}^m P_i$.

Доказательство. Для доказательства следствия нужно взять ортогональное дополнение $\pi^{\perp} = L$ к (m-1)-мерной плоскости π , существование которой гарантируется теоремой 1, и вектор $x \in L \cap \pi$.

Приводимый ниже результат обобщает теорему Минковского, который рассмотрел случай m=1 [9] (см., например, [4, с. 30]).

 $^{^{2}}$ Транслятом множества V из линейного пространства L будем называть множество вида x+ $V, x \in \mathbb{R}^d$.

Теорема 3. Если $V_1, \ldots, V_m, \ m \leq d$, – выпуклые компакты в \mathbb{R}^d , то существует такая (m-1)-мерная плоскость π и точка $z \in \pi^{\perp}$, что для каждой проходящей через z хорды [u,v] множества $\pi^{\perp}(V_i)$ имеем

$$\frac{\|z - u\|}{\|v - u\|} \le \frac{d - m + 1}{d - m + 2}.$$

Доказательство. Для фиксированной точки $x \in V_i$ рассмотрим множество

$$V_i(x)=x+rac{d-m+1}{d-m+2}(V_i-x)$$
 и покажем, что $\bigcap_{j=1}^{d-m+2}V_i(x_j)
eq\emptyset$

для всех наборов $\{x_j\}_{1 \le j \le d-m+2} \subseteq V_i$. Пусть

$$y = \frac{1}{d-m+2} \sum_{j=1}^{d-m+2} x_j;$$
 докажем, что $y \in \bigcap_{j=1}^{d-m+2} V_i(x_j).$

Заметим, что при всех j имеем

$$y = x_j + \frac{d - m + 1}{d - m + 2} \frac{1}{d - m + 2} \sum_{l \neq j} (x_l - x_j) \in x_j + \frac{d - m + 1}{d - m + 2} (V_i - x_j) = V_i(x_j).$$

Отсюда следует, что все m семейств $P_i = \{V_i(x)\}_{x \in V_i} \in \Pi_{d-m+2}, \ 1 \leq i \leq m$. Тем самым существует (m-1)-трансверсаль π семейства $P = \bigcup_{i=1}^m P_i$.

При ортогональном проектировании на π^\perp образом плоскости π будет некоторая точка $z \in \pi^\perp$ и при этом

$$z \in \bigcap_{i=1}^{m} \bigcap_{x \in V_i} \pi^{\perp}(V_i(x)).$$

Очевидно также, что для всех $i,\ 1 \le i \le m,\ z \in \pi^{\perp}(V_i)$. Возьмем хорду [u,v] множества $\pi^{\perp}(V_i)$, проходящую через точку z. Так как

$$z \in \bigcap_{x \in V_i} \pi^{\perp}(V_i(x)), \quad \text{to} \quad z \in u + \frac{d-m+1}{d-m+2}([u,v]-u).$$

Отсюда получается, что для некоторого $t \in [0, 1]$ имеем

$$z = u + \frac{d - m + 1}{d - m + 2}t(v - u) \Longrightarrow \frac{\|z - u\|}{\|v - u\|} \le t\frac{d - m + 1}{d - m + 2} \le \frac{d - m + 1}{d - m + 2}.$$

Теорема доказана.

Теореме 4 можно дать следующую эквивалентную форму. Возьмем выпуклый компакт V с непустой внутренностью в \mathbb{R}^d . Пусть π — гиперплоскость, проходящая через внутреннюю точку V, а π_1 и π_2 — параллельные ей опорные гиперплоскости. Пусть $\lambda(\pi,V)$ — величина отношения расстояний между гиперплоскостями π и π_1 и π и π_2 , которая ≤ 1 .

Теорема 4. Если $V_1, \ldots, V_m, m \leq d, -$ выпуклые компакты c непустой внутренностью в \mathbb{R}^d , то существует такая (m-1)-мерная плоскость π_1 , что для всех гиперплоскостей $\pi \supset \pi_1$ и для всех $i, 1 \leq i \leq m$, имеем $\lambda(\pi, V_i) \leq \frac{d-m+1}{d-m+2}$.

Замечание. Если есть такая точка $x \in V$, что для всех гиперплоскостей $\pi \ni x$ выполняется равенство $\lambda(\pi,V)=1$, то известно, что V — центрально-симметрично, а x является его центром симметрии [10]. Таким образом, если для каждого множества V_1,\ldots,V_m существует такая (m-1)-мерная плоскость π_i , что для всех гиперплоскостей $\pi \supset \pi_i$, выполняется равенство $\lambda(\pi,V_i)=1$, то существует такое (d-m+1)-мерное подпространство π^\perp и такой вектор $x \in \pi^\perp$, что все множества $\pi^\perp(V_i)$ центрально-симметричны относительно x.

