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We proved in [10] that each Platonic polyhedron P can be folded into a flat
multilayered face of P by a continuous folding process of polyhedra. In this paper,
we give explicit formulas of continuous functions for such a continuous flattening
process in R3 for a regular tetrahedron.

The article is published in the author’s wording.

1. Introduction

We use the terminology polyhedron for a closed polyhedral surface which is permitted to
touch itself but not self-intersect (and so a doubly covered polygon is a polyhedron). A
flat folding of a polyhedron is a folding by creases into a multilayered planar shape ([7],
[8]).

A. Cauchy [4] in 1813 proved that any convex polyhedron is rigid: precisely, if two
convex polyhedra P, P ′ are combinatorially equivalent and their corresponding faces are
congruent, then P and P ′ are congruent. By removing the condition of convexity, R.
Connelly [5] in 1978 gave an example of a (non-convex) flexible polyhedron: precisely,
there is a continuous family of polyhedra {Pt : 0 ≤ t ≤ 1} such that for every t 6= 0,
the corresponding faces of P0 and Pt are congruent while polyhedra P0 and Pt are not
congruent. (See also [6].) After then I. Sabitov [15] in 1998 proved that the volume of
any polyhedron is invariant under flexing: precisely, if there is a continuous family of
polyhedra {Pt : 0 ≤ t ≤ 1} such that, for every t, the corresponding faces of P0 and Pt
are congruent, then the volumes P0 and Pt are equal for all 0 ≤ t ≤ 1. (See also [14].)

A. Milka [12] in 1994 showed that any polyhedron admits a continuous (isometric)
deformation by using moving edges, and that all Platonic polyhedra can be changed in
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their exterior shapes. He called such a deformation a linear bending. I. Sabitov [16] in
2000 explained on a class of deformations of polyhedra without the face-rigidity condi-
tion, and he introduced an example of a regular tetrahedron whose vertex is pushed in
continuously with moving creases (which he called ”swimming” edges). Also T. Ban-
choff [2] discussed on a continuous isometric deformation of a square polyhedral torus.
D. Bleeker [3] showed that any convex polyhedron in R3 admits a continuous isometric
deformation such that the volume increases. (See also [13].)

In our previous works, we discussed on flattening of convex polyhedra by a continuous
(isometric) deformation which we call a continuous folding process (see Definition 1). For
such a deformation, its faces must be changed by moving creases as its volume decreases.
We proved in 2010 that each Platonic polyhedron is fattened by a continuous flat folding
process of polyhedra onto its original face ([10]). Furthermore we showed with C. Vı̂lcu
in 2011 that any convex polyhedron admits infinitely many continuous folding processes,
by using cut loci and Alexandrov’s gluing theorem ([1], [11]).

In this paper, we give explicit formulas of continuous functions for a continuous flat
folding process in the case of a regular tetrahedron. We leave such calculation for other
Platonic polyhedra in future work.

2. Explicit formulas of continuous flat folding mappings

We proved the following lemma which played a key role for proofs in [10].

Lemma. For any l (0 ≤ l ≤ |AC|) and any m (0 ≤ l ≤ |BD|) of a rhombus ABCD with
the center M , there are points Q, R on the line segment AC which satisfy the following:

(i) |QM | = |RM |,
(ii) by folding R with creases {AM, BM, DM, RB, RD, MR, RC}, 4BMR and

4DMR are folded onto 4BQM and 4DQM respectively, and
(iii) dist{A′, C ′} = l and dist{B′, D′} = m , where X ′ in the folded rhombus is the

corresponding point to a point X in the rhombus ABCD and |Y Z| means the length of
a line segment Y Z. (see Fig. 1).

