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We proved in [10] that each Platonic polyhedron P can be folded into a flat
multilayered face of P by a continuous folding process of polyhedra. In this paper,
we give explicit formulas of continuous functions for such a continuous flattening
process in R3 for a regular tetrahedron.

The article is published in the author’s wording.

1. Introduction

We use the terminology polyhedron for a closed polyhedral surface which is permitted to
touch itself but not self-intersect (and so a doubly covered polygon is a polyhedron). A
flat folding of a polyhedron is a folding by creases into a multilayered planar shape ([7],

[3])-

A. Cauchy [4] in 1813 proved that any convex polyhedron is rigid: precisely, if two
convex polyhedra P, P’ are combinatorially equivalent and their corresponding faces are
congruent, then P and P’ are congruent. By removing the condition of convexity, R.
Connelly [5] in 1978 gave an example of a (non-convex) flexible polyhedron: precisely,
there is a continuous family of polyhedra {P; : 0 < t < 1} such that for every ¢ # 0,
the corresponding faces of Py and P, are congruent while polyhedra Py and P, are not
congruent. (See also [6].) After then I. Sabitov [15] in 1998 proved that the volume of
any polyhedron is invariant under flexing: precisely, if there is a continuous family of
polyhedra {P, : 0 < ¢ < 1} such that, for every ¢, the corresponding faces of Py and P,
are congruent, then the volumes Py and P; are equal for all 0 <t < 1. (See also [14].)

A. Milka [12] in 1994 showed that any polyhedron admits a continuous (isometric)
deformation by using moving edges, and that all Platonic polyhedra can be changed in

!Partially supported by Grand-in-Aid for Scientific Research (No.23540098), JSPS.
2Partially supported by Grand-in-Aid for Scientific Research (No.23540160), JSPS.

127



128 Modeauposanue u ananrus ungopmayuonmvr cucmem T.19, Ne6 (2012)

their exterior shapes. He called such a deformation a linear bending. 1. Sabitov [16] in
2000 explained on a class of deformations of polyhedra without the face-rigidity condi-
tion, and he introduced an example of a regular tetrahedron whose vertex is pushed in
continuously with moving creases (which he called ”swimming” edges). Also T. Ban-
choff [2] discussed on a continuous isometric deformation of a square polyhedral torus.
D. Bleeker [3] showed that any convex polyhedron in R? admits a continuous isometric
deformation such that the volume increases. (See also [13].)

In our previous works, we discussed on flattening of convex polyhedra by a continuous
(isometric) deformation which we call a continuous folding process (see Definition 1). For
such a deformation, its faces must be changed by moving creases as its volume decreases.
We proved in 2010 that each Platonic polyhedron is fattened by a continuous flat folding
process of polyhedra onto its original face ([10]). Furthermore we showed with C. Vilcu
in 2011 that any convex polyhedron admits infinitely many continuous folding processes,
by using cut loci and Alexandrov’s gluing theorem ([1], [11]).

In this paper, we give explicit formulas of continuous functions for a continuous flat
folding process in the case of a regular tetrahedron. We leave such calculation for other
Platonic polyhedra in future work.

2. Explicit formulas of continuous flat folding mappings

We proved the following lemma which played a key role for proofs in [10].

Lemma. For anyl(0 <1 <|AC|) and any m (0 <1 < |BD|) of a rhombus ABC'D with
the center M, there are points QQ, R on the line segment AC which satisfy the following:

(i) |QM| = |RM|,

(17) by folding R with creases {AM, BM, DM, RB, RD, MR, RC'}, ABMR and
ADMR are folded onto ABQM and ANDQM respectively, and

(13i) dist{A', C"} =1 and dist{B', D'} = m , where X' in the folded rhombus is the
corresponding point to a point X in the rhombus ABCD and |Y Z| means the length of
a line segment Y Z. (see Fig. 1).

Definition 1. Let P be a polyhedron in the Euclidean space R3. We say that a family
of polyhedra {P, : 0 < t < 1} is a continuous folding process from P = Py to Py if it
satisfies the following conditions:

(1) for each 0 <t < 1, there exists a polyhedron P/ obtained from P by subdividing
some faces of P (i.e., some faces of P/ may be included in the same face of P, but P} is
congruent to P) such that P, is combinatorially equivalent to P/ and the corresponding
faces of P/ and P, are congruent,

(2) the mapping [0,1] 5t —— P, € {P,: 0 <t < 1} is continuous.

