MODELING AND ANALYSIS OF INFORMATION SYSTEMS, VOL. 28, NO. 2, 2021

,7? r journal homepage: www.mais-journal.ru
LR

Sinormation Syems COMPUTER SYSTEM ORGANIZATION

Object-Centric Replay-Based Conformance Checking: Unveiling Desire

Lines and Local Deviations
J.C. Carrasquell, K. Mecheraoui? DOL: 10.18255/1818-1015-2021-2-146-168

HSE University, 20 Myasnitskaya str., Moscow 101000, Russia.
2University of Constantine 2 — Abdelhamid Mehri, Nouvelle ville Ali Mendjeli BP : 67A, 25000 Constantine, Algeria.

MSC2020: 68N30 Received May 3, 2021
Research article After revision May 25, 2021
Full text in English Accepted June 2, 2021

Conformance checking methods diagnose to which extent a real system, whose behavior is recorded in an event log, com-
plies with its specification model, e.g., a Petri net. Nonetheless, the majority of these methods focus on checking isolated
process instances, neglecting interaction between instances in a system. Addressing this limitation, a series of object-centric
approaches have been proposed in the field of process mining. These approaches are based on the holistic analysis of the
multiple process instances interacting in a system, where each instance is centered on the handling of an object. Inspired
by the object-centric paradigm, this paper presents a replay-based conformance checking method which uses a class of
colored Petri nets (CPNs) — a Petri net extension where tokens in the model carry values of some types (colors). Particularly,
we consider conservative workflow CPNs which allow to describe the expected behavior of a system whose components
are centered on the end-to-end processing of distinguishable objects. For describing a system’s real behavior, we consider
event logs whose events have sets of objects involved in the execution of activities. For replay, we consider a jump strategy
where tokens absent from input places of a transition to fire move from their current place of the model to the requested
places. Token jumps allow to identify desire lines, i.e., object paths unforeseen in the specification. Also, we introduce local
diagnostics based on the proportion of jumps in specific model components. The metrics allow to inform the severity of
deviations in precise system parts. Finally, we report experiments supported by a prototype of our method. To show the
practical value of our method, we employ a case study on trading systems, where orders from users are matched to trade.

Keywords: Process Mining; Conformance Checking; Petri Nets; Colored Petri Nets

INFORMATION ABOUT THE AUTHORS

orcid.org/0000-0003-3557-797X. E-mail: jcarrasquel@hse.ru
Postgraduate Student.

orcid.org/0000-0001-9906-6074. E-mail: k_mecheraoui@esi.dz
Assistant Professor.

Julio C Carrasquel
correspondence author

Khalil Mecheraoui

Funding: This work is supported by the Basic Research Program at the National Research University Higher School of Economics.

For citation: J. C. Carrasquel and K. Mecheraoui, “Object-Centric Replay-Based Conformance Checking: Unveiling Desire Lines
and Local Deviations”, Modeling and analysis of information systems, vol. 28, no. 2, pp. 146-168, 2021.

© Carrasquel J. C., Mecheraoui K., 2021
This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).

146

http://www.mais-journal.ru
https://doi.org/10.18255/1818-1015-2021-2-146-168
https://orcid.org/0000-0003-3557-797X
mailto:jcarrasquel@hse.ru
https://orcid.org/0000-0001-9906-6074
mailto:k_mecheraoui@esi.dz
https://creativecommons.org/licenses/by/4.0/

MOAENINPOBAHUNE N AHAJTN3 MHPOPMALIMOHHBLIX CUCTEM, TOM 28, Ne 2, 2021

/
,7? ’ CanT XypHana: www.mais-journal.ru
UL

lnormation Sysem: COMPUTER SYSTEM ORGANIZATION

OO0 BeKTHO-OpMEHTPOBAaHHASI IPOBEPKA COOTBETCTBUSA MO EJIN Ha
OCHOBe BOCIIPOM3BeIeHN)KypPHAJIa COOBITHII: BBISIBJIEHIE >KEeJIaeMOTO

IIOBEOCHMNA 1 IOKAJIbHBIX OTKJIOHEHII
X. C. Kappackenp', X. Memepayn? DOI: 10.18255/1818-1015-2021-2-146-168

'HanmoHaIbHBIN MCCIeq0BATeIbCKIIT YHUBEPCUTET “BeIciIas IIKOJa SKOHOMUKIL ya. Macuunxkas, n. 20, r. Mocksa, 101000
Poccus.
2YHI/IBepCI/n‘eT KoncrauTtuna 2 - A6nenxamun Mexpu, Hysens Buns Anu Menmkenn BP : 67A, 25000 Koucrantns, Amnxup.

YK 519.686.2 ITonyuena 3 mas 2021 r.
Hayuynas craTps ITocne mopaborku 25 mast 2021 r.
TomHBIT TEKCT HA AHTIMIICKOM A3BIKE Ilpunara k nyOnukamuu 2 mioHa 2021 r.

MeTonbl IPOBEPKI COOTBETCTBMSA IIO3BOJIAIOT YCTAHOBUTDL, B KaKOif CTENEeHM peajbHad CUCTeMa, IOBeJeHNe KOTOpOI
PErucTpUpyeTcs B)KypHajle COOBITIUIL, COOTBETCTBYET ee MOJeIN, HapuMep, B Bufe ceTu IleTpu. BoJbLUIMHCTBO TakMX
MEeTOJ0B HaNpaBJIeHbl HAa IPOBEPKY M30JIMPOBAHHBIX 9K3EMILIAPOB MPOILecca M UTHOPUPYIOT B3aMMOJEIICTBIE MEXIY
9K3eMILIIpaMIu B cucreMe. [l Mpeooe s 3TOr0 OrpaHIueHN B 00JIaCTI MHTEJJIEKTYaIbHOTO aHaIM3a JaHHBIX ObLI
IIpeJIOKeH P OOBEKTHO-OPMEHTUPOBAHHBIX ITOAX0MO0B. ITU IMOAXOAbI OCHOBAHBI HA L[EJIOCTHOM aHAIN3e HECKOJIbKIX
9K3eMILIIPOB IIpoliecca, B3aMMOEICTBYOIINX B CUCTeMe, T KaXKIbIil 9K3eMIIIIP COOTBETCTBYET HEKOTOPOMY OOBEKTY.
B aT011 cTaThbe 06BEKTHO-OPMEeHTYPOBAHHBII ITOXO0 IIPMMEeHIeTCS K MeTOLY IPOBEPKIL COOTBETCTBIS MEXKIY SKypHaIaMI
cobbrTuit u 1BeTHbIMH ceTsmu Ilerpu (CPN) - pacurupennem cereii IleTpu, B KOTOpOM (GUILKM B MOJEIIN IPELCTABISIOT
co60J1 3HaYEeHMA HEKOTOPBIX TUIIOB (LBeTOB). B wacTHOCTHM, MBI paccMarpuBaeM KoHcepBaruBHble CPN morokoB pa6or,
KOTOpbIe II03BOJIAIOT OIMCHIBATH OXKIAAaeMOe IIOBeJeHMe CUCTEeMBI, B KOTOPOil KOMIIOHEHTBI COOTBETCTBYIOT 00paboTKe
pasIMYHBIX 00bEKTOB. PeaspHOE ITOBEeIEHME CUCTEMBI OIIMCAHO B KYPHaJe COOBITIIT, B KOTOPOM COOBITHS aTpuOyTHPOBa-
HBI YYaCTBYIOIIVMMM B HUX 00beKTaMu. {711 BOCIIpOM3BeNeHNUS)KypHaila COOBITIIL MBI MCIIOJIB3yeM CTPATEIMIO IPBIKKOB,
Korfa (uUIIKM, Heo6XOMMMBIe I CpabaTHIBAHMSA IIePEX0/a, IepeMeII[aloTCs M3 CBOMX TeKyLIMX IO3MIUIT BO BXOTHbIE
ITOSMIIUY 3TOTO nepexona. [IpbDKKM (HILIEK TO3BONAIOT UACHTU(GULIIMPOBATH JIMHIY sKeJIaHWI, TO €CTh II0OBeJeHMS 00beK-
TOB, He IIPelyCMOTPeHHbIe B crenuuKkanym. Taxke MbI IpeCTaBIgeM JOKAIBHYIO IMAarHOCTUKY, OCHOBaHHYIO Ha J0JIe
TIPLIXKOB B ITOBEJIEHNY KOHKPETHBIX KOMIIOHEHT MOJENN. DT METPUKI TI03BONAIOT CyAUTDb O CEPhe3HOCTM OTKIOHEHMIT
B T€X MM MHBIX YacTaX cucTeMbl. HakoHel, MBI IPMBOAMM 5KCIEPUMEHTBI, BBIIIOJTHEHHBIE C IIOMOILIO IIPOTPAaMMHOTO
npororuna. IIpakTudeckas LeHHOCTh HAIllero METOZAA IOKa3aHa Ha IIpMMepe MOMAEIMPOBAHNA TOPTOBBIX CUCTEM, IIPU
KOTOPOM yCTaHaBJIMBAIOTCA COOTBETCTBUSA MEXK/y 3aABKaMIU I10JIb30BaTEJIEN U CAETKaMIUL.