Definition 1. Let P be a polyhedron in the Euclidean space R3. We say that a family
of polyhedra {Pt : 0 ≤ t ≤ 1} is a continuous folding process from P = P0 to P1 if it
satisfies the following conditions:

(1) for each 0 ≤ t ≤ 1, there exists a polyhedron P ′
t obtained from P by subdividing

some faces of P (i.e., some faces of P ′
t may be included in the same face of P , but P ′

t is
congruent to P ) such that Pt is combinatorially equivalent to P ′

t and the corresponding
faces of P ′

t and Pt are congruent,
(2) the mapping [0, 1] 3 t 7−→ Pt ∈ {Pt : 0 ≤ t ≤ 1} is continuous.

Theorem. The regular tetrahedron in R3 with vertices O = (0, 0, 0),
A = (2/

√
3, 0,−2

√
2/
√

3), B = (
√

3, 1, 0), and C = (
√

3,−1, 0) is flattened explicitly by
a continuous folding process of polyhedra {Pt : 0 ≤ t ≤ 1} which satisfies the following:
(i) the line segment OM , where M is the midpoint of the edge BC, is fixed on the x-axis
(see Fig. 2(1)(2)),
(ii) two faces 4OAB and 4OAC have no crease,
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Figure 1. How to fold a rhombus:(1) a rhombus (2) an example of a folded rhombus.
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Figure 2. (1) A tetrahedron (2) the tetrahedron with coordinates.



130 Моделирование и анализ информационных систем Т.19, №6 (2012)

(iii) there are points Qt (0 ≤ t ≤ 1) on OM and Rt on AM such that for each t the face
4ABC is divided into four triangles 4ABRt, 4ACRt, 4BRtM and 4CRtM , and that
4Bt(Rt)

′M and 4Ct(Rt)
′M are attached to 4BtQtM and 4BtQtM respectively, where

we denote by At, Bt, Ct and (Rt)
′ the points on Pt corresponding to points A, B, C and

Rt respectively (see Fig. 3), and
(iv) explicit coordinates of At, Bt, Ct and Qt are

At = (
6 + 2s

√
6 + 3s2

√
3(3 + s2)

, 0,
2(s−

√
6 + 3s2

3 + s2
),

Bt = (
√

3,
√

1− s2, s),

Ct = (
√

3, −
√

1− s2, s),

Qt = (

√
3(3 + s2)

3 + s
√

6 + 3s2
, 0, 0)

where s = sin π
2
t (0 ≤ t ≤ 1) (see Figure 2 and Figure 3), and

(v) P1 is a flat folded state of P (see Fig. 4).

=(  3,0,0)
M

Q  =(R  )’ =(q  , 0 , 0 )

tA  =(x   , 0 ,  z   )

O

x

y

z

t

tt

2B  =(  3 ,   1-s  ,  s )t

2C  =(  3 , -  1-s  ,  s )t

t t

Figure 3. Pt (0 ≤ t ≤ 1) where s = sin π
2 t.

Proof. Let P be a regular tetrahedron with the edge length two, whose vertices are
O, A, B, C in the xyz-space R3 with coordinates O = (0, 0, 0), A = (2/

√
3, 0,−2

√
2/
√

3),
B = (

√
3, 1, 0), and C = (

√
3,−1, 0). Denote by M = (

√
3, 0, 0) the midpoint of the

edge BC.
Get a crease of the line segment OM on the face 4OBC, fold 4OBC continuously

into halves until B and C meets on the xz-plane. According to such folding, we define a
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Figure 4. The flat folded state P1 of the regular tetrahedron P .

continuous folding process of Pt (1 ≤ t ≤ t) for P which satisfies the following conditions
(i) − (v) in Theorem. Fix the line segment OM for all 0 ≤ t ≤ 1 and denote s(t) =
sin π

2
t (0 ≤ t ≤ 1). Rotate triangleOBM and triangleOCM about OM as follows: for

each t (0 ≤ t ≤ 1)

Bt = (
√

3,
√

1− s2, s),

Ct = (
√

3, −
√

1− s2, s),

where s = s(t) = sin π
2

and by Xt ∈ Pt (for X = A, B, C) and (Rt)
′ the corresponding

point to points X and Rt on P ..
Since we get no crease on 4OAB and 4OAC, the distances between O, At and

At, Bt are dist(O, At) = 2 and dist(At, Bt) = 2. Then the coordinates of A = (xt, 0, zt)
satisfy

(xt)
2 + (zt)

2 = 4 (1)
(
√

3− xt)
2 + (1− s2) + (s− zt)

2 = 4 (2)
By subtracting (2) from (1) in each side of the equalities, it follows

(xt)
2 + (zt)

2 − {(
√

3− xt)
2 + (1− s2) + (s− zt)

2} = 0.