Приведем далее обобщение классической теоремы Красносельского о звездных множествах (см., например, [4]).

Определение. Если u и v – точки множества $V \subset \mathbb{R}^n$, то выражение u видна из v в множестве V означает, что отрезок $[u, v] \subset V$. Множество называется звездным, если в V есть точка, из которой видны все остальные.

Теорема 5. Пусть V_1, \ldots, V_m , $m \leq d$, — бесконечные компакты в \mathbb{R}^d и для всех $i, 1 \leq i \leq m$, и всех $V \subseteq V_i, |V| \leq d-m+2$, существует точка $x_V \in V_i$, из которой видны все точки V. Тогда существует такая (m-1)—мерная плоскость π , что множество $\bigcup_{i=1}^m V_i$ — звездно относительно π .

Доказательство. Для каждой точки $x \in V_i$, положим,

$$St(x, V_i) = \{ y \in V_i : [x, y] \subseteq V_i \}.$$

Из условия теоремы следует, что $\{St(x,V_i)\}_{x\in V_i}\in\Pi_{d-m+2}$ при всех $i,\ 1\leq i\leq m$. Следовательно, $\{\operatorname{conv} St(x,V_i)\}_{x\in V_i}\in\Pi_{d-m+2}$. По теореме 1 существует (m-1)-трансверсаль π у семейства

$$\bigcup_{i=1}^{m} \{\operatorname{conv} St(x, V_i)\}_{x \in V_i}.$$

Далее возьмем подпространство π^{\perp} и точку $y \in \pi \cap \pi^{\perp}$. Тогда имеем

$$y \in \pi^{\perp} \bigcap_{x \in V_i} \operatorname{conv}(St(x, V_i)) = \bigcap_{x \in V_i} \operatorname{conv} \pi^{\perp}(St(x, V_i)) \subseteq \bigcap_{x \in V_i} \operatorname{conv}(St(\pi^{\perp}(x), \pi^{\perp}(V_i)).$$

Из доказательства теоремы Красносельского следует (см. [4, с. 27]), что

$$y \in \bigcap_{x \in V_i} \pi^{\perp}(St(x, V_i)).$$

Поэтому $St(x,V_i) \cap \pi \neq \emptyset$ для любого $x \in V_i$ и множество $\bigcup_{i=1}^m V_i$ звёздно относительно π . Теорема доказана.

Список литературы

- 1. Дольников В. Л. О трансверсалях семейств выпуклых множеств // Исследования по теории функций многих вещественных переменных. Ярославль, 1981. С. 30-36.
- 2. Дольников В. Л. Обобщенные трансверсали семейств множеств в \mathbb{R}^n и связи между теоремами Хелли и Борсука // Докл. АН СССР. 1987. Т. 297, №4. С. 777 780.
- 3. Дольников В. Л. Обобщенные трансверсали семейств множеств в \mathbb{R}^n и связи между теоремами Хелли и Борсука // Матем. сборник. 1993. Т. 184, №2. С. 111 132.
- 4. $Хадвигер \Gamma$, Дебруннер Γ . Комбинаторная геометрия на плоскости. М.: Наука, 1965.
- 5. *Данцер Л.*, *Грюнбаум Б.*, *Кли В.* Теорема Хелли и ее применения. М.: Мир, 1968.
- 6. Eckhoff J. Helly, Radon, and Carathéodory type theorems //Handbook of Convex Geometry, ed. by P.M. Gruber and J.M. Wills. Amsterdam: North-Holland, 1993.
- 7. Vincensini P. Sur une extension d'un theéorem de M.J. Radon sur les ensembles de corps convexes // Bull. Sci Math. France. 1939. V. 67. P. 113 119.
- 8. Klee V. The critical set of a convex body // Americ. J. Math. 1953. V. 75. P. 178 188.
- 9. Minkowski~H. Allgemeine Lebrzätze über konvexe Polyeder // Ges. Ab. 1911. Bd. 2. Berlin. S. 103-121.
- 10. *Грюнбаум Б.* Этюды по комбинаторной геометрии и теории выпуклых тел. М.: Наука, 1971.

On Some Corollaries of a Transversal Theorem

Dolnikov V. L.

Keywords: convex set, translate, starshaped set, transversal

In this paper we consider theorems which are generalizations of the well-known corollaries of the Helly theorem

Сведения об авторе: Дольников Владимир Леонидович,

Ярославский государственный университет им. П.Г. Демидова, доктор физико-математических наук, профессор, научный сотрудник Международной лаборатории "Дискретная и вычислительная геометрия" им. Б.Н. Делоне.