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KeYmaeraX is a Hoare-style theorem prover for hybrid systems. A hybrid system can be seen as an aggregation of both
discrete and continuous variables, whose values can change abruptly or continuously, respectively. KeYmaeraX supports
only variables having the primitive type bool or real.

Due to the mixture of discrete and continuous system elements, one promising application area for KeYmaeraX are closed-
loop control systems. A closed-loop control system consists of a plant and a controller. While the plant is basically an
aggregation of continuous variables whose values change over time accordingly to physical laws, the controller can be seen
as an algorithm formulated in a classical programming language.

In this paper, we review some recent extensions of the proof calculus applied by KeYmaeraX that make formal proofs on
the stability of dynamic systems more feasible. Based on an example, we first introduce to the topic and prove asymptotic
stability of a given system in a hand-written mathematical style. This approach is then compared with a formal encoding
of the problem and a formal proof established in KeYmaeraX. We also discuss open problems such as the formalization of
asymptotic stability.
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3aMeuaHUA O MOCTETHNX TOCTIDKEHNAX B JOKa3aTeJIbCTBE YCTOMYMBOCTI

¢ ucnoab3osanueMm KeYmaeraX
T. Baap’, X. Illysnbre’ DOI: 10.18255/1818-1015-2021-4-326-336

'YHuBepcuTeT PUKIANHBIX TEXHUUECKNX M S9KOHOMUUECKUX HayK I. Bepnuna, yi. Buuxenmunenxodiurpacce, 75A, r. Bepnun
12459 I'epmanms.

YK 004.942 Tonyuena 15 HosOps 2021 I.
Hayunas cratbs IToce mopaborknu 1 nexabpst 2021 .
IToTHBI TEKCT Ha aHTJIMIICKOM S3BIKe IpunsTa Kk nyoaukanun 8 nexadps 2021 r.

KeYmaeraX — 910 oka3aTesbCTBO TeopeM B cTiuie Xoapa st IMOpMAHBIX cucTeM. [ MOPMAHYIO CICTEMY MOXHO paccMar-
PMBATh KaK COBOKYIIHOCTb JYICKPETHBIX, TaK ¥ HEIIPEPHIBHBIX [TepeMEHHBIX, 3HAUEHVISI KOTOPBIX MOT'YT U3MEHATHCS PE3KO
VIV HETIPepBIBHO cooTBeTcTBeHHO. KeYmaeraX rojmepsKmuBaeT TOJIBKO IlepeMeHHbIe, MEIOIIVe IPUMUTUBHBI TUIl bool
wu real.

Biaropapsi coueTaHMI0 AMCKPETHBIX U HEIPEPHIBHBIX JIEMEHTOB CUCTEMBI, OJ{HOI U3 IEePCIeKTUBHBIX 00JacTeil Mmpu-
meneHust KeYmaeraX sIBJSIIOTCS CHCTEMBI yIPaBIeHMsI C 3aMKHYTBHIM KOHTypoM. CucTeMa yIpaBieHUsI C 3aMKHYTHIM
KOHTYPOM COCTOUT M3 YCTAHOBKU M KOHTPOJUIEpA. B TO BpeMs Kak yCTaHOBKa B OCHOBHOM IIPEJCTABIISIET COBOII COBO-
KyIIHOCTb HEINPEPHIBHBIX IIepeMeHHbIX, 3HAUEHUsI KOTOPBIX MEHSIOTCS CO BpEMEHEM B COOTBETCTBUM C (QU3UUECKUMU
3aKOHaMU, KOHTPOJLIEP MOXXHO PacCMaTpUBaTh KaK alropuTM, ChOpMyIMPOBAHHBIN Ha KJIACCUUECKOM SI3BIKE IIPOrpaM-
MIUpPOBaHU.

