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Conformance checking methods diagnose to which extent a real system, whose behavior is recorded in an event log, com-

plies with its speci�cation model, e.g., a Petri net. Nonetheless, the majority of these methods focus on checking isolated

process instances, neglecting interaction between instances in a system. Addressing this limitation, a series of object-centric

approaches have been proposed in the �eld of process mining. �ese approaches are based on the holistic analysis of the

multiple process instances interacting in a system, where each instance is centered on the handling of an object. Inspired

by the object-centric paradigm, this paper presents a replay-based conformance checking method which uses a class of

colored Petri nets (CPNs) – a Petri net extension where tokens in the model carry values of some types (colors). Particularly,

we consider conservative work�ow CPNs which allow to describe the expected behavior of a system whose components

are centered on the end-to-end processing of distinguishable objects. For describing a system’s real behavior, we consider

event logs whose events have sets of objects involved in the execution of activities. For replay, we consider a jump strategy

where tokens absent from input places of a transition to �re move from their current place of the model to the requested

places. Token jumps allow to identify desire lines, i.e., object paths unforeseen in the speci�cation. Also, we introduce local

diagnostics based on the proportion of jumps in speci�c model components. �e metrics allow to inform the severity of

deviations in precise system parts. Finally, we report experiments supported by a prototype of our method. To show the

practical value of our method, we employ a case study on trading systems, where orders from users are matched to trade.
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Методы проверки соответствия позволяют установить, в какой степени реальная система, поведение которой

регистрируется в журнале событий, соответствует ее модели, например, в виде сети Петри. Большинство таких

методов направлены на проверку изолированных экземпляров процесса и игнорируют взаимодействие между

экземплярами в системе. Для преодоления этого ограничения в области интеллектуального анализа данных был

предложен ряд объектно-ориентированных подходов. Эти подходы основаны на целостном анализе нескольких

экземпляров процесса, взаимодействующих в системе, где каждый экземпляр соответствует некоторому объекту.

В этой статье объектно-ориентированный подход применяется к методу проверки соответствия междужурналами

событий и цветными сетями Петри (CPN) – расширением сетей Петри, в котором фишки в модели представляют

собой значения некоторых типов (цветов). В частности, мы рассматриваем консервативные CPN потоков работ,

которые позволяют описывать ожидаемое поведение системы, в которой компоненты соответствуют обработке

различных объектов. Реальное поведение системы описано в журнале событий, в котором события атрибутирова-

ны участвующими в них объектами. Для воспроизведения журнала событий мы используем стратегию прыжков,

когда фишки, необходимые для срабатывания перехода, перемещаются из своих текущих позиций во входные

позиции этого перехода. Прыжки фишек позволяют идентифицировать линии желаний, то есть поведения объек-

тов, не предусмотренные в спецификации. Также мы представляем локальную диагностику, основанную на доле

прыжков в поведении конкретных компонент модели. Эти метрики позволяют судить о серьезности отклонений

в тех или иных частях системы. Наконец, мы приводим эксперименты, выполненные с помощью программного

прототипа. Практическая ценность нашего метода показана на примере моделирования торговых систем, при

котором устанавливаются соответствия между заявками пользователей и сделками.

Ключевые слова: Process Mining; проверка соответствия; сети Петри; Раскрашенные сети Петри
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1. Introduction
Process mining is a discipline that focuses on the analysis of system processes on the basis of event logs

and formal models [1]. Event logs consist of recorded traces, which describe the real behavior of systems.

As formal models, most process mining methods use Petri nets — a formalism for analysis of concurrent

distributed systems [2]. �us, process mining methods allow, for instance, to discover models describing

the real processes from event logs, or to check compliance of real processes by comparing their logs with

models describing expected behavior. �e former kind of method is called process discovery, whereas the la�er

is referred to as conformance checking [3]. �ese methods have increasingly gained a�ention, resulting in a

plethora of case studies from business organizations [4] and innovative research applications, e.g., see [5–7].

Nevertheless, the majority of process mining methods have hitherto consisted on the individual analysis

of isolated process instances, thereby neglecting their interaction with other instances in the system. �is

assumption falls short, and may throw out a wrong analysis, especially when there is a strong dependency

between the life-cycles of instances (for example, “a buy order is �lled only if a sell order is in the system,

and both orders are in certain locations”).

To overcome such limitations, object-centric approaches have emerged as a popular paradigm in the �eld

of process mining [8, 9]. �e common denominator of these approaches lies in the holistic analysis of the

multiple processes interacting in a system, where each process is centered on the management of a class

of objects. �us, within this research direction, novel multi-instance modeling notations [10, 11], process

discovery methods [12], and formal veri�cation techniques [13] have been proposed.

As for conformance checking, certain methods have been proposed to validate multiple perspectives of

a process beyond the control-�ow, i.e., the correct ordering of activities [14, 15]. Particularly, these methods

make use of Petri nets with data (DPNs) to detect deviations caused by data corruptions (e.g., “a loan approval

was wrongly executed due to a requested amount higher than expected”). However, the backbone of DPNs is

an ordinary Petri net used to describe the individual execution of a single process instance, and data elements

are only statically a�ached to model transitions. �us, this model does not allow to describe and validate

the dynamic and concurrent interaction of multiple instances within a system.

In this paper, inspired by the object-centric paradigm, we present a conformance checking method to di-

agnose whether systems that manage di�erent kinds of objects comply with their speci�cation. �e method

uses a class of colored Petri nets (CPNs) — a Petri net extension where tokens carry values representing

objects of di�erent types (called colors) [16]. Particularly, we consider conservative work�ow CPNs with

multiple source and sink places. In this model, tokens cannot disappear or duplicate, and they move through

paths whose endpoints are speci�c pairs of source and sink places. In this way, the model allows to describe

the expected behavior of systems with components centered on the end-to-end processing of distinct objects

of a certain type. For describing the system’s real behavior, we consider traces of event logs, where events

consist of executed activities and sets of object identi�ers. �e la�er indicates which objects were involved

in an event’s activity. As we will present, the characteristics proposed for both CPNs and event logs allow

us not only to keep track of individual objects, but also to provide an algorithm with linear time complexity.

Our method is based on replaying individually each trace of an event log on top of a CPN model. When

replaying each trace, the distinct objects are injected as tokens in source places of the model. �en, for each

event of the trace, we seek to �re a transition labeled with the event’s activity, and selecting tokens from

the transition’s input places that correspond to the event’s object identi�ers. If a token related to an event’s

object is not in a requested input place, we consider a jump strategy, where the missing token is moved from

its current location in the model to the requested input place. �is allows to force a transition �ring, and to

keep replaying a trace to �nd more deviations. �e method reports all token jumps between places and their

frequency. As we will present, this information can be added to the input CPN model to unveil so-called

desire lines [17], i.e., actual paths of objects which are unforeseen in the speci�cation model.

148



Object-Centric Replay-Based Conformance Checking: Unveiling Desire Lines and Local Deviations

In addition, we present local conformance metrics based on the proportions of token transfers and jumps

through speci�c components of a CPN model. By leveraging the correspondence of parts of a real system

with components of a CPN model (e.g., activities with transitions and system locations with places), these

metrics then allow to diagnose local deviations and their severity in concrete parts of a system. Finally, we

report an experimental evaluation supported by a prototypical implementation of our method. To showcase

the practical value of our approach, we shall make use of a case study on trading systems, where orders from

users are matched to trade.