Knrouesrre cioBa: Process Mining; mposepka coorsercTBus; cetu Ilerpu; Packpamenssre cetu Iletpu

NMHPOPMALIMA Ob ABTOPAX
Xynmo C Kappackens | orcid.org/0000-0003-3557-797X. E-mail: jcarrasquel@hse.ru
aBTOP IJIS1 KOPPECIIOHJCHLIMN | aCIIMpPAaHT.
Xamn Memrepayn | orcid.org/0000-0001-9906-6074. E-mail: k_mecheraoui@esi.dz
IIperiogaBaTeb.

PunaHcupoBaHue: VcciaeqoBaHme BBHIIOTHEHO NpH noaxaep:xke IporpaMmsl GpyHIaMeHTaIbHbIX MccaenoBannit HITY BIIS.

Mnsa uutuposanus: J. C. Carrasquel and K. Mecheraoui, “Object-Centric Replay-Based Conformance Checking: Unveiling Desire
Lines and Local Deviations”, Modeling and analysis of information systems, vol. 28, no. 2, pp. 146-168, 2021.

© Kappackens X. C., Memepayn X., 2021
Jra crarks oTKphITOro pocrymna nox jurensueir CC BY license (https://creativecommons.org/licenses/by/4.0/).

147

http://www.mais-journal.ru
https://doi.org/10.18255/1818-1015-2021-2-146-168
https://orcid.org/0000-0003-3557-797X
mailto:jcarrasquel@hse.ru
https://orcid.org/0000-0001-9906-6074
mailto:k_mecheraoui@esi.dz
https://creativecommons.org/licenses/by/4.0/

Carrasquel J. C., Mecheraoui K.

1. Introduction

Process mining is a discipline that focuses on the analysis of system processes on the basis of event logs
and formal models [1]. Event logs consist of recorded traces, which describe the real behavior of systems.
As formal models, most process mining methods use Petri nets — a formalism for analysis of concurrent
distributed systems [2]. Thus, process mining methods allow, for instance, to discover models describing
the real processes from event logs, or to check compliance of real processes by comparing their logs with
models describing expected behavior. The former kind of method is called process discovery, whereas the latter
is referred to as conformance checking [3]. These methods have increasingly gained attention, resulting in a
plethora of case studies from business organizations [4] and innovative research applications, e.g., see [5-7].

Nevertheless, the majority of process mining methods have hitherto consisted on the individual analysis
of isolated process instances, thereby neglecting their interaction with other instances in the system. This
assumption falls short, and may throw out a wrong analysis, especially when there is a strong dependency
between the life-cycles of instances (for example, “a buy order is filled only if a sell order is in the system,
and both orders are in certain locations™).

To overcome such limitations, object-centric approaches have emerged as a popular paradigm in the field
of process mining [8, 9]. The common denominator of these approaches lies in the holistic analysis of the
multiple processes interacting in a system, where each process is centered on the management of a class
of objects. Thus, within this research direction, novel multi-instance modeling notations [10, 11], process
discovery methods [12], and formal verification techniques [13] have been proposed.

As for conformance checking, certain methods have been proposed to validate multiple perspectives of
a process beyond the control-flow, i.e., the correct ordering of activities [14, 15]. Particularly, these methods
make use of Petri nets with data (DPNs) to detect deviations caused by data corruptions (e.g., “a loan approval
was wrongly executed due to a requested amount higher than expected”). However, the backbone of DPNs is
an ordinary Petri net used to describe the individual execution of a single process instance, and data elements
are only statically attached to model transitions. Thus, this model does not allow to describe and validate
the dynamic and concurrent interaction of multiple instances within a system.

In this paper, inspired by the object-centric paradigm, we present a conformance checking method to di-
agnose whether systems that manage different kinds of objects comply with their specification. The method
uses a class of colored Petri nets (CPNs) — a Petri net extension where tokens carry values representing
objects of different types (called colors) [16]. Particularly, we consider conservative workflow CPNs with
multiple source and sink places. In this model, tokens cannot disappear or duplicate, and they move through
paths whose endpoints are specific pairs of source and sink places. In this way, the model allows to describe
the expected behavior of systems with components centered on the end-to-end processing of distinct objects
of a certain type. For describing the system’s real behavior, we consider traces of event logs, where events
consist of executed activities and sets of object identifiers. The latter indicates which objects were involved
in an event’s activity. As we will present, the characteristics proposed for both CPNs and event logs allow
us not only to keep track of individual objects, but also to provide an algorithm with linear time complexity.

Our method is based on replaying individually each trace of an event log on top of a CPN model. When
replaying each trace, the distinct objects are injected as tokens in source places of the model. Then, for each
event of the trace, we seek to fire a transition labeled with the event’s activity, and selecting tokens from
the transition’s input places that correspond to the event’s object identifiers. If a token related to an event’s
object is not in a requested input place, we consider a jump strategy, where the missing token is moved from
its current location in the model to the requested input place. This allows to force a transition firing, and to
keep replaying a trace to find more deviations. The method reports all token jumps between places and their
frequency. As we will present, this information can be added to the input CPN model to unveil so-called
desire lines [17], i.e., actual paths of objects which are unforeseen in the specification model.

148

Object-Centric Replay-Based Conformance Checking: Unveiling Desire Lines and Local Deviations

In addition, we present local conformance metrics based on the proportions of token transfers and jumps
through specific components of a CPN model. By leveraging the correspondence of parts of a real system
with components of a CPN model (e.g., activities with transitions and system locations with places), these
metrics then allow to diagnose local deviations and their severity in concrete parts of a system. Finally, we
report an experimental evaluation supported by a prototypical implementation of our method. To showcase
the practical value of our approach, we shall make use of a case study on trading systems, where orders from
users are matched to trade.

The remainder of this paper is structured as follows. Section 2 introduces a motivating example illus-
trating the use of our method in trading systems. Sections 3 and 4 present the class of CPNs and event logs,
which we use in our method. Section 5 presents the conformance checking method, as well as the confor-
mance metrics. Section 6 reports experimental evaluations supported by our prototype. Section 7 discusses
the related work, and finally Section 8 presents the conclusions.

2. Motivating Example: Checking Conformance in Trading Systems

To give the reader an idea on how our method can be applied on a specific domain, let us consider the
validation of trading systems in stock exchanges [18]. In trading systems, buy orders and sell orders from
users are crossed to trade securities (e.g., stocks of a company). Orders that aim to trade the same kind of
securities are placed in two-sided lists called order books (e.g., orders that buy or sell securities of “rosneft”
are placed in the order book “rosneft”). In a trading system, there are as many order books as kinds of
securities that can be traded.

Fig. 1 presents a CPN modeling the specification of a trading system operating one order book. It
describes how the system is expected to manage both object classes, buy orders and sell orders. CPNs consist
of two kinds of nodes: places and transitions. Places (drawn as circles) represent locations. For example,
places p; and p, are source places for orders, p; and p, model buy and sell sides of the order book, and
finally ps and pg are sink places for canceled or filled orders. Conversely, transitions (drawn as boxes) model
system activities. Transitions consume tokens from input places, producing them back in output places.
Thus, transitions a and b model submission of orders, transitions ¢ and d represent cancellation of orders,
whereas transition e models a trade execution between two orders. Albeit this example abstracts from other
activities in a trading system, it will allow us to clearly illustrate our method.

sell side

sink place
sell orders

source place
sell orders

new buy order

new sell order

cancel buy order

cancel sell order

trade

[RS o B~ o B

source place
buy orders

buy side
specification model

Fig. 1: CPN model specifying the expected behavior of a trading system operating an order book

Like other distributed technologies, trading systems are prone to failures, e.g., due to errors during the
system’s development or due to malicious users hacking the system. Thus, trading systems are sensitive
to deviate from their specification. For instance, let us assume a trading system initially built upon the
specification of Fig. 1, but whose real behavior is actually described in Fig. 2(a). In this real system, buy and
sell orders are “silently” allowed to trade without being accepted in the order book, i.e., skipping activities
a and b. Also, an undesired variant of activity e allows sell orders to trade an unrestricted number of times.

149

Carrasquel J. C., Mecheraoui K.

For system engineers, it can be hard to determine these deviations and to which extent they have violated
the system. Fortunately, event logs of this system record this misbehavior (e.g., Fig. 2(b)). For instance, the
two first events in the trace oy of Fig. 2(b) exemplify the mentioned problems of this system: a buy order b1
and a sell order s1 have traded, skipping activities a and b. Also, the sell order s1 illegally trades in the next
event. Powered by this kind of logs, we introduce how our conformance method unveils these deviations.

sell side

trace| event| activity| objects

o, e, trade | b1l , si1
e, trade b2 , s1

(b) event log

X T Y buyside

(a) real system

Fig. 2: CPN describing the real behavior of a trading system with undesired behavior highlighted in gray (a).
Our method takes an event log (b) from this real system.