Theorem. The reqular tetrahedron in R3 with vertices O = (0,0,0),
A=(2/V3,0,-2v2/V3), B = (+/3,1,0), and C = (v/3,—1,0) is flattened explicitly by
a continuous folding process of polyhedra { P, : 0 <t < 1} which satisfies the following:
(i) the line segment OM , where M is the midpoint of the edge BC, is fized on the x-axis
(see Fig. 2(1)(2)),

(i1) two faces AOAB and ANOAC have no crease,
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Figure 1. How to fold a rhombus:(1) a rhombus (2) an example of a folded rhombus.

A=CN3, 0, -A2/3 )

C=(13,-1,0)

\%
z

() )

B=({3, 1,0)

Figure 2. (1) A tetrahedron (2) the tetrahedron with coordinates.
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(i) there are points Q; (0 <t < 1) on OM and R, on AM such that for each t the face
NABC is divided into four triangles NABR;, NACR;, ABR;M and ACR;M , and that
AB(R)'M and ACy(R)' M are attached to AB,QM and AByQM respectively, where
we denote by Ay, By, Cy and (Ry)" the points on P, corresponding to points A, B, C' and
Ry respectively (see Fig. 3), and

(iv) explicit coordinates of Ay, By, Cy and Qy are

6 + 25v/6 + 352 2(s — V6 + 3s?
V3B +s2) 3+ 52
Bt:(\/gu V1_827 8)7
Ct:(\/_a_\/]-_SQaS)a

3(3 + s

Qt:( \/_( 8) 70)0)

3+ 5v6 + 3s2

where s = sin 5t (0 <t < 1) (see Figure 2 and Figure 3), and
(v) Py is a flat folded state of P (see Fig. 4).

At:( )7

A=(x¢ ,0, 2t )

Qt=(Rt)’ =(¢I,, 0,0)

Ct:(B) _J 'SZ) S)

z B=(3,VI-s2, 5)

Figure 3. P; (0 <t < 1) where s = sin t.

Proof. Let P be a regular tetrahedron with the edge length two, whose vertices are
O, A, B, C in the zyz-space R? with coordinates O = (0,0,0), A = (2/4/3,0, —=2v/2//3),
B = (v/3,1,0), and C = (v/3,—1,0). Denote by M = (1/3,0,0) the midpoint of the
edge BC.

Get a crease of the line segment OM on the face AOBC, fold AOBC' continuously

into halves until B and C' meets on the xz-plane. According to such folding, we define a
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A=(3,0, -1)

023, 0,0);

M=({3,0,0

B;=({3,0, 1)

Figure 4. The flat folded state P; of the regular tetrahedron P.

continuous folding process of P, (1 <t < t) for P which satisfies the following conditions
(7) — (v) in Theorem. Fix the line segment OM for all 0 < t < 1 and denote s(t) =
sin 3t (0 <t < 1). Rotate triangleOBM and triangleOCM about OM as follows: for

each t (0 <t <1)
By = (\/§7 V31— 827 S)?
Ct:(\/—a_Vl_Sza S):

where s = s(t) = sin§ and by X; € P, (for X = A, B, (') and (R;)’ the corresponding
point to points X and R; on P..

Since we get no crease on AOAB and AOAC, the distances between O, A, and
Ay, By are dist(O, Ay) = 2 and dist(A;, B;) = 2. Then the coordinates of A = (x4, 0, 2z;)
satisfy

(20)* + (20)* = 4 (1)

(V3=a)’+ (1= ")+ (s —a) =4 (2)

By subtracting (2) from (1) in each side of the equalities, it follows
(20)° + () = {(VB=2)* + (1 = ") + (s = 2)*} = 0.

Hence,
2—5-2

V3

Substituting the equation (3) to the equation (1), by z; <0

2(s — V6 + 3s?) (4)

3+ s?
6 4 25v/6 + 352 0 2(s — /6 + 352
V3(3+s2) T 3+ s?