�e remainder of this paper is structured as follows. Section 2 introduces a motivating example illus-

trating the use of our method in trading systems. Sections 3 and 4 present the class of CPNs and event logs,

which we use in our method. Section 5 presents the conformance checking method, as well as the confor-

mance metrics. Section 6 reports experimental evaluations supported by our prototype. Section 7 discusses

the related work, and �nally Section 8 presents the conclusions.

2. Motivating Example: Checking Conformance in Trading Systems

To give the reader an idea on how our method can be applied on a speci�c domain, let us consider the

validation of trading systems in stock exchanges [18]. In trading systems, buy orders and sell orders from

users are crossed to trade securities (e.g., stocks of a company). Orders that aim to trade the same kind of

securities are placed in two-sided lists called order books (e.g., orders that buy or sell securities of “rosneft”

are placed in the order book “rosneft”). In a trading system, there are as many order books as kinds of

securities that can be traded.

Fig. 1 presents a CPN modeling the speci�cation of a trading system operating one order book. It

describes how the system is expected to manage both object classes, buy orders and sell orders. CPNs consist

of two kinds of nodes: places and transitions. Places (drawn as circles) represent locations. For example,

places p1 and p2 are source places for orders, p3 and p4 model buy and sell sides of the order book, and

�nally p5 and p6 are sink places for canceled or �lled orders. Conversely, transitions (drawn as boxes) model

system activities. Transitions consume tokens from input places, producing them back in output places.

�us, transitions a and b model submission of orders, transitions c and d represent cancellation of orders,

whereas transition e models a trade execution between two orders. Albeit this example abstracts from other

activities in a trading system, it will allow us to clearly illustrate our method.

p2

y y y y

p4 p6

p1

x x x x

p3 p5

y

x x

y

OS OS OS

OBOB OB

a

b

d
ea

b

e

d

c

new buy order

new sell order

c cancel buy order

cancel sell order

trade

sink place
sell orders

source place
sell orders

source place
buy orders

sell side

buy side

sink place
buy orders

specification model

Fig. 1: CPN model specifying the expected behavior of a trading system operating an order book

Like other distributed technologies, trading systems are prone to failures, e.g., due to errors during the

system’s development or due to malicious users hacking the system. �us, trading systems are sensitive

to deviate from their speci�cation. For instance, let us assume a trading system initially built upon the

speci�cation of Fig. 1, but whose real behavior is actually described in Fig. 2(a). In this real system, buy and

sell orders are “silently” allowed to trade without being accepted in the order book, i.e., skipping activities

a and b. Also, an undesired variant of activity e allows sell orders to trade an unrestricted number of times.
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For system engineers, it can be hard to determine these deviations and to which extent they have violated

the system. Fortunately, event logs of this system record this misbehavior (e.g., Fig. 2(b)). For instance, the

two �rst events in the trace �1 of Fig. 2(b) exemplify the mentioned problems of this system: a buy order b1

and a sell order s1 have traded, skipping activities a and b. Also, the sell order s1 illegally trades in the next

event. Powered by this kind of logs, we introduce how our conformance method unveils these deviations.

p2

b d
p4

e

p1

a
p3

c

p6

p5

𝜏

𝜏

x x x x
x

y y y y

y y

x x

y y

e

x x

OB OB OB

OS

OS

OS

y

x

y

σ 1

trace

e1 trade

event activity objects

b1 ,  s1

e2 trade b2 , s1

... ... ... ...

event log

real system

sell side

buy side

trade

(b)

(a)

Fig. 2: CPN describing the real behavior of a trading system with undesired behavior highlighted in gray (a).

Our method takes an event log (b) from this real system.

Fig. 3 illustrates the se�ing of our method for detecting the aforementioned deviations. As input, the

method takes the CPN speci�cation model of Fig. 1, and an event log of the real system as exempli�ed in

Fig. 2. In this example, each trace of an event log corresponds to all events executed in a speci�c order book.

As output, the method produces a report listing all token jumps detected (representing objects skipping

activities), global and local conformance metrics, as well as other tra�c statistics. �ese reports can be used,

for example, to extend the speci�cation model in order to clearly identify deviations and their magnitude.

...

users

object-centric replay-based
conformance checking

CPN specification model

trace 1

order 
book 1

trade
orders

output

trace 2

order 
book 2

order 
book s

trace s

event log 

t

records

- observed jumps of objects
- local conformance metrics
- object traffic statistics

deviation 
reports

extend model
with the output’s information

real system

Fig. 3: Validating real behavior of a trading system via object-centric replay-based conformance.

Fig. 4 shows an example of the speci�cation model extended with the mentioned outputs of our method.

Token jumps and their average frequencies on traces appear as do�ed lines between places. Note how

these jumps directly correlate with the components in Fig. 2(a) that describe undesired behavior of the real

system, i.e., orders skipping activities a and b jump from places p1, p2 to places p3 and p4. Also, components

of the extended CPN are labeled with tra�c statistics. For instance, places indicate how many tokens were

transferred from them (k), and how many of them actually arrived to the place by a jump (j).
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Fig. 4: Speci�cation model of Fig. 1 enriched with the output information of our conformance method.

By leveraging the association between model’s transitions and places with system’s activities and loca-

tions, local conformance metrics allow to diagnose the severity of deviations on precise system components.

For instance, one of these metrics checks the proportion of token jumps to input places of a concrete tran-

sition to force its �ring. �en, this allows to measure the proportion of objects executing a precise activity

without following the speci�cation path. For example, activity d consumed 7 orders, but 4 of them were not

ready at the location related to place p4. �us, this activity is associated with a measure of 0.42, i.e., 42%

of the objects were at the required location when executing d , whereas the rest were improperly involved

in this activity. As we will present in the next sections, similar local metrics can be associated to places

(locations) and arcs from places to transitions. Finally, as depicted in Fig. 4, the metrics can be combined

with the notion of a heat map to clearly visualize which components of a system have been violated more,

e.g., if the local measure of a component is close to 0, then such a component is painted in red.

3. Colored Petri Nets

In this section, we present formal de�nitions and execution semantics for a class of colored Petri nets

(CPNs). As introduced in Section 1, CPNs are an extension of Petri nets where tokens carry values of some

types (also referred to as colors). For example, types may account for object classes, whereas tokens carry

object identi�ers. Let D = {D1, ..., Dk} be a �nite set of types. Each token in a CPN carries a value d of some

type D ∈ D. For instance, in the model of Fig. 1 two types are de�ned: OB for buy orders and OS for sell

orders. Places are mapped to types in D to indicate the kind of tokens they contain, e.g., type(p1) = OB.

Arcs are labeled with expressions to describe how tokens are processed upon transition �rings. We

consider that each expression consists of a typed variable. Let  be a �nite set of typed variables. We denote

by type(v) the type of a variable v ∈  s.t. type(v) ∈ D. We de�ne a function W that maps each arc to

a variable in  . For example, in Fig. 1, expressions W (p1, t1) = W (t1, p3) = x specify that one buy order is

transferred from place p1 to p3 upon the �ring of t1. Let  be a �nite set of activities. To relate transitions

with real system activities, we �x an activity-labeling function Λ that maps transitions to elements in .