Fig. 3 illustrates the setting of our method for detecting the aforementioned deviations. As input, the
method takes the CPN specification model of Fig. 1, and an event log of the real system as exemplified in
Fig. 2. In this example, each trace of an event log corresponds to all events executed in a specific order book.
As output, the method produces a report listing all token jumps detected (representing objects skipping
activities), global and local conformance metrics, as well as other traffic statistics. These reports can be used,
for example, to extend the specification model in order to clearly identify deviations and their magnitude.

real system

object-centric replay-based | o (@@= . *
_’ conformance checking <4 records
CPN specification model ut event log
él - observed jumps of objects
extend model deviation - |ocal conformance metrics

with the output’s information reports - object traffic statistics

Fig. 3: Validating real behavior of a trading system via object-centric replay-based conformance.

Fig. 4 shows an example of the specification model extended with the mentioned outputs of our method.
Token jumps and their average frequencies on traces appear as dotted lines between places. Note how
these jumps directly correlate with the components in Fig. 2(a) that describe undesired behavior of the real
system, i.e., orders skipping activities a and b jump from places p;, p, to places p; and py. Also, components
of the extended CPN are labeled with traffic statistics. For instance, places indicate how many tokens were
transferred from them (k), and how many of them actually arrived to the place by a jump (j).

150

Object-Centric Replay-Based Conformance Checking: Unveiling Desire Lines and Local Deviations

Fig. 4: Specification model of Fig. 1 enriched with the output information of our conformance method.

By leveraging the association between model’s transitions and places with system’s activities and loca-
tions, local conformance metrics allow to diagnose the severity of deviations on precise system components.
For instance, one of these metrics checks the proportion of token jumps to input places of a concrete tran-
sition to force its firing. Then, this allows to measure the proportion of objects executing a precise activity
without following the specification path. For example, activity d consumed 7 orders, but 4 of them were not
ready at the location related to place ps. Thus, this activity is associated with a measure of 0.42, i.e., 42%
of the objects were at the required location when executing d, whereas the rest were improperly involved
in this activity. As we will present in the next sections, similar local metrics can be associated to places
(locations) and arcs from places to transitions. Finally, as depicted in Fig. 4, the metrics can be combined
with the notion of a heat map to clearly visualize which components of a system have been violated more,
e.g., if the local measure of a component is close to 0, then such a component is painted in red.

3. Colored Petri Nets

In this section, we present formal definitions and execution semantics for a class of colored Petri nets
(CPNs). As introduced in Section 1, CPNs are an extension of Petri nets where tokens carry values of some
types (also referred to as colors). For example, types may account for object classes, whereas tokens carry
object identifiers. Let ® = {Dy, ..., D¢} be a finite set of types. Each token in a CPN carries a value d of some
type D € ®. For instance, in the model of Fig. 1 two types are defined: OB for buy orders and 0S for sell
orders. Places are mapped to types in © to indicate the kind of tokens they contain, e.g., type(p;) = OB.

Arcs are labeled with expressions to describe how tokens are processed upon transition firings. We
consider that each expression consists of a typed variable. Let V be a finite set of typed variables. We denote
by type(v) the type of a variable v € V s.t. type(v) € ©. We define a function W that maps each arc to
a variable in V. For example, in Fig. 1, expressions W(py, t;) = W(#, ps) = x specify that one buy order is
transferred from place p; to p; upon the firing of #;. Let .A be a finite set of activities. To relate transitions
with real system activities, we fix an activity-labeling function A that maps transitions to elements in A.

Definition 1 (Colored Petri Net). Let ® be a finite set of types, let V be a finite set of variables typed over
®, and let A be a finite set of activities. A colored Petri net is a 6-tuple CP = (P, T, F, type, W, A) where:
« P is a finite set of places;
« T is a finite set of transitions, s.t. Pn T = @;
« Fc(PxT)u(T x P) is a finite set of directed arcs (called the flow relation);
« type : P — D is a place-typing function, mapping each place to a type in ®;
« W : F — V is an arc-labeling function, mapping each arc r to a variable in V. Vr € F, if r is adjacent
to a place p € P, then type(W(r)) = type(p);
« A : T — A is an activity-labeling function, s.t. Vt,t' € T : t #+ ' < A(t) # A(t’), i.e., transitions are
mapped to distinct activities.

151

Carrasquel J. C., Mecheraoui K.

We now define execution semantics for the CPNs defined above. Let CP = (P, T, F, type, W, A) be a
CPN. A marking M in a CPN is a function, mapping every place p € P to a (possibly empty) set of tokens
M(p), such that M(p) < type(p). We denote by M, an initial marking. A binding b of a transition ¢t € T is
a function, that assigns a value b(v) to each variable v occurring in arc expressions adjacent to ¢, such that
b(v) € type(v). Let "t and t be respectively the sets of input places and output places of a transition ¢t € T.
Transition t is enabled in marking M w.r.t. a binding b iff vp € 't : b(W(p, t)) € M(p), that is, each input
place of t has at least one token to be consumed. The firing of an enabled transition ¢ in a marking M w.r.t.
to a binding b yields a new marking M’ such that Vp € P : M’(p) = M(p) \ {b(W(p, 1))} u {D(W(t, p))}.

As introduced in Section 1, we make use of CPNs to model systems consisting of components centered
on the end-to-end processing of different types of distinguishable objects. To faithfully describe these systems,
CPNss shall be characterized by the following properties: on the one hand, CPNs must be conservative, that is,
tokens cannot disappear or duplicate upon transition firings; on the other hand, models must be workflow-
oriented with a pair of source and sink places for every type defined in the model, such that tokens move in
a path between a source and a sink corresponding to their type. We thus define conservative workflow CPNs.

Definition 2 (Conservative-Workflow Colored Petri Net). Let ©® = {Dy,..., Dy} be a finite set of types
such thatk = 1, and let CP = (P, T, F, type, W, A) be a CPN defined over ®. We say that CP is a conservative-
workflow CPN if and only if:

1. CP is a conservative colored Petri net where:
cVteT Vpe't Np et : Wipt)= W(tp).
eVteT Vpet ANp et: W' t)= W(tp).

2. Foreveryj € {1,.., k}, there exists one distinguished pair of places in P, a source place i; and a sink place o;
in P, where type(i;) = type(o;) = D; with D; € D, and there exists a path in CP from i; to o; such that for
every place p in the path type(p) = D;. We denote by Py and Pr the sets of source places and sink places in
CP.

3.vteT: vpp' €'tp+p < type(p) # type(p)) n Vp,p' € 1" p#p' < type(p) # type(p),
i.e., for every transition t, places located within the set of input places of t have distinct types. The same rule
holds for places located in the set of output places of t.

As input models for our method, we shall consider conservative workflow CPNs. We briefly explain
Definition 2. Firstly, a CPN is conservative iff for every variable v occurring in an input arc of a transition
t, v occurs exactly once in an output arc of . Similarly, each variable occurring in an output arc of ¢ shall
occur exactly once in an input arc of t. This implies that when token values in input places are binded to
variables upon transition firings, then such values are transferred to output places, without disappearing
or being duplicated. In this way, our conformance method will be able to unambiguously associate every
distinct object in a trace with a token in the model.

Also, according to Definition 2, CPNs shall be workflow-oriented. More precisely, a workflow CPN has
distinct k source places and k sink places where k is the number of types defined in the model. Each pair of
source and sink places of the same type are connected by a path whose intermediate places are also of the
same type. In our conformance method, distinct objects in a trace are injected as tokens in source places.
Then, tokens move in paths according to the information of objects recorded in events. Upon termination,
the method will check whether these tokens arrived to their corresponding sink places. It can be inferred
that all places of the same type form a subnet within a workflow CPN, where each sub-net represents a
system component handling end-to-end processing of a concrete object class.

Finally, Definition 2 states that the model does not have transitions with input places of the same type.
The latter allows to relate every object type with exactly one input place in each transition. In Section 5, we
discuss how this syntactic restriction contributes to providing an algorithm with linear time complexity.

152

Object-Centric Replay-Based Conformance Checking: Unveiling Desire Lines and Local Deviations

4. Event Logs

In this section, we introduce event logs, describing how they are structured.

Definition 3 (Event Log, Trace, Event). An event log is a finite set of traces L = {01, ..., 05} where, for each
i€{1,..,s}, atrace g; = {ey, ..., em) is a finite sequence of events, s.t. m = |oj| is the trace length.

Let A be a finite set of activities, and let © be a finite set of types. For every trace ¢ in L, each event e in ¢ is a
tuple of the form e = (a, R(e)), where a € A is an activity label, and R(e) = {ry,...,r¢} is a finite set of objects.
For each j € {1,...,k}, we say that r; € R(e) is an object of type D involved in the execution of activity a, such
that D € .

Table 1: An event log L with two examples of traces, which correspond to runs in a trading system.

trace | event (e) activity (a) objects (R(e))
oy e new buy order bl
e new sell order s1
(23 new sell order s2
ey trade bl,sl
es cancel sell order | s2
oy e new buy order bl
e trade b1, sl
(23 trade b2, sl
ey new sell order s2

Table 1 presents an event log with two traces related to end-to-end runs in a trading system. Events
indicate activities executed and objects involved, e.g., event e, in trace oy indicates an execution of activity
trade with two objects involved: buy order b1 and sell order s1. We consider that all objects in a trace are
distinguishable by having distinct identifiers. We denote by R(o) the set of distinct objects in a trace, e.g.,
R(o7) = {b1, s1, s2}. With slight abuse of notation, we denote the type of an object r by type(r).