Hence,

xt =
2− s · zt√

3
. (3)

Substituting the equation (3) to the equation (1), by zt ≤ 0

zt =
2(s−

√
6 + 3s2)

3 + s2
, (4)

and hence

At = (
6 + 2s

√
6 + 3s2

√
3(3 + s2)

, 0,
2(s−

√
6 + 3s2

3 + s2
).
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By Lemma 1 note that Qt is the intersection point of the orthogonal bisector of OAt

with the line segment OM . Let Qt = (qt, 0, 0). Since the midpoint Nt of OAt is
Nt = (xt, 0, zt) and the inner product of the vector OA and the vector NtQt is zero, we
have

(
xt
2
− qt) · xt +

(zt)
2

2
= 0.

By (1) it holds

qt =
2

xt
.

Therefore we get

Qt = (

√
3(3 + s2)

3 + s
√

6 + 3s2
, 0, 0).

2

3. Another continuous flattening

In Theorem 1, we pushed the face 4ABC inside to flatten the regular tetrahedron
OABC (see Fig. 3 and Fig. 4). If we push the face 4ABC outside, can we still flatten
the tetrahedron continuously? We show there is a continuous folding process for such a
flattening. Denote by G and H the centers of gravity for 4ABC and 4OAB (see Fig.
5(1)). Then the quadrilateral HBGC is a rhombus which is folded in a halfway with a
crease BC (see Fig. 5(2)). By applying Lemma 1, there are moving creases BRt and CRt

(0 ≤ t ≤ 1) with points Rt on the line segment MG such that dist{Bt, Ct} decreases to
zero and dist{H, (Rt)

′} increases to 2/
√

3 simultaneously for given distances (see Fig.
5(3) and Fig. 3(4)) where we use the same notations for At, Bt, Ct and (Rt)

′ as the ones
used in the proof of Theorem 1.

Let fold 4OAB and 4OAC similar way to the one defined in the proof of Theorem
1. Then a continuous folding process of Pt (0 ≤ t ≤ 1) is obtained as follows:

(i) the coordinates of Gt ∈ Pt (which is the corresponding point to G) is uniquely
determined by the equation (see Fig. 6)

|AtGt| = |BtGt| = |CtGt| = 2/
√

3,

(ii) by using similar argument to the one used in the proof of Theorem 1, we can
calculate the coordinates of (Rt)

′ ∈ Pt.

Finally the tetrahedron is flattened in a shape showed in Fig. 7.

4. Further research

It is almost obvious that the area of creases for the continuous flattening process dis-
cussed in the section 3 is smaller than the one showed in Theorem 1. We asked the
following problem in [10]
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Figure 5. A continuous folding process for a rhombus.

Question. What is the minimum area of creases which are used for a continuous flat-
tening of each Platonic polyhedron?

For the case of flattening showed in Theorem 1, the area is 1/
√

3, and for the one
showed in the section 3, Ko-ichi Hirata [9] got an approximate value (

√
3 −
√

2)/2 by
using Mathematica.
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Непрерывное уплощение правильного тетраэдра точными
отображениями

Джин-ичи Ито, Чи Нара

Ключевые слова: непрерывное складывание, правильные тетраэдры,
многогранники, складывание бумаги

В статье [10] нами доказано, что любой правильный многогранник P допуска-
ет непрерывное (изометричное) складывание (или разглаживание) на плоскость.
В настоящей статье мы приводим явные формулы непрерывных функций такого
процесса складывания для правильного тетраэдра в R3. Статья публикуется в ав-
торской редакции.
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