De�nition 1 (Colored Petri Net). Let D be a �nite set of types, let  be a �nite set of variables typed over
D, and let be a �nite set of activities. A colored Petri net is a 6-tuple CP = (P, T , F , type,W ,Λ) where:

• P is a �nite set of places;
• T is a �nite set of transitions, s.t. P ∩ T = ∅;
• F ⊆ (P × T ) ∪ (T × P ) is a �nite set of directed arcs (called the �ow relation);
• type ∶ P → D is a place-typing function, mapping each place to a type in D;
• W ∶ F →  is an arc-labeling function, mapping each arc r to a variable in  . ∀r ∈ F , if r is adjacent
to a place p ∈ P , then type(W (r)) = type(p);

• Λ ∶ T →  is an activity-labeling function, s.t. ∀t, t′ ∈ T : t ≠ t′ ⟺ Λ(t) ≠ Λ(t
′
), i.e., transitions are

mapped to distinct activities.
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We now de�ne execution semantics for the CPNs de�ned above. Let CP = (P, T , F , type,W ,Λ) be a

CPN. A marking M in a CPN is a function, mapping every place p ∈ P to a (possibly empty) set of tokens

M(p), such that M(p) ⊆ type(p). We denote by M0 an initial marking. A binding b of a transition t ∈ T is

a function, that assigns a value b(v) to each variable v occurring in arc expressions adjacent to t , such that

b(v) ∈ type(v). Let
∙
t and t

∙
be respectively the sets of input places and output places of a transition t ∈ T .

Transition t is enabled in marking M w.r.t. a binding b i� ∀p ∈
∙
t ∶ b(W (p, t)) ∈ M(p), that is, each input

place of t has at least one token to be consumed. �e �ring of an enabled transition t in a marking M w.r.t.

to a binding b yields a new marking M
′

such that ∀p ∈ P ∶ M
′
(p) = M(p) ⧵ {b(W (p, t))} ∪ {b(W (t, p))}.

As introduced in Section 1, we make use of CPNs to model systems consisting of components centered

on the end-to-end processing of di�erent types of distinguishable objects. To faithfully describe these systems,

CPNs shall be characterized by the following properties: on the one hand, CPNs must be conservative, that is,

tokens cannot disappear or duplicate upon transition �rings; on the other hand, models must be work�ow-
oriented with a pair of source and sink places for every type de�ned in the model, such that tokens move in

a path between a source and a sink corresponding to their type. We thus de�ne conservative work�ow CPNs.

De�nition 2 (Conservative-Work�ow Colored Petri Net). Let D = {D1, ..., Dk} be a �nite set of types
such that k ≥ 1, and let CP = (P, T , F , type,W ,Λ) be a CPN de�ned overD. We say that CP is a conservative-
work�ow CPN if and only if:
1. CP is a conservative colored Petri net where:

• ∀ t ∈ T ∀ p ∈
∙
t ∃! p

′
∈ t

∙
∶ W (p, t) = W (t, p

′
).

• ∀ t ∈ T ∀ p ∈ t
∙
∃! p

′
∈
∙
t ∶ W (p

′
, t) = W (t, p).

2. For every j ∈ {1, ..., k}, there exists one distinguished pair of places in P , a source place ij and a sink place oj
in P , where type(ij) = type(oj) = Dj with Dj ∈ D, and there exists a path in CP from ij to oj such that for
every place p in the path type(p) = Dj . We denote by P0 and PF the sets of source places and sink places in
CP .

3. ∀t ∈ T : ∀p, p
′
∈
∙
t p ≠ p

′
⟺ type(p) ≠ type(p′) ∧ ∀p, p

′
∈ t

∙
p ≠ p

′
⟺ type(p) ≠ type(p′),

i.e., for every transition t , places located within the set of input places of t have distinct types. �e same rule
holds for places located in the set of output places of t .

As input models for our method, we shall consider conservative work�ow CPNs. We brie�y explain

De�nition 2. Firstly, a CPN is conservative i� for every variable v occurring in an input arc of a transition

t , v occurs exactly once in an output arc of t . Similarly, each variable occurring in an output arc of t shall

occur exactly once in an input arc of t . �is implies that when token values in input places are binded to

variables upon transition �rings, then such values are transferred to output places, without disappearing

or being duplicated. In this way, our conformance method will be able to unambiguously associate every

distinct object in a trace with a token in the model.

Also, according to De�nition 2, CPNs shall be work�ow-oriented. More precisely, a work�ow CPN has

distinct k source places and k sink places where k is the number of types de�ned in the model. Each pair of

source and sink places of the same type are connected by a path whose intermediate places are also of the

same type. In our conformance method, distinct objects in a trace are injected as tokens in source places.

�en, tokens move in paths according to the information of objects recorded in events. Upon termination,

the method will check whether these tokens arrived to their corresponding sink places. It can be inferred

that all places of the same type form a subnet within a work�ow CPN, where each sub-net represents a

system component handling end-to-end processing of a concrete object class.

Finally, De�nition 2 states that the model does not have transitions with input places of the same type.

�e la�er allows to relate every object type with exactly one input place in each transition. In Section 5, we

discuss how this syntactic restriction contributes to providing an algorithm with linear time complexity.
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4. Event Logs
In this section, we introduce event logs, describing how they are structured.

De�nition 3 (Event Log, Trace, Event). An event log is a �nite set of traces L = {�1, ..., �s} where, for each
i ∈ {1, ..., s}, a trace �i = ⟨e1, ..., em⟩ is a �nite sequence of events, s.t. m = |�i | is the trace length.

Let  be a �nite set of activities, and let D be a �nite set of types. For every trace � in L, each event e in � is a
tuple of the form e = (a, R(e)), where a ∈  is an activity label, and R(e) = {r1, ..., rk} is a �nite set of objects.
For each j ∈ {1, ..., k}, we say that rj ∈ R(e) is an object of type D involved in the execution of activity a, such
that D ∈ D.

Table 1: An event log L with two examples of traces, which correspond to runs in a trading system.

trace event (e) activity (a) objects (R(e))

�1 e1 new buy order b1

e2 new sell order s1

e3 new sell order s2

e4 trade b1 , s1

e5 cancel sell order s2

�2 e1 new buy order b1

e2 trade b1 , s1

e3 trade b2 , s1

e4 new sell order s2

Table 1 presents an event log with two traces related to end-to-end runs in a trading system. Events

indicate activities executed and objects involved, e.g., event e4 in trace �1 indicates an execution of activity

trade with two objects involved: buy order b1 and sell order s1. We consider that all objects in a trace are

distinguishable by having distinct identi�ers. We denote by R(� ) the set of distinct objects in a trace, e.g.,

R(�1) = {b1, s1, s2}. With slight abuse of notation, we denote the type of an object r by type(r).