To guarantee the proper execution of our method, event logs must comply with a criterion of syn-
tactical correctness with respect to the CPN used in the method. Let L be an event log, and let CP =
(P, T,F,type, W,A) be a conservative workflow CPN. We say that L is syntactically correct w.r.t. to CP
iff, for every trace o € L, each event e in o is syntactically correct. An event e = (a, R(e)) is syntactically
correct w.rt. to CPiff 3t € T : A(t) =a A Vp et 3r € R(e) : type(r) = type(p) A Vr € R(e) Ape -t :
type(r) = type(p). That is, for every event e = (a, R(e)), there exists a transition t labeled with activity a,
and each input place of t is associated with exactly one event’s object, and similarly each event’s object is
associated with exactly one input place of ¢.

5. Object-Centric Replay-Based Conformance Checking
5.1. The Algorithm

In this section, we present our conformance checking method. The method is based on the replay strategy
described in [1] with some adaptations for the class of CPNs and event logs described in Sections 3 and 4.
Particularly, we shall assume that input models are conservative workflow CPNs (i.e., see Definition 2),
whereas event logs are syntactically correct to these models.

The method replays individually each trace of an event log on a CPN. We consider that the input CPN
has an empty initial marking. When replaying a trace o, distinct objects in ¢ are firstly inserted as tokens
in source places of the CPN, according to their type. Then, for each event e = (a, R(e)) in o, the method
seeks to fire a transition ¢ labeled with activity a, and consuming the tokens that correspond to the event’s
objects, i.e., elements in R(e). If a token corresponding to an event’s object is not in an input place of ¢, then
we consider a jump strategy where the missing token is moved from their current location in the model to

153

Carrasquel J. C., Mecheraoui K.

the requested input place. This allows to force transition firings, and to keep replaying a trace to find more
deviations.

Algorithm 1 describes the method. As output, the method returns two integer counters j and k. The
value j is the total number of token jumps, whereas the value k is the total number of tokens transferred
from input places to output places upon transition firings. A ratio between these values j and k allows to
measure the discrepancy between a trace and a CPN. In the following, we illustrate the use of the algorithm,
whereas at the end of this part we introduce conformance measures based on these counters.

Algorithm 1: Replay on CPNs with a token jump strategy

Input: CP = (P, T, F, type, W, A) — conservative-workflow CPN with marking M initially empty;
Py, Pr ¢ P — non-empty sets of source and sink places;
o — an event log trace;
Output: j — number of token jumps;
k — number of tokens consumed/produced,;
1 J«— 0k« 0;
2 populateSourcePlaces(P, R(0));
3 foreach e = (4, R(e)) in ¢ do
t < selectTransition(a);

'S

5 foreach r in R(e) do

6 if r ¢ M(p) such that p € 't A type(p) = type(r) then // location[r] # p
7 Jump(r, p);

8 je—Jj+1

9 endif

10 endfor

11 fire(t, R(e));

12 k <« k +|R(e)[;

13 endfor

14 foreach r in R(c) do
15 if r € M(p) such that p € Pr A type(p) = type(r) then
16 Jump(r, p);

17 je—3j+1
18 endif
19 endfor

20 consumeAllObjectsFromSinkPlaces(Pr, R(0));
21 k «— k +|R(o)]; // count final transfers: consumption of all distinct objects from the sinks
22 return (j,k);

To illustrate how the algorithm works, we will consider the example depicted in Fig. 5, which describes
step-by-step the replay of trace oz in Table 1 on the CPN of Fig. 1. For compactness, transition names are
used instead of activity labels. Firstly, our method extracts all distinct objects of the trace, inserting them
in source places according to their type (function populateSourcePlaces). For example, four objects are
extracted from o, — buy orders b1, b2 and sell orders s1, s2. Thus, the source place p; for buy orders
(type(p:) = OB) is populated with tokens b1 and b2, and the source place p, for sell orders (type(p,) = 0S)
is populated with tokens s1 and s2.

After populating source places with the distinct objects, we start to replay the trace on the CPN. As
described in lines 3-13 of Algorithm 1, for each event e = (a, R(e)), the following steps are performed. We
select a transition ¢ in the CPN labeled with activity a. Then, for every object r € R(e), we check if the
input place p of t contains object r. If the latter is not true, then r is moved from its current location in the
model to place p. Each token jump is counted by incrementing the value of counter j. Afterwards, when all
observed objects in R(e) are located in the input places of transition ¢, then ¢ fires. The transition consumes
such objects from input places, transferring them to its output places. The counter k is incremented by the
number of tokens transferred.

154

Object-Centric Replay-Based Conformance Checking: Unveiling Desire Lines and Local Deviations

(start)

{b1}
{b1,s1}

{b2,s1}
{s2}

[N O I Y

e = (a,{bl}) j=olk=1

{b1}
{b1,s1}

{b2,s1}
{s2}

SN [N Q

e, = (e, [b1,s1}) 5-1]k=3

{b1}
{b1,s1}

{b2,s1}
{s2}

SN [N

{b1}
{b1,s1}

{b2,s1}
{s2}

v
SN [N Q

{b1}
{b1,s1}

{b2,s1}
{s2}

S [N Q

(end)

{b1}
{b1,s1}

{b2,s1}
{s2}

[l KO IO IR

Fig. 5: Replay of trace o, of Table 1 on top of the CPN of Fig. 1 using Algorithm 1.

155

Carrasquel J. C., Mecheraoui K.

As an example, let us focus on the replay of e; = (e, {b1,s1}) depicted in Fig. 5. The sell order s1 is
not in place p,. This event corresponds to the situation of a trade between b1 and s1, but s1 was still not
allowed to trade. However, to continue to replay, the object s1 jumps from its current location (place p;) to
place ps. As observed later in Fig. 5, the same situation occurs on e; = (e, {b2, s1}), where both tokens are
absent from the input places of the transition to fire. Thus, after forcing the replay of e, note how we can
detect another deviating events.

After replaying all events in a trace, we check if all distinct objects arrived to their corresponding sink
places. This final step allows to validate, for example, if the real system completely processed all objects.
Lines 14-21 of Algorithm 1 describe this final step. For instance, in Fig. 5, object s2 was left in an intermediate
place. This can be interpreted as a corrupt order that should have traded or been canceled at the end of a day.
Hence, we force this token to jump to its sink place, which is ps since s2 € 0S and type(ps) = 0S. When all
tokens are in the sink places of the CPN, they are consumed by the “environment”. Note that the counter of
transfers k is incremented by the number of all distinct objects consumed in this final step.

Time Complexity. We briefly analyze the time complexity of our method. Let n = (3 y.c, |[R(e)|) be the
number of objects recorded in all events of a trace o. Let T(n) be the time taken to execute Algorithm 1. We
sketch out that T(n) is O(n), where O(n) is the standard asymptotic notation, referring that the execution
time of the method linearly growths according to the number of objects n in all events of a trace. This bound
can be guaranteed under the assumption that access to elements of a CPN model only requires constant
time, i.e., the time taken to visit a transition or a place given its name is negligible.

Let us define T(n) = Tinit(n) + Trep(n) + Tena(n), where Tinic(n) is the execution time of the function
populateSourcePlaces (line 2 in Algorithm 1), Trep(n) is the time taken to replay all events in trace o
(lines 3-13), and finally Tepq(n) is the time taken to consume all tokens from sink places (lines 14-20). First,
the function populateSourcePlaces visits all objects in all events of a trace o, looking for the set of all
distinct objects R(o), so this operation takes up to n steps. Then, each distinct object r € R(o) is inserted in
the source place of type type(r), which can take up to |[R(0)| = n steps. Thus, Tipit(n) is O(n).

Now, we sketch that the time taken Trep(n) to replay all events is O(n). This part of the algorithm performs
n iterations as it visits each object r € R(e) of every event e in o. Below, we rewrite Lines 3-13 of Algorithm
1 illustrating that the operations performed for every object can be performed in constant time.

1 foreach e = (a, R(e)) in o do

2 foreach r in R(e) do

3 p < inputPlace[a, type(r)];

4 if location[r] # p then // ré&M(p) such that pe't A type(p) = type(r)
5 marking[location[r]].remove(r);

6 marking[p].insert(r);

7 location[r] < p; // jump(r, p)
8 j<—Jj+1L

9 endif

10 marking[p].remove(r);

11 marking[outputPlace[a, type(r)]].insert(r); // part of firing: r transferred to an output place
12 location[r] «— outputPlace[a, type(r)];

13 k«—k+1;

14 endfor

15 endfor

In the code above, we consider that the CPN is stored in the following associative arrays: location tracks
the position of each object in the CPN; marking stores the tokens contained by every place, and inputPlace
and outputPlace indicates input/output places of a transition given a type. Notably, as shown above in Line
3, each object is directly related by its type to exactly one input place as we consider CPNs whose transitions
have input places of distinct types (i.e., Definition 2) and events are syntactically correct w.r.t. to the CPN.

