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The present paper contains a sketch of the proof of an upper bound for the
variance of the number of hyperfaces of a random polytope when the mother body
is a simple polytope. Thus we verify a weaker version of the result in [1] stated
without a proof. The article is published in the author’s wording.

Let X be a convex body in R% A random polytope P,(X) is a convex hull of n
independent uniformly distributed points in X.

Starting with the paper by Rényi and Sulanke [3|, random polytopes have been a
popular object for research in stochastic geometry. There are numerous results concerning
different functionals of P,(X), and the most important of these functionals are the
volume vol P, (X) and the components of the f-vector f;(P,(X)).

Since 1990s a lot of research has been done on the distributional properties of
stochastic variables of type A(P,(X)), where A is a given functional of a polytope.
Most of this research uses different estimates for Var A(P,(X)). In [2] Wieacker and
Weil state that the determination of the variance is a major open problem.

Let X be a polytope. The paper [4] estimates Var fy_1 (P, (X)) as follows:

Efa_1(Po(X)) < Var f;_1(P.(X)) < C(X)E f4_1(P.(X)),

where C'(X) depends on the combinatorial structure of X. However, it seems to be
natural to change the bounds so that their ratio would be independent of X.

We obtain an inequality with coincident upper and lower bounds in the case of a
simple polytope X. Namely, we prove the following theorem

Theorem 1. There exist positive real numbers Cy, Cy such that for every simple polytope
X and every positive integer n > ng(X) one has

CrE fi1(P.(X)) < Var fy_1(P,(X)) < CoE fa_1(P,(X)),
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Consider a Poisson polytope I1,(X), i.e. the convex hull of a Poisson process in X of
intensity A. If we prove the inequality

C1 E far(I\(X)) < Var fy 1 (TIN (X)) < CHE fa1(TTA (X)) (1)

for A > A\o(X), then theorem 1 will immediately follow from the result [5] by J. Pardon.
So, our goal is to prove (1).

For a generic d-tuple x = (x1,%9,...,24) € X% the hyperplane aff(x1, 2o, ..., 24) is
uniquely defined and splits X into 2 caps. Denote by C(x) the smaller of those caps.
Define

c(x) =volC(x) and i(x,y)=vol(C(x)NC(y)).

Let S C X9 be a measurable set invariant under all permutations of the d-tuple. Say
that a facet of I, (X) corresponds to S if the d-tuple of its vertices belongs to S and the
smaller cap defined by its affine hull contains no vertex of I1(X). Denote by f4—1(5) the
number of facets of I1)(X') corresponding to S. Let a;(S5) be the number of ordered pairs
(F1, Fy) such that Fy, Fy are facets of IT,(X) corresponding to S with exactly i common
vertices.

Since for every stochastic variable ¢ there is an identity

Var§ = E€” — (E€)?,
we immediately get
Var fy 1(S) = Ea1(S) + Eaa(S) + ... + Eag(S) + (Eao(S) — (E fa1(S9)?H.  (2)
Let S; C X277 be the set of (2d — i)-tuples z = (21, 22, . . ., 204_;) such that
1. x(z) = (21,29,...,24) and y(z) = (24—i+1, Zd—i+2; - - - » 224—;) belong to S.
2. No point z; belongs to C(x(z)) U C(y(z)).

According to Slivnyak-Mecke formula (see, for example [6]),
)‘2d z Me(x(2))+e(y(2))—i(x(2),y(2))}
- c(X Z C y z))—1(X(2
Eai(S) = - - '2/ / dz. (3)

By the same formula,

E fua( / [ (4)

2
Applying to (4) the identity (f - [ G(x) dx) = [ [G(x)G(y) dxdy, we get
S SxS
2 A% —)\{c(x +e(y)}
(E fa_1( = e dxdy. (5)

SxS
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Now we can rewrite the last term of (2) as follows:

)\Qd B )
Eao(S) — (E fus( d|2/ / M) 1069} (1 — ¢ M) ey —
)\Qd N
A [ e e
d!2/ /e Y5 dxdy. (6)
SxS\So

Finally, we have obtained the integral expressions for all the terms of (2).
Suppose {S1, Ss, ..., Sy} is a partition of X¢. Then we can observe that

Ja—1(IIN(X)) = fa—1(S1) + fa—1(S2) + ... + fa—1(Sn) + fdfla (7)

where fd_l is the number of facets of II,(X') such that a greater cap of this facet contains
no vertex of ITy(X). Our goal now is to construct a nice partition of X¢.

Recall that X is a simple polytope. Enumerate all the faces of X: F, Fs,... Fy so
that ¢ > j whenever dim F; > dim F;. (We treat X as its own face, so Fy = X.)

For every generic d-tuple x € X? find the face F; with the 2 properties:

1. dimaff(vert F; N C(x)) = dim F;.
2. 1 is the maximal number to satisfy condition 1.

Let S; be the set of all d-tuples corresponding to F;. Write down all the estimates we
need to proceed.

Efi1(S) SIn® )\, if Fj is a vertex;
Efi1(S) < C(X)-In*\, if F; is not a vertex;
E fa1 < C(X)o(1);
Var fu_1(S;) < In? ), if F} is a vertex;
Var fy_1(S;) < C(X) -In®"'), if F} is not a vertex;
Var fy_1 < C(X)o(1);
Cov(fa—1(S:), fa=1(S;)) =0, if F; and F; are vertices with no adjoining edge.

For all other covariations apply the inequality Cov(&;, &) < +/Var & Var &,.
Writing down Var f;_1(II\(X)) as the variance of the sum (7), we see that

Var fy_1 (I (X)) < MIn* A\ S E f;_,(TT1\(X)),

where M is the number of vertices of X. This gives the upper bound for the variance.
The lower bound is due to Bérany and Reitzner (see [4]).

Remark. Probably, the analogue of Theorem 1 is true for all convex polytopes X (and
this is exactly the statement left in [1| without a proof). However, the author was not
able to get a satisfactory uniform estimate for Var f; 1(S;) when Fj is a vertex. We can
go even further and conjecture the analogue of Theorem 1 for all convex bodies. However,
the methods described above are not applicable in the most general case.
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PaBHOMepHasi acMMIITOTUKA BEePXHEN I'PaHUIIbI JIUCIIEPCUN JIJIs
CJIy4aiHOIO MHOT'OTPAHHUKA

Marasunos A. H.
KimroueBble cjioBa:  ciydailHbIii MHOMOIDAHHUK, f-BEKTOD, JUCIEPCHS

ComepKuTcs pasBepHYTHIA IJIaH J0KAa3aTeJIbCTBA PABHOMEDHON OIEHKH JIMCIIEPCHI

YUCJIa TUIIEPTPaHeil CIydaifHOro MHOIOTPAHHUKA B CJIyYae, ecii 00beMITIONIee TeJI0 —
pocToil MHOrOorpaHHuK. Takum obpasoM, jokasaHa ocjab/ieHHas BepCHs pe3y/brara,
octasieHHOTO B 1] 6e3 nokazaresnbcrBa. CraTbs myOIMKyeTcsi B aBTOPCKON PeJIaKIIUH.
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