To guarantee the proper execution of our method, event logs must comply with a criterion of syn-
tactical correctness with respect to the CPN used in the method. Let L be an event log, and let CP =

(P, T , F , type,W ,Λ) be a conservative work�ow CPN. We say that L is syntactically correct w.r.t. to CP

i�, for every trace � ∈ L, each event e in � is syntactically correct. An event e = (a, R(e)) is syntactically

correct w.r.t. to CP i� ∃t ∈ T ∶ Λ(t) = a ∧ ∀p ∈
∙
t ∃!r ∈ R(e) ∶ type(r) = type(p) ∧ ∀r ∈ R(e) ∃!p ∈

∙
t ∶

type(r) = type(p). �at is, for every event e = (a, R(e)), there exists a transition t labeled with activity a,

and each input place of t is associated with exactly one event’s object, and similarly each event’s object is

associated with exactly one input place of t .

5. Object-Centric Replay-Based Conformance Checking

5.1. �e Algorithm

In this section, we present our conformance checking method. �e method is based on the replay strategy

described in [1] with some adaptations for the class of CPNs and event logs described in Sections 3 and 4.

Particularly, we shall assume that input models are conservative work�ow CPNs (i.e., see De�nition 2),

whereas event logs are syntactically correct to these models.

�e method replays individually each trace of an event log on a CPN. We consider that the input CPN

has an empty initial marking. When replaying a trace � , distinct objects in � are �rstly inserted as tokens

in source places of the CPN, according to their type. �en, for each event e = (a, R(e)) in � , the method

seeks to �re a transition t labeled with activity a, and consuming the tokens that correspond to the event’s

objects, i.e., elements in R(e). If a token corresponding to an event’s object is not in an input place of t , then

we consider a jump strategy where the missing token is moved from their current location in the model to
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the requested input place. �is allows to force transition �rings, and to keep replaying a trace to �nd more

deviations.

Algorithm 1 describes the method. As output, the method returns two integer counters j and k. �e

value j is the total number of token jumps, whereas the value k is the total number of tokens transferred

from input places to output places upon transition �rings. A ratio between these values j and k allows to

measure the discrepancy between a trace and a CPN. In the following, we illustrate the use of the algorithm,

whereas at the end of this part we introduce conformance measures based on these counters.

Algorithm 1: Replay on CPNs with a token jump strategy
Input: CP = (P, T , F , type,W , �) — conservative-work�ow CPN with marking M initially empty;

P0, PF ⊆ P — non-empty sets of source and sink places;

� — an event log trace;

Output: j — number of token jumps;

k — number of tokens consumed/produced;

1 j ← 0; k ← 0;

2 populateSourcePlaces(P0, R(� ));

3 foreach e = (a, R(e)) in � do
4 t ← selectTransition(a);

5 foreach r in R(e) do
6 if r ∉ M(p) such that p ∈

∙
t ∧ type(p) = type(r) then // location[r] ≠ p

7 jump(r , p);

8 j ← j + 1;

9 endif
10 endfor
11 fire(t, R(e));

12 k ← k + |R(e)|;

13 endfor
14 foreach r in R(� ) do
15 if r ∉ M(p) such that p ∈ PF ∧ type(p) = type(r) then
16 jump(r , p);

17 j ← j + 1;

18 endif
19 endfor
20 consumeAllObjectsFromSinkPlaces(PF , R(� ));

21 k ← k + |R(� )|; // count final transfers: consumption of all distinct objects from the sinks

22 return (j, k);

To illustrate how the algorithm works, we will consider the example depicted in Fig. 5, which describes

step-by-step the replay of trace �2 in Table 1 on the CPN of Fig. 1. For compactness, transition names are

used instead of activity labels. Firstly, our method extracts all distinct objects of the trace, inserting them

in source places according to their type (function populateSourcePlaces). For example, four objects are

extracted from �2 — buy orders b1, b2 and sell orders s1, s2. �us, the source place p1 for buy orders

(type(p1) = OB) is populated with tokens b1 and b2, and the source place p2 for sell orders (type(p2) = OS)

is populated with tokens s1 and s2.

A�er populating source places with the distinct objects, we start to replay the trace on the CPN. As

described in lines 3-13 of Algorithm 1, for each event e = (a, R(e)), the following steps are performed. We

select a transition t in the CPN labeled with activity a. �en, for every object r ∈ R(e), we check if the

input place p of t contains object r . If the la�er is not true, then r is moved from its current location in the

model to place p. Each token jump is counted by incrementing the value of counter j. A�erwards, when all

observed objects in R(e) are located in the input places of transition t , then t �res. �e transition consumes

such objects from input places, transferring them to its output places. �e counter k is incremented by the

number of tokens transferred.
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Fig. 5: Replay of trace �2 of Table 1 on top of the CPN of Fig. 1 using Algorithm 1.
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As an example, let us focus on the replay of e2 = (e, {b1, s1}) depicted in Fig. 5. �e sell order s1 is

not in place p4. �is event corresponds to the situation of a trade between b1 and s1, but s1 was still not

allowed to trade. However, to continue to replay, the object s1 jumps from its current location (place p2) to

place p4. As observed later in Fig. 5, the same situation occurs on e3 = (e, {b2, s1}), where both tokens are

absent from the input places of the transition to �re. �us, a�er forcing the replay of e2 note how we can

detect another deviating events.

A�er replaying all events in a trace, we check if all distinct objects arrived to their corresponding sink

places. �is �nal step allows to validate, for example, if the real system completely processed all objects.

Lines 14-21 of Algorithm 1 describe this �nal step. For instance, in Fig. 5, object s2was le� in an intermediate

place. �is can be interpreted as a corrupt order that should have traded or been canceled at the end of a day.

Hence, we force this token to jump to its sink place, which is p6 since s2 ∈ OS and type(p6) = OS. When all

tokens are in the sink places of the CPN, they are consumed by the “environment”. Note that the counter of

transfers k is incremented by the number of all distinct objects consumed in this �nal step.

Time Complexity. We brie�y analyze the time complexity of our method. Let n = (∑
∀e∈�

|R(e)|) be the

number of objects recorded in all events of a trace � . Let T (n) be the time taken to execute Algorithm 1. We

sketch out that T (n) is O(n), where O(n) is the standard asymptotic notation, referring that the execution

time of the method linearly growths according to the number of objects n in all events of a trace. �is bound

can be guaranteed under the assumption that access to elements of a CPN model only requires constant

time, i.e., the time taken to visit a transition or a place given its name is negligible.

Let us de�ne T (n) = Tinit(n) + Trep(n) + Tend(n), where Tinit(n) is the execution time of the function

populateSourcePlaces (line 2 in Algorithm 1), Trep(n) is the time taken to replay all events in trace �

(lines 3-13), and �nally Tend(n) is the time taken to consume all tokens from sink places (lines 14-20). First,

the function populateSourcePlaces visits all objects in all events of a trace � , looking for the set of all

distinct objects R(� ), so this operation takes up to n steps. �en, each distinct object r ∈ R(� ) is inserted in

the source place of type type(r), which can take up to |R(� )| ≤ n steps. �us, Tinit(n) is O(n).

Now, we sketch that the time taken Trep(n) to replay all events is O(n). �is part of the algorithm performs

n iterations as it visits each object r ∈ R(e) of every event e in � . Below, we rewrite Lines 3-13 of Algorithm

1 illustrating that the operations performed for every object can be performed in constant time.