156

Object-Centric Replay-Based Conformance Checking: Unveiling Desire Lines and Local Deviations

Then, if the associative arrays representing the CPN guarantee constant time to access, remove and insert
elements, then it follows that the operations for every object in each event are performed in constant time.
Thus, the execution time of the trace replay only depends on the number of objects n in the trace, following
that Trep(n) is O(n). The time taken Teng(n) in Lines 14-20 of Algorithm 1 is also O(n) as R(0) < n distinct
objects are consumed from sink places of the model. Finally, since Tinit(n), Trep(n), and Tenq(n) are O(n),
then the execution time T(n) = Tinic(n) + Trep(n) + Tena(n) of Algorithm 1 is also O(n).

Fitness Metric. We introduce a global metric, namely fitness, to measure the overall degree of conformance
between a trace of an event log and a CPN. It allows to quantify to which extent the behavior seen in the
trace complies with the CPN model. The metric is based on a proportion of the total number of token jumps
j and tokens transferred k.

Definition 4 (Fitness). Let o be a trace, and let CP be a colored Petri net. Let j be the total number of token
Jjumps and, let k be the total number of tokens transferred, computed in Algorithm 1 with o and CP as input.
Then, the (global) fitness metric £it(o, CP) is defined as:

£it(o,CP) =1 - %

We shall demonstrate that 0 < fit(o, CP) < 1. Let us focus on counter k. In each event e, we transfer |R(e)|
tokens, as we force to replay all event’s objects. Also, all distinct objects are consumed at the end of the
method. Thus, we have that k = (3 y.c, [R(e)]) + |R(o)| with |R(c)| > 0. Regarding the counter j. Let j, be the
number of token jumps made in an event e of a trace ¢. In every event e, we know that at most |R(e)| jumps
can be made, so 0 < j, < |R(e)|. Let j be the number of token jumps of the distinct objects to sink places as
they remained in intermediate places after the replay (e.g., see Lines 14-21 in Algorithm 1). We know that
0 < jp < |R(0)|. Now, let us formulate the total number of jumps as j = (X yecs Je) + Jr- Then, it follows that
j = k. Therefore, 0 < fit(o, CP) < 1.

We now extend the definition of fitness for an event log as the average of the fitness values, which are
computed upon the replay of each trace in the event log on top of a colored Petri net.

Definition 5 (Fitness of an event log). Let L be an event log, and let CP be a colored Petri net. We denote
by £it(L, CP) the average fitness value obtained upon replaying individually every trace o on top of CP using
Algorithm 1, where:

1 Y, fit(o,CP)

fit(L,CP) =] .
Vo €

For example, let us consider the replay of traces o7 and o, of Table 1 on top of the CPN of Fig. 1. After the exe-
cution of Algorithm 1 with oy, the obtained fitness value is fit(oy, CP) = 1- g = 1, whereas with o3, we have
that fit(oz, CP) = 1 - % = 0.6. These global measures may be interpreted as follows: the overall system’s
behavior observed in o; complies completely with the specification model. Conversely, fit(oy, CP) = 0.6
indicates that only 60% of the overall behavior observed in o, complied with specification model. Then, by
considering both traces of the log using Definition 5, £it(L, CP) = 0.8 gives an estimation on how in average
the system, as observed in the logs, complies the specification model.

157

Carrasquel J. C., Mecheraoui K.

5.2. Local Conformance Diagnostics

In the previous part of this section, we introduced a global conformance measure, namely fitness (Defini-
tions 4 and 5). This measure allows to quantify to which extent the real system, as observed in logs, comply
with the specification. Whilst such a metric provides an overall compliance estimation for the whole sys-
tem, in many applications is required to provide local diagnostics, i.e., in which precise system components
deviations are occurring, and in which magnitude.

In this part, we present local conformance metrics that are related to precise components of a system, and
which can be computed upon the execution of our conformance checking method. Our approach is based on
the direct association between real components of a system and components of a CPN input model. Recall
that activities correspond to transitions, real locations to places, and the relation between a location and
an activity is represented by an arc. Thus, by keeping track of the proportion of token transfers and jumps
flowing through a model component, we can precisely indicate the number and magnitude of deviations
occurred in the part of the real system that such model component represents. In what follows, we introduce
these metrics, and we illustrate their usage in an example.

Definition 6 (Place-conformance). Let o be a trace, and let p € P be a place in a CPN. Let k,(p) be the
number of tokens consumed from p upon the replay of o, and let j _(p) denote the number of token jumps to
place p upon the replay of o. The place-conformance £it,(p) is defined as:

1 ks(p) >0
fitO'(P) = ka(P) (p)
1 : otherwise

The place-conformance £it,(p) compares the number of tokens consumed from place p, when replaying
trace o, with how many of them actually jumped to p to force transition firings. Hence, this metric can
be seen as the proportion of objects that comply with be at the location represented by place p upon the
execution of any activity that requires objects from such a location. If fit,(p) is close to 1, then almost
no tokens jumped to p, e.g., objects are respecting the path established in the specification. Conversely, if
fit,(p) is close to 0, then most of the tokens are jumping to place p, e.g., the majority of the objects skip
previous activities that precede the location represented by p. Note that if k,(p) = 0, then fit,(p) is not
defined, i.e., assessments cannot be computed since no traffic flowed through place p during the replay of o.

Definition 7 (Flow-conformance). Let o be a trace, and let (p,t) € F be an input arc in a CPN, s.t. p €
Pt € T. Letky(p, t) be the number of tokens consumed from p to fire t when replaying trace o, and let j ,(p, t)
denote the number of tokens that jumped to place p to force the firing of t. The flow-conformance £it,(p, t) is
defined as:

[3o)
fity(p,t) = ks (p, 1)

L : otherwise

ks(p,t) >0

Definition 8 (Transition-conformance). Let o be a trace, and let t € T be a transition in a CPN. Let us
define the active pre-set of transition t in trace o as"t, = {p | p € 't A ks(p, t) > 0}. The transition-conformance
fit,(2) is defined as:

1
- Y, fits(p,t) : |'ts|>0
fity(t) = { |"tol e s,

1 : otherwise

158

Object-Centric Replay-Based Conformance Checking: Unveiling Desire Lines and Local Deviations

Definitions 7 and 8 follow the same principle of place-conformance. Given the replay of a trace o, the
flow-conformance £it,(p,t) compares the number of tokens transferred, through the arc from place p to
transition ¢, with how of many them jumped to p to force specifically the firing of ¢. This can be interpreted
as the proportion of objects that comply to be at the location related to place p when executing activity A(¥).

The transition-conformance £it,(t) is the mean value of the flow-conformance between t and all the
input places from which t consumes tokens. Thus, fit,(¢) diagnoses how many of the objects consumed by
activity A(t), from all its required locations, correspond to outliers.

We now exemplify the usage of the local conformance metrics. Let us recall our motivating example of
trading systems shown in Section 2. Fig. 6(a) shows a model representing a real trading system S, whose
behavior is slightly deviated from the specification model of Fig. 1. In particular, some sell orders in Sy can
be submitted to the sell side of an order book (place p4) by skipping activity b. Now, let us consider a trace
o from Sy. Let us assume that o corresponds to the observed interaction of 20 distinct objects (i.e., 10 buy
orders and 10 sell orders). We then ran our method to check conformance between ¢ and the model of Fig.
1. Let us suppose j = 5 and k = 55 as the total number of jumps and token transfers computed by Algorithm
1, thereby obtaining a fitness value fit(c, CP) = 1 - % = 0.909 (i.e., Definition 4). Nevertheless, it becomes
more insightful to diagnose conformance in precise system components. To this aim, we calculate the local
conformance metrics previously introduced and we extend the specification of the specification model of Fig.
1 with such metrics. The model is also extended with relevant traffic statistics of token jumps and transfers
in the model components (i.e., see Fig. 6(b)).

0B 0B 0B

P P3 Ps

0

(a) real system §, (b) conformance between the specification model and trace o from S,

Fig. 6: Conformance results between a trace o of system Sy (a) and the specification (b).

We briefly discuss the specification model of Fig. 6(b) which has been enriched with conformance diag-
nostics. First, the number of transferred tokens k,(p) and token jumps j (p) are shown besides each place
D, e.g., ks(p2) = 10 and j_ (p2) = 5. Jumps between places are displayed as dotted lines labeled with their
frequency. In this example, jumps corresponded to 5 sell orders that in the system S, moved to the sell side
of the order book (place p,) using the silent action z. This action is not recorded in trace ¢ nor allowed by
the specification model shown in Fig. 1. Then, upon the replay of activities d and e, these sell orders were
not in place p4, but in place p,. Hence, to force replay, these 5 tokens jumped from place p, to place p,.

Input arcs are labeled using notation j (p, t) | ks(p, t) where k,(p, t) is the number of tokens consumed
by transition ¢ from place t, and j_(p, t) indicates the number of jumps to place p to force the firing of t.
As an example, the label of input arc (ps, d) indicates that 7 sell orders were consumed by activity d, but
3 of them were not ready in place p, before the firing. Output arcs are simply labeled with the number of
resources transferred from a transition to a place.

159

Carrasquel J. C., Mecheraoui K.