Tt =

Zt =

and hence

A= ( ).
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By Lemma 1 note that @); is the intersection point of the orthogonal bisector of OA;
with the line segment OM. Let Q; = (g, 0, 0). Since the midpoint N; of OA,; is
N; = (24, 0, z;) and the inner product of the vector OA and the vector N,Q); is zero, we
have

2
x z
(Et—qt)-xt—i- ( ;) = 0.
By (1) it holds
2
q = —.
Tt
Therefore we get
V3(3 + s
Q= (281 g,

3+ sv6 + 352

3. Another continuous flattening

In Theorem 1, we pushed the face AABC inside to flatten the regular tetrahedron
OABC (see Fig. 3 and Fig. 4). If we push the face AABC outside, can we still flatten
the tetrahedron continuously? We show there is a continuous folding process for such a
flattening. Denote by G and H the centers of gravity for AABC and AOAB (see Fig.
5(1)). Then the quadrilateral H BGC' is a rhombus which is folded in a halfway with a
crease BC' (see Fig. 5(2)). By applying Lemma 1, there are moving creases BR; and C'R;
(0 <t < 1) with points R; on the line segment MG such that dist{B;, C;} decreases to
zero and dist{H, (R,)'} increases to 2/+/3 simultaneously for given distances (see Fig.
5(3) and Fig. 3(4)) where we use the same notations for A;, B;, C; and (R;)" as the ones
used in the proof of Theorem 1.

Let fold AOAB and AOAC similar way to the one defined in the proof of Theorem
1. Then a continuous folding process of P, (0 <t < 1) is obtained as follows:

(1) the coordinates of G; € P, (which is the corresponding point to G) is uniquely
determined by the equation (see Fig. 6)

|Ath| == |Bth| - |Cth| - 2/\/5,

(#) by using similar argument to the one used in the proof of Theorem 1, we can
calculate the coordinates of (R;)" € P,.
Finally the tetrahedron is flattened in a shape showed in Fig. 7.

4. Further research

It is almost obvious that the area of creases for the continuous flattening process dis-
cussed in the section 3 is smaller than the one showed in Theorem 1. We asked the
following problem in [10]
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Bt

(2) (3) (4)

Figure 5. A continuous folding process for a rhombus.

Question. What is the minimum area of creases which are used for a continuous flat-
tening of each Platonic polyhedron?

For the case of flattening showed in Theorem 1, the area is 1/4/3, and for the one
showed in the section 3, Ko-ichi Hirata [9] got an approximate value (v/3 — /2)/2 by
using Mathematica.

Acknowledgement. The authors are indebted to I. Sabitov for his useful suggestions
and encouragement to prepare this paper, and N. Dolbilin for giving us the opportunity
to discuss on this matter in the conference ”Discrete geometry” held in Yaroslavl.
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Ar=(x¢,0,2t)

Gt=(g,p 0,8, )

H

". Cr= 33_ - 2’
=243, 00) (3,52, 5)

‘ BF(E,W s)

Figure 6. Another continuous folding process of P; (0 < ¢ < 1) where s = sin §t.

A=(3,0, -1)

M=({3,0,0)
0,=G;=(4/13,0,0)

g Bi=G=(3,0,1)

Figure 7. The flat folded state P; by another flattening.
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HemnpepbiBHOE ymiolieHrne NPaBUJIBHOIO TETPa3apPa TOUYHLIMU
OTOOpaKEeHUSIMU

Jlxxun-uan Uto, Y Hapa

KurodueBbie cjioBa: HeNpPepbIBHOE CKJIaJbIBaHUE, ITPABUILHBIE TETPAdIPHI,
MHOTI'OTPDaHHUKH, CKJIa IbIBAHUE OyMaru

B crarbe [10| HaMu moka3aHo, 9TO JFOOON MPABUJIBHBIA MHOMOIDAHHUK P JIOIyCKa-
eT HernpepbiBHOe (M30MeTpUYHOe) CKJajblBaHue (WM pasriaXKuBaHUe) Ha IIOCKOCTb.
B Hacrosmeil crarbe Mbl IPUBOIMM sIBHBIE (DOPMYJIbI HEPEPHIBHBIX (DYHKIUHA TAKOIro
npolecca CKJIaIbIBaHus I MPABHILHOrO Terpasapa B R, Crarbs my6iuKyercs B aB-
TOPCKOA pEeAaKIN.

CBenenusi 06 aBTopax:
JxunH-nun Uto — Yausepcurer Kymamoro, npodeccop dhaxyabrera oOpa3oBaHusd.
Yu Hapa — Toxkwmiickuii yauBepcuret, npodeccop Ob6pazoBaTe/ibHOTO EHTPa,
CBODOTHBIX MCKYCCTB.