1 foreach e = (a, R(e)) in � do
2 foreach r in R(e) do
3 p ← inputPlace[a, type(r)];

4 if location[r] ≠ p then // r ∉ M(p) such that p ∈
∙
t ∧ type(p) = type(r)

5 marking[location[r]].remove(r);

6 marking[p].insert(r);

7 location[r]← p; // jump(r , p)

8 j ← j + 1;

9 endif
10 marking[p].remove(r);

11 marking[outputPlace[a, type(r)]].insert(r); // part of firing: r transferred to an output place

12 location[r]← outputPlace[a, type(r)];

13 k ← k + 1;

14 endfor
15 endfor

In the code above, we consider that the CPN is stored in the following associative arrays: location tracks

the position of each object in the CPN; marking stores the tokens contained by every place, and inputPlace

and outputPlace indicates input/output places of a transition given a type. Notably, as shown above in Line

3, each object is directly related by its type to exactly one input place as we consider CPNs whose transitions

have input places of distinct types (i.e., De�nition 2) and events are syntactically correct w.r.t. to the CPN.
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�en, if the associative arrays representing the CPN guarantee constant time to access, remove and insert

elements, then it follows that the operations for every object in each event are performed in constant time.

�us, the execution time of the trace replay only depends on the number of objects n in the trace, following

that Trep(n) is O(n). �e time taken Tend(n) in Lines 14-20 of Algorithm 1 is also O(n) as R(� ) ≤ n distinct

objects are consumed from sink places of the model. Finally, since Tinit(n), Trep(n), and Tend(n) are O(n),

then the execution time T (n) = Tinit(n) + Trep(n) + Tend(n) of Algorithm 1 is also O(n).

Fitness Metric. We introduce a global metric, namely �tness, to measure the overall degree of conformance

between a trace of an event log and a CPN. It allows to quantify to which extent the behavior seen in the

trace complies with the CPN model. �e metric is based on a proportion of the total number of token jumps

j and tokens transferred k.

De�nition 4 (Fitness). Let � be a trace, and let CP be a colored Petri net. Let j be the total number of token
jumps and, let k be the total number of tokens transferred, computed in Algorithm 1 with � and CP as input.
�en, the (global) �tness metric fit(�, CP ) is de�ned as:

fit(�, CP ) = 1 −
j

k

We shall demonstrate that 0 ≤ fit(�, CP ) ≤ 1. Let us focus on counter k. In each event e, we transfer |R(e)|

tokens, as we force to replay all event’s objects. Also, all distinct objects are consumed at the end of the

method. �us, we have that k = (∑
∀e∈�

|R(e)|) + |R(� )| with |R(� )| > 0. Regarding the counter j. Let j
e

be the

number of token jumps made in an event e of a trace � . In every event e, we know that at most |R(e)| jumps

can be made, so 0 ≤ j
e
≤ |R(e)|. Let j

F
be the number of token jumps of the distinct objects to sink places as

they remained in intermediate places a�er the replay (e.g., see Lines 14-21 in Algorithm 1). We know that

0 ≤ j
F
≤ |R(� )|. Now, let us formulate the total number of jumps as j = (∑

∀e∈�
j
e
) + j

F
. �en, it follows that

j ≤ k. �erefore, 0 ≤ fit(�, CP ) ≤ 1.

We now extend the de�nition of �tness for an event log as the average of the �tness values, which are

computed upon the replay of each trace in the event log on top of a colored Petri net.

De�nition 5 (Fitness of an event log). Let L be an event log, and let CP be a colored Petri net. We denote
by fit(L, CP ) the average �tness value obtained upon replaying individually every trace � on top of CP using
Algorithm 1, where:

fit(L, CP ) =
1

|L|

∑

∀� ∈ L

fit(�, CP )

For example, let us consider the replay of traces �1 and �2 of Table 1 on top of the CPN of Fig. 1. A�er the exe-

cution of Algorithm 1 with �1, the obtained �tness value is fit(�1, CP ) = 1−
0

9
= 1, whereas with �2, we have

that fit(�2, CP ) = 1 −
4

10
= 0.6. �ese global measures may be interpreted as follows: the overall system’s

behavior observed in �1 complies completely with the speci�cation model. Conversely, fit(�2, CP ) = 0.6

indicates that only 60% of the overall behavior observed in �2 complied with speci�cation model. �en, by

considering both traces of the log using De�nition 5, fit(L, CP ) = 0.8 gives an estimation on how in average

the system, as observed in the logs, complies the speci�cation model.
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5.2. Local Conformance Diagnostics

In the previous part of this section, we introduced a global conformance measure, namely �tness (De�ni-

tions 4 and 5). �is measure allows to quantify to which extent the real system, as observed in logs, comply

with the speci�cation. Whilst such a metric provides an overall compliance estimation for the whole sys-

tem, in many applications is required to provide local diagnostics, i.e., in which precise system components

deviations are occurring, and in which magnitude.

In this part, we present local conformance metrics that are related to precise components of a system, and

which can be computed upon the execution of our conformance checking method. Our approach is based on

the direct association between real components of a system and components of a CPN input model. Recall

that activities correspond to transitions, real locations to places, and the relation between a location and

an activity is represented by an arc. �us, by keeping track of the proportion of token transfers and jumps

�owing through a model component, we can precisely indicate the number and magnitude of deviations

occurred in the part of the real system that such model component represents. In what follows, we introduce

these metrics, and we illustrate their usage in an example.

De�nition 6 (Place-conformance). Let � be a trace, and let p ∈ P be a place in a CPN. Let k� (p) be the
number of tokens consumed from p upon the replay of � , and let j

�
(p) denote the number of token jumps to

place p upon the replay of � . �e place-conformance fit� (p) is de�ned as:

fit� (p) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

1 −

j
�
(p)

k� (p)
∶ k� (p) > 0

⊥ ∶ otherwise

�e place-conformance fit� (p) compares the number of tokens consumed from place p, when replaying

trace � , with how many of them actually jumped to p to force transition �rings. Hence, this metric can

be seen as the proportion of objects that comply with be at the location represented by place p upon the

execution of any activity that requires objects from such a location. If fit� (p) is close to 1, then almost

no tokens jumped to p, e.g., objects are respecting the path established in the speci�cation. Conversely, if

fit� (p) is close to 0, then most of the tokens are jumping to place p, e.g., the majority of the objects skip

previous activities that precede the location represented by p. Note that if k� (p) = 0, then fit� (p) is not

de�ned, i.e., assessments cannot be computed since no tra�c �owed through place p during the replay of � .