Local conformance diagnostics are displayed on components of the specification model. For example,
for place p4, the place-conformance fit,(ps) = 0.5. This can be interpreted that only half of the time a
sell order was ready in the sell side of the order book upon the execution of activity d or e. The flow-
conformance k;(ps, €) = 0.33, i.e., activity e consumed a sell order 3 times, but two of these orders were not
ready in place py. The transition-conformance £it;(e) = 0.66 is the mean value between fit,(ps;, e) = 1 and
fit,(ps, €) = 0.33. This means that buy orders were always available in place p;, whereas only a third of the
time sell orders were available in place py. As a result, 66% of the time no deviations were observed upon
the execution of activity e.

Notably, a practical benefit of the use of local conformance metrics is their combination with the notion
of a heat map. For example, in Fig. (see Fig. 6(b)) a heat bar is displayed in the right side of the model denoting
that the lower the conformance measure of a component, then the more red that such a component is painted.
This allows us to quickly identify which components experienced more deviations. For instance, in Fig 6(b),
it can be easily seen that deviations are localized in the component of the system related to sell orders.

Finally, note that the introduced local measures are computed based on the information provided by a
single trace . We close this section by extending definitions of these measures to event logs. Consider-
ing now all traces in the log, they shall allow to diagnose the average magnitude of deviations in precise
components of the system.

Definition 9 (Place-conformance of an event log). Let L be an event log, and let p € P be a place in a
CPN. Let us define L, = {0 | 0 € L A kq(p) > 0}. The place-conformance £it(p) is defined as:

1
— T fit(p) : |Lyl>0

fiti(p) = |Lp| Vo €L,
L : otherwise

Definition 10 (Flow-conformance of an event log). Let L be an event log, and let (p, t) € F be an input arc
inaCPN, st.p€ Pat€T. Let us define L, = {0 | 0 € L A kq(p, t) > 0}. The flow-conformance £itr(p, t)
is defined as:

z fito’(P5 t) : |L N3 | >0
fity(p,t) = Lp.0)l vo &1 Y

L : otherwise

Definition 11 (Transition-conformance of an event log). Let L be an event log, and let t € T be a
transition in a CPN, s.t. p € PAt € T. Let usdefineL; = {c | 0 € L A 3p : ks(p,t) > 0}. The transition-
conformance £it(t) is defined as:

1 .
_ T Y, fitg(t) : [L >0
fity(t) = { Ll voer
1 : otherwise

6. Implementation and Experimental Evaluation

We have developed a prototypical implementation of our method in the Python programming language.
Our solution is supported by SNAKES [19] — a library which facilitates the prototyping of high-level classes
of Petri nets, including CPNs. In the following, we describe the functioning of our prototype, as well as we
report an experimental evaluation of our method. The prototype and all the material of our experiment is
freely available in our project repository [20].

160

Object-Centric Replay-Based Conformance Checking: Unveiling Desire Lines and Local Deviations

Fig. 7 illustrates the organization of our prototypical implementation. Users of our solution simply need
to invoke a program called “conformance checker”. The program receives three input arguments: an option
indicating the conformance method to use (e.g., replay with CPN using jumps), an event log formatted as a
comma-separated value (CSV) file, and a CPN model. CPN models are built as Python scripts. This generic
organization allows us to seamlessly extend our solution, incorporating other methods of our research. In
addition, as depicted in Fig. 7, our prototype has an independent routine to generate artificial event logs (as
defined in Definition 5) by running CPN models. When running a CPN to generate a trace, if two or more
transitions are enabled in a given marking, then the routine randomly selects one of such transitions to fire.

As an example, Fig. 8 depicts the execution of our prototype in a command-line interface with the afore-
mentioned input arguments (option 1 stands for the conformance method presented in this paper). Upon suc-
cessful execution, the program generates an output folder with CSV files corresponding to: jumps detected,
frequency per trace, and their average (file jumps. csv), traffic statistics and the local conformance metrics
presented in Section 5 per each component type (files arcs . csv, transitions.csv and places. csv), and
finally the file traceFitness.csv reports the total number of token jumps, token transfers and the result-
ing fitness per trace and their average (Definitions 4 and 5). As we motivated in Section 2, the information
provided in these reports can be used to extend the specification model, so that to quickly identify observed
deviations and their magnitude in concrete components of the system.

)| CPN replay with jumps
O-1 C; t: O] OO S e e e s E e e
O-0-041h0 % conformance
CPN models checker

deviation reports

IE

A

y

artificial event log
generator

B

BIEENE(E

event logs

Fig. 7: Organization of the prototypical implementation of our conformance method.

giulio@giulio:~/mais$ python3 conformance_checker_main.py 1 cpn_model.py event_log.csv

= === CONFORMANCE CHECKER v1.0 == ==

National Research University Higher School of Economics, Moscow, Russia.
Laboratory of Process-Aware Information Systems (PAIS Lab)

University of Constantine 2. Abdelhamid Mehri, Constantine, Algeria.
Date: May 2021

PETRI NET MODEL: cpn_model.py
EVENT LOG: event_log.csv
CONFORMANCE METHOD: CPN Replay with Token Jumps

Replay complete! Folder with deviation reports has been generated.

(@) run of the prototype in the command-line interface

L arcs.csv 9.7kB Text 1 ongmi\place mrget'?place freqiwg freqi?racel freqitrfacez freqj;acea fi
|] jumps.csv 1.7kB Text '—!} § Eg Ei ggg g i é

[] places.csv B.9kB Text 2 S‘; gg g:gi 3 g g

| | traceFitness.csv 2.5kB Text

| | transitions.csv 48kB Text

(b) folder with deviation reports and fragment of the file jumps.csv

Fig. 8: Execution of the prototype in the interface (a) and example of generated files (b).

161

Carrasquel J. C., Mecheraoui K.

Experimental Evaluation. Using our prototype, we conducted an experiment with three event logs, ar-
tificially generated from different trading system models S;, Sz, and S;. Each event log was replayed on
top of the specification model of Fig. 1. These models represent replicas of a trading system, according to
the specification, but each of them with undesired behavior is increasingly added. For instance, system S,
is a variation of S, but with a subtle modification to slightly increase its difference with the specification
model. Table 2 describes each replica and its event log generated. Each event log consists of 100 traces and
20 resources (i.e., 10 buys orders and 10 sell orders). The aim of this experiment is two-fold: to showcase the
use of local conformance measures presented in Section 5, computed with all traces of an event log, and to
study the stability of the proposed measures, e.g., how much the metrics are affected by subtle increases of
undesired behavior.

Table 2: Experimental settings

e}l(f;t SSJ;) if:;: (t(:;l;;’nl;i;o]; E:i:ﬁe) system description (undesired behavior)
L S1 (Fig. 9(a)) (2610, 26) sell orders and buy orders skip activity b and a.
Ly S» (Fig. 9(b)) (2726, 27) S1 + activity e may return sell orders to place ps.
L3 Ss (Fig. 9(c)) (2575, 26) Sy + activity b may take sell orders to a deadlock place p;.

Before discussing the conformance results, let us review the specification model in Fig. 1. According to
the specification, in a system with no deviations each object must be transferred exactly 3 times: an order is
submitted (activity a or b), then it trades or is canceled (activities ¢, d or e), and finally the order is consumed
from a sink place. This implies that the replay of traces on the specification model, with 20 objects each,
must count 60 token transfers (that is, 6000 transfers for an event log with 100 objects). However, as shown
in Table 2, each system variant presents certain undesired behavior, so objects can move between certain
locations disobeying the specification model. Hence, when replaying event logs of these system variants on
top of the specification, observed deviations will incite token jumps between places, and less expected token
transfers through the model structure. The latter is evidenced in columns resources transferred and jumps
detected of Table 3. For ease of representation, the averages of transfers and jumps have been rounded.

Table 3 summarizes the results upon the replay of each event log on top of the specification model. For
each variant, it can be observed how the introduction of a single subtle deviation induces more token jumps
during replay, e.g., more objects flowing through paths unforeseen in the specification. It can be observed
that the latter causes a monotonic and tenuous decrease in the average trace fitness (e.g., Definition 5).
However, more intriguing becomes to identify where deviations have occurred and their magnitude. To this
aim, items (d), (), and (f) in Fig. 9 presents the specification model of Fig. 1 extended with local conformance
diagnostics, computed when checking conformance in each variant, and which are associated with model
components (Definitions 9—11). Input arcs and dotted lines representing jumps indicate the rounded average
number of transferred/jumped tokens that flowed through them, considering all traces of a log variant. The
introduction of certain undesired behavior in each variant is unveiled by our method as a jump, showing
how such undesired behavior induces more deviations in a precise component. The latter impacts on the
conformance-related measures, used to paint the model to clearly identify where deviations occurred more.

Table 3: Conformance results.

event | system fitness resources transferred jumps detected kinds of jumps
log | source (total, avg. per trace) | (total, avg. pertrace) | (origin, target, avg. frequency per trace)
Ly S1 0.7974 (4999, 50) (1001, 10) (P2, p1,5), (1, p3,5)
Lo S2 0.7607 (5309, 53) (1263, 13) (P25 P, 5), (P15 P35 5), (Ps> Pas 3)
L3 S3 0.7425 (5058, 51) (1306, 13) (D2, 1, 3), (D1, 13, 5), (Ps, Pa, 2), (Pa, P, 3)

162

Object-Centric Replay-Based Conformance Checking: Unveiling Desire Lines and Local Deviations

Y J 5

conf.
1.00

conf.
1.00

5
(c) system S, (f) conformance diagnostic with L,

Fig. 9: Conformance checking between each event log of a system variant and the specification of Fig. 1.