De�nition 7 (Flow-conformance). Let � be a trace, and let (p, t) ∈ F be an input arc in a CPN, s.t. p ∈

P ∧ t ∈ T . Let k� (p, t) be the number of tokens consumed from p to �re t when replaying trace � , and let j
�
(p, t)

denote the number of tokens that jumped to place p to force the �ring of t . �e �ow-conformance fit� (p, t) is
de�ned as:

fit� (p, t) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

1 −

j
�
(p, t)

k� (p, t)
∶ k� (p, t) > 0

⊥ ∶ otherwise

De�nition 8 (Transition-conformance). Let � be a trace, and let t ∈ T be a transition in a CPN. Let us
de�ne the active pre-set of transition t in trace � as ∙t� = {p | p ∈

∙
t ∧ k� (p, t) > 0}. �e transition-conformance

fit� (t) is de�ned as:

fit� (t) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

1

|
∙
t� |

∑

∀p ∈
∙
t�

fit� (p, t) ∶ |
∙
t� | > 0

⊥ ∶ otherwise
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De�nitions 7 and 8 follow the same principle of place-conformance. Given the replay of a trace � , the

�ow-conformance fit� (p, t) compares the number of tokens transferred, through the arc from place p to

transition t , with how of many them jumped to p to force speci�cally the �ring of t . �is can be interpreted

as the proportion of objects that comply to be at the location related to place p when executing activity Λ(t).

�e transition-conformance fit� (t) is the mean value of the �ow-conformance between t and all the

input places from which t consumes tokens. �us, fit� (t) diagnoses how many of the objects consumed by

activity Λ(t), from all its required locations, correspond to outliers.

We now exemplify the usage of the local conformance metrics. Let us recall our motivating example of

trading systems shown in Section 2. Fig. 6(a) shows a model representing a real trading system S0 whose

behavior is slightly deviated from the speci�cation model of Fig. 1. In particular, some sell orders in S0 can

be submi�ed to the sell side of an order book (place p4) by skipping activity b. Now, let us consider a trace

� from S0. Let us assume that � corresponds to the observed interaction of 20 distinct objects (i.e., 10 buy

orders and 10 sell orders). We then ran our method to check conformance between � and the model of Fig.

1. Let us suppose j = 5 and k = 55 as the total number of jumps and token transfers computed by Algorithm

1, thereby obtaining a �tness value fit(�, CP ) = 1 − 5

55
= 0.909 (i.e., De�nition 4). Nevertheless, it becomes

more insightful to diagnose conformance in precise system components. To this aim, we calculate the local

conformance metrics previously introduced and we extend the speci�cation of the speci�cation model of Fig.

1 with such metrics. �e model is also extended with relevant tra�c statistics of token jumps and transfers

in the model components (i.e., see Fig. 6(b)).
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Fig. 6: Conformance results between a trace � of system S0 (a) and the speci�cation (b).

We brie�y discuss the speci�cation model of Fig. 6(b) which has been enriched with conformance diag-

nostics. First, the number of transferred tokens k� (p) and token jumps j
�
(p) are shown besides each place

p, e.g., k� (p2) = 10 and j
�
(p2) = 5. Jumps between places are displayed as do�ed lines labeled with their

frequency. In this example, jumps corresponded to 5 sell orders that in the system S0 moved to the sell side

of the order book (place p4) using the silent action � . �is action is not recorded in trace � nor allowed by

the speci�cation model shown in Fig. 1. �en, upon the replay of activities d and e, these sell orders were

not in place p4, but in place p2. Hence, to force replay, these 5 tokens jumped from place p2 to place p4.

Input arcs are labeled using notation j
�
(p, t) | k� (p, t) where k� (p, t) is the number of tokens consumed

by transition t from place t , and j
�
(p, t) indicates the number of jumps to place p to force the �ring of t .

As an example, the label of input arc (p4, d) indicates that 7 sell orders were consumed by activity d , but

3 of them were not ready in place p4 before the �ring. Output arcs are simply labeled with the number of

resources transferred from a transition to a place.
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Local conformance diagnostics are displayed on components of the speci�cation model. For example,

for place p4, the place-conformance fit� (p4) = 0.5. �is can be interpreted that only half of the time a

sell order was ready in the sell side of the order book upon the execution of activity d or e. �e �ow-

conformance k� (p4, e) = 0.33, i.e., activity e consumed a sell order 3 times, but two of these orders were not

ready in place p4. �e transition-conformance fit� (e) = 0.66 is the mean value between fit� (p3, e) = 1 and

fit� (p4, e) = 0.33. �is means that buy orders were always available in place p3, whereas only a third of the

time sell orders were available in place p4. As a result, 66% of the time no deviations were observed upon

the execution of activity e.

Notably, a practical bene�t of the use of local conformance metrics is their combination with the notion

of a heat map. For example, in Fig. (see Fig. 6(b)) a heat bar is displayed in the right side of the model denoting

that the lower the conformance measure of a component, then the more red that such a component is painted.

�is allows us to quickly identify which components experienced more deviations. For instance, in Fig 6(b),

it can be easily seen that deviations are localized in the component of the system related to sell orders.

Finally, note that the introduced local measures are computed based on the information provided by a

single trace � . We close this section by extending de�nitions of these measures to event logs. Consider-

ing now all traces in the log, they shall allow to diagnose the average magnitude of deviations in precise

components of the system.

De�nition 9 (Place-conformance of an event log). Let L be an event log, and let p ∈ P be a place in a
CPN. Let us de�ne Lp = {� | � ∈ L ∧ k� (p) > 0}. �e place-conformance fitL(p) is de�ned as:

fitL(p) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

1

|Lp |

∑

∀� ∈ Lp

fit� (p) ∶ |Lp | > 0

⊥ ∶ otherwise

De�nition 10 (Flow-conformance of an event log). Let L be an event log, and let (p, t) ∈ F be an input arc
in a CPN, s.t. p ∈ P ∧ t ∈ T . Let us de�ne L(p,t) = {� | � ∈ L ∧ k� (p, t) > 0}. �e �ow-conformance fitL(p, t)
is de�ned as:

fitL(p, t) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

1

|L(p,t)|

∑

∀� ∈ L
(p,t)

fit� (p, t) ∶ |L(p,t)| > 0

⊥ ∶ otherwise

De�nition 11 (Transition-conformance of an event log). Let L be an event log, and let t ∈ T be a
transition in a CPN, s.t. p ∈ P ∧ t ∈ T . Let us de�ne Lt = {� | � ∈ L ∧ ∃p ∶ k� (p, t) > 0}. �e transition-
conformance fitL(t) is de�ned as:

fitL(t) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

1

|Lt |

∑

∀� ∈ Lt

fit� (t) ∶ |Lt | > 0

⊥ ∶ otherwise

6. Implementation and Experimental Evaluation

We have developed a prototypical implementation of our method in the Python programming language.

Our solution is supported by SNAKES [19] — a library which facilitates the prototyping of high-level classes

of Petri nets, including CPNs. In the following, we describe the functioning of our prototype, as well as we

report an experimental evaluation of our method. �e prototype and all the material of our experiment is

freely available in our project repository [20].
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Fig. 7 illustrates the organization of our prototypical implementation. Users of our solution simply need

to invoke a program called “conformance checker”. �e program receives three input arguments: an option

indicating the conformance method to use (e.g., replay with CPN using jumps), an event log forma�ed as a

comma-separated value (CSV) �le, and a CPN model. CPN models are built as Python scripts. �is generic

organization allows us to seamlessly extend our solution, incorporating other methods of our research. In

addition, as depicted in Fig. 7, our prototype has an independent routine to generate arti�cial event logs (as

de�ned in De�nition 5) by running CPN models. When running a CPN to generate a trace, if two or more

transitions are enabled in a given marking, then the routine randomly selects one of such transitions to �re.

As an example, Fig. 8 depicts the execution of our prototype in a command-line interface with the afore-

mentioned input arguments (option 1 stands for the conformance method presented in this paper). Upon suc-

cessful execution, the program generates an output folder with CSV �les corresponding to: jumps detected,

frequency per trace, and their average (�le jumps.csv), tra�c statistics and the local conformance metrics

presented in Section 5 per each component type (�les arcs.csv, transitions.csv and places.csv), and

�nally the �le traceFitness.csv reports the total number of token jumps, token transfers and the result-

ing �tness per trace and their average (De�nitions 4 and 5). As we motivated in Section 2, the information

provided in these reports can be used to extend the speci�cation model, so that to quickly identify observed

deviations and their magnitude in concrete components of the system.

conformance 
checker

event logs

...

CPN models

CPN replay with jumps

artificial event log
generator

deviation reports

Fig. 7: Organization of the prototypical implementation of our conformance method.

  

(a) run of the prototype in the command-line interface 

(b) folder with deviation reports and fragment of the file jumps.csv

Fig. 8: Execution of the prototype in the interface (a) and example of generated �les (b).
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Experimental Evaluation. Using our prototype, we conducted an experiment with three event logs, ar-

ti�cially generated from di�erent trading system models S1, S2, and S3. Each event log was replayed on

top of the speci�cation model of Fig. 1. �ese models represent replicas of a trading system, according to

the speci�cation, but each of them with undesired behavior is increasingly added. For instance, system S2

is a variation of S1, but with a subtle modi�cation to slightly increase its di�erence with the speci�cation

model. Table 2 describes each replica and its event log generated. Each event log consists of 100 traces and

20 resources (i.e., 10 buys orders and 10 sell orders). �e aim of this experiment is two-fold: to showcase the

use of local conformance measures presented in Section 5, computed with all traces of an event log, and to

study the stability of the proposed measures, e.g., how much the metrics are a�ected by subtle increases of

undesired behavior.

Table 2: Experimental se�ings

event
log

system
source

number of events
(total, avg. per trace) system description (undesired behavior)

L1 S1 (Fig. 9(a)) (2610, 26) sell orders and buy orders skip activity b and a.

L2 S2 (Fig. 9(b)) (2726, 27) S1 + activity e may return sell orders to place p4.

L3 S3 (Fig. 9(c)) (2575, 26) S2 + activity b may take sell orders to a deadlock place p7.

Before discussing the conformance results, let us review the speci�cation model in Fig. 1. According to

the speci�cation, in a system with no deviations each object must be transferred exactly 3 times: an order is

submi�ed (activity a or b), then it trades or is canceled (activities c, d or e), and �nally the order is consumed

from a sink place. �is implies that the replay of traces on the speci�cation model, with 20 objects each,

must count 60 token transfers (that is, 6000 transfers for an event log with 100 objects). However, as shown

in Table 2, each system variant presents certain undesired behavior, so objects can move between certain

locations disobeying the speci�cation model. Hence, when replaying event logs of these system variants on

top of the speci�cation, observed deviations will incite token jumps between places, and less expected token

transfers through the model structure. �e la�er is evidenced in columns resources transferred and jumps
detected of Table 3. For ease of representation, the averages of transfers and jumps have been rounded.

Table 3 summarizes the results upon the replay of each event log on top of the speci�cation model. For

each variant, it can be observed how the introduction of a single subtle deviation induces more token jumps

during replay, e.g., more objects �owing through paths unforeseen in the speci�cation. It can be observed

that the la�er causes a monotonic and tenuous decrease in the average trace �tness (e.g., De�nition 5).

However, more intriguing becomes to identify where deviations have occurred and their magnitude. To this

aim, items (d), (e), and (f) in Fig. 9 presents the speci�cation model of Fig. 1 extended with local conformance

diagnostics, computed when checking conformance in each variant, and which are associated with model

components (De�nitions 9—11). Input arcs and do�ed lines representing jumps indicate the rounded average

number of transferred/jumped tokens that �owed through them, considering all traces of a log variant. �e

introduction of certain undesired behavior in each variant is unveiled by our method as a jump, showing

how such undesired behavior induces more deviations in a precise component. �e la�er impacts on the

conformance-related measures, used to paint the model to clearly identify where deviations occurred more.

Table 3: Conformance results.

event
log

system
source �tness

resources transferred
(total, avg. per trace)

jumps detected
(total, avg. per trace)

kinds of jumps
(origin, target, avg. frequency per trace)

L1 S1 0.7974 (4999, 50) (1001, 10) (p2, p4, 5), (p1, p3, 5)

L2 S2 0.7607 (5309, 53) (1263, 13) (p2, p4, 5), (p1, p3, 5), (p6, p4, 3)

L3 S3 0.7425 (5058, 51) (1306, 13) (p2, p4, 3), (p1, p3, 5), (p6, p4, 2), (p4, p6, 3)
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Fig. 9: Conformance checking between each event log of a system variant and the speci�cation of Fig. 1.

.

7. Related Work

Conformance checking relies to a great extent on the expressive power of the models used to describe

expected behavior of systems under evaluation. In this regard, state-of-the-art conformance methods use

work�ow nets (WF-nets) which is an ordinary Petri net employed to describe the control-�ow of a process

executed in isolation, that is, one single process instance a�er another. �us, methods using WF-nets do not

lend themselves for validating multiple instances concurrently interacting in a system. In contrast, the use of

more expressive models overcoming the mentioned limitation becomes a demand in real-world applications.
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For example, papers [21, 22] present case studies where multi-instance modeling notations are needed to

diagnose the behavior of objects interacting within modern computational environments. In what follows,

we review how di�erent works address this challenge by using various kinds of Petri net extensions, and

focusing on their application for conformance checking and similar techniques.

Proclets are one of the earliest proposals in process mining to study and validate the interaction of

process instances in a system [23]. Each instance runs in an independent work�ow, and semantics are

provided to describe communication between work�ows. Among its di�erent applications, the concept of

Proclets evolved into artifact-centric processes for conformance checking [24]. Also, the decomposition of

the conformance checking problem has been studied for artifact-centric processes [25] in order to perform

replay between each artifact and its corresponding sub-log. Another variant of this model is reported in

[26], where the authors check conformance of artifacts which are modeled using UML state and activity

diagrams.

Object-centric Petri nets is a notation recently proposed to describe in a single model the interaction of

multiple cases (process instances) [8, 27]. Object-centric Petri nets can be seen as another subclass of CPNs

with certain characteristics. For instance, arcs that transfer an arbitrary number of objects are introduced to

describe one-to-many or many-to-many interactions. In [27], the authors thus present a method to discover

an object-centric Petri net from event logs. In particular, these event logs are built in extensible object-centric
(XOC) format [28]. �e usage of object-centric Petri nets for conformance checking presents open challenges.

For instance, the model does not provide a direct assignment of objects to concrete variables, so multiple

bindings may be chosen. In this light, the fact that one event can be associated with multiple valid bindings

implies the need for recursive strategies of non-linear time complexity, e.g., backtracking.