7. Related Work

Conformance checking relies to a great extent on the expressive power of the models used to describe
expected behavior of systems under evaluation. In this regard, state-of-the-art conformance methods use
workflow nets (WF-nets) which is an ordinary Petri net employed to describe the control-flow of a process
executed in isolation, that is, one single process instance after another. Thus, methods using WF-nets do not
lend themselves for validating multiple instances concurrently interacting in a system. In contrast, the use of
more expressive models overcoming the mentioned limitation becomes a demand in real-world applications.

163

Carrasquel J. C., Mecheraoui K.

For example, papers [21, 22] present case studies where multi-instance modeling notations are needed to
diagnose the behavior of objects interacting within modern computational environments. In what follows,
we review how different works address this challenge by using various kinds of Petri net extensions, and
focusing on their application for conformance checking and similar techniques.

Proclets are one of the earliest proposals in process mining to study and validate the interaction of
process instances in a system [23]. Each instance runs in an independent workflow, and semantics are
provided to describe communication between workflows. Among its different applications, the concept of
Proclets evolved into artifact-centric processes for conformance checking [24]. Also, the decomposition of
the conformance checking problem has been studied for artifact-centric processes [25] in order to perform
replay between each artifact and its corresponding sub-log. Another variant of this model is reported in
[26], where the authors check conformance of artifacts which are modeled using UML state and activity
diagrams.

Object-centric Petri nets is a notation recently proposed to describe in a single model the interaction of
multiple cases (process instances) [8, 27]. Object-centric Petri nets can be seen as another subclass of CPNs
with certain characteristics. For instance, arcs that transfer an arbitrary number of objects are introduced to
describe one-to-many or many-to-many interactions. In [27], the authors thus present a method to discover
an object-centric Petri net from event logs. In particular, these event logs are built in extensible object-centric
(XOC) format [28]. The usage of object-centric Petri nets for conformance checking presents open challenges.
For instance, the model does not provide a direct assignment of objects to concrete variables, so multiple
bindings may be chosen. In this light, the fact that one event can be associated with multiple valid bindings
implies the need for recursive strategies of non-linear time complexity, e.g., backtracking.

Another notable research direction in conformance checking is the validation of additional behavioral
dimensions (perspectives) of a single process [14, 15] such as time or data constraints. In [14] the authors
present an alignment-based conformance method using Petri nets with data (DPNs). On the one hand,
alignments find differences between a model and a trace by computing the shortest path in the state space
of a synchronous product net, i.e., a Petri net composed by the input model and the trace [29]. On the other
hand, a DPN is a WF-net whose transitions are equipped with data variables which can be read/written upon
transition firings. In this way, additional process perspectives to analyze are encoded within these variables.
In contrast, DPNs are not appropriate for analysis of multiple process instances, e.g., tokens are black dots
and data values do not flow through the model. This is why, for instance, we have opted for a model based
on CPNs whose tokens carry object identifiers.

CPNs have already been considered in the process mining field. For instance, Rozinat et al. considered the
discovery of CPN-based models for simulation [30, 31]. Notably, in paper [32], we proposed a conformance
checking method with a class of CPNs whose tokens are tuples carrying object identifiers and attributes,
thereby allowing to detect various kinds of deviations. For instance, using logs whose events record the
state of object attributes after the event’s activity execution, the method detects if such attributes were
transformed as specified by the CPN. Also, the method was applied to check compliance of a real-world
trading system w.r.t. its specification. In this regard, we refer the reader to papers [33-36], which present
our studies on the extraction of event logs and Petri net-based modeling of real-world trading systems.
However, in the method presented in [32], the replay of a trace is stopped upon the occurrence of the first
deviating event, and also local diagnostics on system components are not provided. Thus, the approach of
token jumps and local conformance diagnostics presented in this paper can be used to extend such methods.

Nested Petri nets is an extension where tokens can be Petri nets themselves, which allow to describe the
inner behavior of objects [37]. The model becomes useful when it is crucial not only to analyze the flow of
objects within a system, but also to validate the inner behavior of these objects. For instance, in paper [38],
we studied the conformance problem between a nested Petri net and an event log of a multi-agent system.
We proposed a compositional approach where the behavior of each agent can be checked separately.

164

Object-Centric Replay-Based Conformance Checking: Unveiling Desire Lines and Local Deviations

Nested Petri Nets have also been used in the related fields of adaptive process modeling and verification [39,
40]. Finally, another recent research direction on modeling and validation of object-centric systems focuses
on the use of models that combine Petri nets with data persistence models such as relational databases. The
Information Systems Modeling Language (ISML) [41] and catalog-nets [42] are examples of this research
direction. For instance, in these works, methods are proposed for verifying the integrity of objects in the
Petri net and their representation in databases.

8. Conclusion

In this paper, we have presented a replay-based conformance checking method to validate whether a
system, whose components manage interacting objects of different classes, complies with its specification.
As the modeling language for the specification, we considered a subclass of colored Petri nets, whereas
for describing real behavior we considered event logs where events are equipped with sets of involved ob-
jects. These objects refer to the individual resources involved in the execution of an activity. Regarding the
subclass of CPNs, we particularly considered conservative workflow CPNs which faithfully characterizes
systems handling the end-to-end processing of distinguishable objects. Among the syntactic constraints, we
considered that transitions do not have input places of the same type. The latter assures in our setting only
one binding for an event to replay. Consequently, we can provide an algorithm that, unlike alignments, has
linear time complexity. Noteworthy to mention that the constraint of distinct types for input places can be
dropped at the price of losing linear time complexity. For such a case, multiple bindings then can be associ-
ated to an event, and thus the algorithm shall look for the correct one using, e.g., recursive-based strategies
such as backtracking.

The replay strategy of our method has been based on populating tokens in the model that correspond to
distinct objects observed in the trace. For an event to replay, if objects are not located as tokens in specified
input places of the transition to fire, we proposed a jump strategy to move tokens from their current location
in the model to the required places. Interestingly, this approach not only allows us to force transition firings
to find more deviations in a trace, but also recorded jumps between places unveil the so-called desire lines,
i.e., paths of objects which are unforeseen in the specification [17].

Leveraging the fact that real locations and activities directly correspond to concrete components of a
CPN, we proposed local conformance diagnostics that can be used to clearly identify the severity of devia-
tions in precise parts of a system. Besides, we presented a prototypical implementation of our method, and
we illustrated its usage with a case study on trading systems. The prototype is freely available for its usage
and extension. In this regard, the prototype may be upgraded to provide automatic enhancement of an input
CPN model with conformance diagnostics.

The work presented in this paper may give ground for different research directions. For instance, pre-
vious works on conformance checking based on Petri net models whose tokens carry object attributes or
object inner behavior (e.g., [32, 38]) can be extended with the strategies presented in this paper, e.g., use of
jumps and local conformance diagnostics. Also, it may be of interest to study other variants for this method,
e.g., where tokens not only represent distinct objects, but also relationships between each other. This would
imply, for instance, that the state of the objects do not correspond to a single location, but their state is in
some sense distributed among places, similar to the approaches of ISML and catalog nets. The latter would
make to the approach presented in this paper more intriguing and challenging.

References
[1] W.van der Aalst, Process Mining: Data Science in Action, 2nd. Springer, 2016.

[2] T. Murata, “Petri nets: Properties, analysis and applications”, Proceedings of the IEEE, vol. 77, no. 4,
pp. 541-580, 1989.

165

Carrasquel J. C., Mecheraoui K.

(6]

(7]

[14]

[15]

[16]

[17]

J. Carmona, B. van Dongen, A. Solti, and M. Weidlich, Conformance Checking: Relating Processes and
Models, 1st. Springer, 2018.

L. Reinkemeyer, Process Mining: Principles, Uses Cases, and Outlook. Springer, 2020.

V. Rubin, A. Mitsyuk, I. Lomazova, and W. van der Aalst, “Process Mining Can Be Applied to Software
Too!”, in Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, ACM, 2014.

F. Leotta, M. Mecella, and J. Mendling, “Applying Process Mining to Smart Spaces: Perspectives and
Research Challenges”, in Advanced Information Systems Engineering Workshops, A. Persson and J.
Stirna, Eds., ser. LNBIP, vol. 215, Springer, 2015, pp. 298-304.

F. Mannhardt, P. Arnesen, and A. D. Landmark, “Estimating the Impact of Incidents on Process Delay”,
in 2019 International Conference on Process Mining (ICPM), IEEE, 2019, pp. 49-56.

W. van der Aalst, “Object-Centric Process Mining: Dealing with Divergence and Convergence in Event
Data”, in Software Engineering and Formal Methods, P. C. 01veczky and G. Salaun, Eds., ser. LNCS,
vol. 11724, Springer, 2019, pp. 3-25.

D. Fahland, “Artifact-Centric Process Mining”, in Encyclopedia of Big Data Technologies, S. Sakr and
A.Y. Zomaya, Eds. Springer, 2019, pp. 108-117. por: 10.1007/978-3-319-77525-8_93.