Another notable research direction in conformance checking is the validation of additional behavioral

dimensions (perspectives) of a single process [14, 15] such as time or data constraints. In [14] the authors

present an alignment-based conformance method using Petri nets with data (DPNs). On the one hand,

alignments �nd di�erences between a model and a trace by computing the shortest path in the state space

of a synchronous product net, i.e., a Petri net composed by the input model and the trace [29]. On the other

hand, a DPN is a WF-net whose transitions are equipped with data variables which can be read/wri�en upon

transition �rings. In this way, additional process perspectives to analyze are encoded within these variables.

In contrast, DPNs are not appropriate for analysis of multiple process instances, e.g., tokens are black dots

and data values do not �ow through the model. �is is why, for instance, we have opted for a model based

on CPNs whose tokens carry object identi�ers.

CPNs have already been considered in the process mining �eld. For instance, Rozinat et al. considered the

discovery of CPN-based models for simulation [30, 31]. Notably, in paper [32], we proposed a conformance

checking method with a class of CPNs whose tokens are tuples carrying object identi�ers and a�ributes,

thereby allowing to detect various kinds of deviations. For instance, using logs whose events record the

state of object a�ributes a�er the event’s activity execution, the method detects if such a�ributes were

transformed as speci�ed by the CPN. Also, the method was applied to check compliance of a real-world

trading system w.r.t. its speci�cation. In this regard, we refer the reader to papers [33–36], which present

our studies on the extraction of event logs and Petri net-based modeling of real-world trading systems.

However, in the method presented in [32], the replay of a trace is stopped upon the occurrence of the �rst

deviating event, and also local diagnostics on system components are not provided. �us, the approach of

token jumps and local conformance diagnostics presented in this paper can be used to extend such methods.

Nested Petri nets is an extension where tokens can be Petri nets themselves, which allow to describe the

inner behavior of objects [37]. �e model becomes useful when it is crucial not only to analyze the �ow of

objects within a system, but also to validate the inner behavior of these objects. For instance, in paper [38],

we studied the conformance problem between a nested Petri net and an event log of a multi-agent system.

We proposed a compositional approach where the behavior of each agent can be checked separately.
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Nested Petri Nets have also been used in the related �elds of adaptive process modeling and veri�cation [39,

40]. Finally, another recent research direction on modeling and validation of object-centric systems focuses

on the use of models that combine Petri nets with data persistence models such as relational databases. �e

Information Systems Modeling Language (ISML) [41] and catalog-nets [42] are examples of this research

direction. For instance, in these works, methods are proposed for verifying the integrity of objects in the

Petri net and their representation in databases.

8. Conclusion

In this paper, we have presented a replay-based conformance checking method to validate whether a

system, whose components manage interacting objects of di�erent classes, complies with its speci�cation.

As the modeling language for the speci�cation, we considered a subclass of colored Petri nets, whereas

for describing real behavior we considered event logs where events are equipped with sets of involved ob-

jects. �ese objects refer to the individual resources involved in the execution of an activity. Regarding the

subclass of CPNs, we particularly considered conservative work�ow CPNs which faithfully characterizes

systems handling the end-to-end processing of distinguishable objects. Among the syntactic constraints, we

considered that transitions do not have input places of the same type. �e la�er assures in our se�ing only

one binding for an event to replay. Consequently, we can provide an algorithm that, unlike alignments, has

linear time complexity. Noteworthy to mention that the constraint of distinct types for input places can be

dropped at the price of losing linear time complexity. For such a case, multiple bindings then can be associ-

ated to an event, and thus the algorithm shall look for the correct one using, e.g., recursive-based strategies

such as backtracking.

�e replay strategy of our method has been based on populating tokens in the model that correspond to

distinct objects observed in the trace. For an event to replay, if objects are not located as tokens in speci�ed

input places of the transition to �re, we proposed a jump strategy to move tokens from their current location

in the model to the required places. Interestingly, this approach not only allows us to force transition �rings

to �nd more deviations in a trace, but also recorded jumps between places unveil the so-called desire lines,
i.e., paths of objects which are unforeseen in the speci�cation [17].

Leveraging the fact that real locations and activities directly correspond to concrete components of a

CPN, we proposed local conformance diagnostics that can be used to clearly identify the severity of devia-

tions in precise parts of a system. Besides, we presented a prototypical implementation of our method, and

we illustrated its usage with a case study on trading systems. �e prototype is freely available for its usage

and extension. In this regard, the prototype may be upgraded to provide automatic enhancement of an input

CPN model with conformance diagnostics.

�e work presented in this paper may give ground for di�erent research directions. For instance, pre-

vious works on conformance checking based on Petri net models whose tokens carry object a�ributes or

object inner behavior (e.g., [32, 38]) can be extended with the strategies presented in this paper, e.g., use of

jumps and local conformance diagnostics. Also, it may be of interest to study other variants for this method,

e.g., where tokens not only represent distinct objects, but also relationships between each other. �is would

imply, for instance, that the state of the objects do not correspond to a single location, but their state is in

some sense distributed among places, similar to the approaches of ISML and catalog nets. �e la�er would

make to the approach presented in this paper more intriguing and challenging.
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E. Kindler, and H. Rölke, Eds., ser. CEUR, vol. 2651, 2020.

[37] I. A. Lomazova, “Nested Petri Nets – a Formalism for Speci�cation and Veri�cation of Multi-Agent

Distributed Systems”, Fundamenta Informaticae, vol. 43, pp. 195–214, 2000.

[38] K. Mecheraoui, J. C. Carrasquel, and I. A. Lomazova, “Compositional Conformance Checking of Nested

Petri Nets and Event Logs of Multi-Agent Systems”, in Modeling and Analysis of Complex Systems and
Processes (MACSPro), A. Shapoval, V. Popov, and I. Makarov, Eds., ser. CEUR, vol. 2795, 2020.

[39] I. A. Lomazova, “Nested Petri Nets for Adaptive Process Modeling”, in Pillars of Computer Science:
Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His 85th Birthday, A. Avron, N.

Dershowitz, and A. Rabinovich, Eds. Springer, 2008, vol. 4800, pp. 460–474.

[40] K. V. Hee, O. Oanea, A. Serebrenik, N. Sidorova, M. Voorhoeve, and I. Lomazova, “Checking Properties

of Adaptive Work�ow Nets”, Fundam. Informaticae, vol. 79, pp. 347–362, 2007.

[41] J. M. E. M. van der Werf and A. Polyvyanyy, “�e Information Systems Modeling Suite”, in Application
and �eory of Petri Nets and Concurrency, R. Janicki, N. Sidorova, and T. Chatain, Eds., ser. LNCS,

vol. 12152, Springer, 2020, pp. 414–425.

[42] S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin, “Petri Nets with Parameterised Data”, in Business
Process Management, D. Fahland, C. Ghidini, J. Becker, and M. Dumas, Eds., ser. LNCS, vol. 12168,

Springer, 2020, pp. 55–74.

168


	Introduction
	Motivating Example: Checking Conformance in Trading Systems
	Colored Petri Nets
	Event Logs
	Object-Centric Replay-Based Conformance Checking
	The Algorithm
	Local Conformance Diagnostics

	Implementation and Experimental Evaluation
	Related Work
	Conclusion