J. M. E. M. van der Werf and A. Polyvyanyy, “The Information Systems Modeling Suite”, in Application
and Theory of Petri Nets and Concurrency, R. Janicki, N. Sidorova, and T. Chatain, Eds., ser. LNCS,
vol. 12152, Springer, 2020, pp. 414-425.

D. Fahland, “Describing Behavior of Processes with Many-to-Many Interactions”, in Application and
Theory of Petri Nets and Concurrency, S. Donatelli and S. Haar, Eds., ser. LNCS, vol. 11522, Springer,
2019, pp. 3-24.

W. M. P. van der Aalst and A. Berti, “Discovering Object-centric Petri Nets”, Fundamenta informaticae,
vol. 175, no. 1/4, pp. 1-40, 2020.

S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin, “Petri Nets with Parameterised Data”, in Business
Process Management, D. Fahland, C. Ghidini, J. Becker, and M. Dumas, Eds., ser. LNCS, vol. 12168,
Springer, 2020, pp. 55-74.

F. Mannhardt, M. Leoni, de, H. Reijers, and W. van der Aalst, Balanced multi-perspective checking of
process conformance, ser. Computer. Springer, 2015, vol. 98, pp. 407-437.

M. de Leoni and W. van der Aalst, “Data-Aware Process Mining: Discovering Decisions in Processes
Using Alignments”, ser. Symposium on Applied Computing (SAC 2013), ACM, 2013, pp. 1454-1461.

K. Jensen and L. M. Kristensen, Coloured Petri Nets: Modelling and Validation of Concurrent Systems,
1st. Springer, 2009.

W. van der Aalst, “Desire Lines in Big Data”, in Encyclopedia of Social Network Analysis and Mining,
R. Alhajj and J. Rokne, Eds. 2014, pp. 351-364. po1: 10.1007/978-1-4614-6170-8_396.

L. Harris, Trading and Exchanges: Market Microstructure for Practitioners. Oxford University Press,
2003.

F. Pommereau, “SNAKES: A Flexible High-Level Petri Nets Library”, in Application and Theory of
Petri Nets and Concurrency, R. Devillers and A. Valmari, Eds., ser. LNCS, vol. 9115, Springer, 2015,
pp. 254-265.

Github, Object-centric ~ Replay-based Conformance Checking Project Repository,
https://github.com/jcarrasquel/hse-uamc-conformance-checking.

166

https://doi.org/10.1007/978-3-319-77525-8_93
https://doi.org/10.1007/978-1-4614-6170-8_396

Object-Centric Replay-Based Conformance Checking: Unveiling Desire Lines and Local Deviations

[23]

[24]

[25]

[26]

[33]

[34]

[35]

G. Meroni, L. Baresi, M. Montali, and P. Plebani, “Multi-party business process compliance monitoring
through IoT-enabled artifacts”, Information Systems, vol. 73, pp. 61-78, 2018.

R. Seiger, F. Zerbato, A. Burattin, L. Garcia-Banuelos, and B. Weber, “Towards IoT-driven Process
Event Log Generation for Conformance Checking in Smart Factories”, in 2020 IEEE 24th International
Enterprise Distributed Object Computing Workshop (EDOCW), IEEE, 2020, pp. 20-26.

W. van der Aalst, P. Barthelmess, C. Ellis, and J. Wainer, “Proclets: A Framework for Lightweight
Interacting Workflow Processes”, International Journal of Cooperative Information Systems, vol. 10,
no. 04, pp. 443-481, 2001.

D. Fahland, M. de Leoni, B. van Dongen, and W. van der Aalst, “Behavioral Conformance of
Artifact-Centric Process Models”, in LNBIP, W. Abramowicz, Ed., vol. 87, Berlin, Heidelberg: Springer,
2011, pp. 37-49.

D. Fahland, M. de Leoni, B. van Dongen, and W. van der Aalst, “Conformance Checking of Interacting
Processes with Overlapping Instances”, in Business Process Management, S. Rinderle-Ma, F. Toumani,
and K. Wolf, Eds., ser. LNCS, vol. 6896, Springer, 2011, pp. 345-361.

M. Estafiol, J. Munoz-Gama, J. Carmona, and E. Teniente, “Conformance Checking in UML
Artifact-Centric Business Process Models”, Software and Systems Modeling, vol. 18, no. 4,
pp. 2531-2555, 2019.

W. van der Aalst and A. Berti, “Discovering Object-Centric Petri Nets”, Fundamenta Informaticae,
vol. 175, 2020.

G. Li, E. G. L. de Murillas, R. M. de Carvalho, and W. van der Aalst, “Extracting Object-Centric Event
Logs to Support Process Mining on Databases”, in Information Systems in the Big Data Era, J. Mendling
and H. Mouratidis, Eds., Springer, 2018, pp. 182-199.

A. Adriansyah, “Aligning observed and modeled behavior”, PhD thesis, Eindhoven University of
Technology (TU/e), 2014.

A. Rozinat, R. Mans, M. Song, and W. van der Aalst, “Discovering colored Petri nets from event logs”,
International Journal on Software Tools for Technology Transfer, vol. 10, no. 1, pp. 57-74, 2008.

A. Rozinat, R. Mans, M. Song, and W. van der Aalst, “Discovering simulation models”, Information
Systems, vol. 34, no. 3, pp- 305-327, 2009.

J. C. Carrasquel, K. Mecheraoui, and I. A. Lomazova, “Checking Conformance Between Colored Petri
Nets and Event Logs”, in Analysis of Images, Social Networks and Texts, W. van der Aalst, V. Batagelj,
D. I Ignatov, M. Khachay, O. Koltsova, A. Kutuzov, S. O. Kuznetsov, I. A. Lomazova, N. Loukachevitch,
A.Napoli, A. Panchenko, P. M. Pardalos, M. Pelillo, A. V. Savchenko, and E. Tutubalina, Eds., ser. LNCS,
vol. 12602, Springer, 2021, pp. 435-452.

J. C. Carrasquel, S. Chuburov, and I. A. Lomazova, “Pre-processing Network Messages of Trading
Systems into Event Logs for Process Mining”, in Tools and Methods of Program Analysis, ser. CCIS,
vol. 1288, Springer, 2021, pp. 88-100.

J. C. Carrasquel, I. A. Lomazova, and L L. Itkin, “Towards a Formal Modelling of Order-driven Trading
Systems using Petri Nets: A Multi-Agent Approach”, in Modeling and Analysis of Complex Systems and
Processes (MACSPro), 1. A. Lomazova, A. Kalenkova, and R. Yavorsky, Eds., ser. CEUR, vol. 2478, 2019.

J. C. Carrasquel and I. A. Lomazova, “Modelling and Validation of Trading and Multi-Agent Systems:
An Approach Based on Process Mining and Petri Nets”, in Proc. of the ICPM Doctoral Consortium, B.
van Dongen and J. Claes, Eds., ser. CEUR, vol. 2432, 2019.

167

Carrasquel J. C., Mecheraoui K.

[39]

[40]

[41]

[42]

J. C. Carrasquel, I. A. Lomazova, and A. Rivkin, “Modeling Trading Systems using Petri Net
Extensions”, in Int. Workshop on Petri Nets and Software Engineering (PNSE), M. Koéhler-Bussmeier,
E. Kindler, and H. Rolke, Eds., ser. CEUR, vol. 2651, 2020.

I. A. Lomazova, “Nested Petri Nets — a Formalism for Specification and Verification of Multi-Agent
Distributed Systems”, Fundamenta Informaticae, vol. 43, pp. 195-214, 2000.

K. Mecheraoui, J. C. Carrasquel, and I. A. Lomazova, “Compositional Conformance Checking of Nested
Petri Nets and Event Logs of Multi-Agent Systems”, in Modeling and Analysis of Complex Systems and
Processes (MACSPro), A. Shapoval, V. Popov, and 1. Makarov, Eds., ser. CEUR, vol. 2795, 2020.

I. A. Lomazova, “Nested Petri Nets for Adaptive Process Modeling”, in Pillars of Computer Science:
Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His 85th Birthday, A. Avron, N.
Dershowitz, and A. Rabinovich, Eds. Springer, 2008, vol. 4800, pp. 460—474.

K. V. Hee, O. Oanea, A. Serebrenik, N. Sidorova, M. Voorhoeve, and I. Lomazova, “Checking Properties
of Adaptive Workflow Nets”, Fundam. Informaticae, vol. 79, pp. 347-362, 2007.

J. M. E. M. van der Werf and A. Polyvyanyy, “The Information Systems Modeling Suite”, in Application
and Theory of Petri Nets and Concurrency, R. Janicki, N. Sidorova, and T. Chatain, Eds., ser. LNCS,
vol. 12152, Springer, 2020, pp. 414-425.

S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin, “Petri Nets with Parameterised Data”, in Business
Process Management, D. Fahland, C. Ghidini, J. Becker, and M. Dumas, Eds., ser. LNCS, vol. 12168,
Springer, 2020, pp. 55-74.

168

	Introduction
	Motivating Example: Checking Conformance in Trading Systems
	Colored Petri Nets
	Event Logs
	Object-Centric Replay-Based Conformance Checking
	The Algorithm
	Local Conformance Diagnostics

	Implementation and Experimental Evaluation
	Related Work
	Conclusion