B 3T0I1 cTaThbe MBI PACCMOTPUM HEKOTOpbIe HeJaBHUE PACLIMPEeHUs UCUUCIEHUs [OKa3aTeNlbCTB, IpuMeHsemble KeY-
maeraX, KOTOpBIE [eyaioT opMasbHbIEe JOKA3aTeIbCTBA YCTOMUMBOCTY AMHAMUUECKUX CUCTEM G0Jlee BBIIOJTHUMBIMIUL.
OCHOBBIBasICh Ha IpUMepe, MBI CHauaia I03HAKOMUMCS C TEMOIT U JOKaXKeM aCUMIITOTUUECKYIO YCTOMYMBOCTD AHHOII
CIICTEMBI.

Kirrouessble cioBa: knbepdusnudeckas CUCTeMa; TeOpHs yIpaBieHus; GyHKus JIAIyHOBa; MMIIEDATUBHBIA I3BIK IIPO-
rpaMMUPOBaHISA
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1. Introduction

The verification of software has made huge progress over the last 20 years, but is still considered to be
challenging [1]. Many software verification systems such as KeY, FramaC, VeriFast, Dafny and others rely
on a classical Hoare-style calculus [2] for verifying pre-/post-conditions.

The theorem prover KeYmaeraX and its underlying Differential Dynamic Logic [3] were successful in
extending a traditional Hoare-style calculus with capabilities to reason also on the dynamics of continu-
ous functions, which are specified by ordinary differential equations (ODEs). More precisely, KeYmaeraX
allows to verify so-called hybrid programs® to be correct in the sense of fulfilling given pre-/post-condition
contracts. The language of hybrid programs is a very simple traditional imperative while-language with
assignment, sequential composition, conditional execution, and iteration as basic programming constructs. In
addition, there is support for non-determinism (non-deterministic choice, non-deterministic iteration) and
a very special construct bridging the gap to evolving functions called evolving state. More details on KeY-
maeraX and its supported syntax can be found in tutorial [4]. In [5, 6], we have analyzed some deficiencies
of the input syntax and present a number of introductory examples.

Control theory is an engineering discipline aiming at analyzing dynamic systems in general. A dynamic
system is modeled by a set of state variables, which typically change their value continuously over time. In
many cases, this change is described by ordinary differential equations (ODEs).

Well understood and widely applied are linear dynamic systems, whose dynamic can be described as
x = Ax, where x is a vector of state variables, A the so-called system matrix, and x denotes the derivation of x.
The stability of linear systems is well-understood and proving it for a given concrete system usually requires
few mathematical arguments: Common techniques are finding a Lyapunov function [7, 8] or analyzing the
system matrix A together with its eigenvalues.

When modeling real world processes, pure linear systems are often not sufficient. However, the overall
system can be modeled in many cases as a system switching through multiple linear subsystems [9]. The
switching condition can be simple (as in our running examples shown below) or more elaborate. In any case,
we can formulate such conditions using an imperative programming language.

While classical control theory is very successful in analyzing pure linear systems, its mathematical ap-
proaches do not work well when applied to composed system. If the composition scheme is restricted to
few switching schemes, the mathematical analysis remains feasible but becomes cumbersome[9]. A more
elegant solution for this problem could be to encode the composition rules for aggregating the resulting
system in terms of an imperative programming language. To analyze such composed systems, one would
obviously need a notion of the underlying semantics of the used programming language.

The theorem prover KeYmaeraX is able to capture both the continuous dynamics of systems as well as
algorithms for switching the current mode. We will review in this paper some recent achievements that will
make the formal verification of system stability more feasible. We also discuss some shortcomings of the
dynamic logic and the proof calculus underlying KeYmaeraX.

This paper is organized as follows: Section 2 presents two linear systems and then two different compo-
sitions of it. Though the composition algorithms differ only very slightly, the two resulting systems differ
dramatically. One of them remains stable, the other one becomes instable. In Section 2, we also give a
mathematical proof for the stability of the first composed system. In Section 3, we provide an encoding of
the running examples for KeYmaeraX and outline the formal proof within KeYmaeraX. We also report on
yet unresolved obstacles such as the formulation of the verification goal (asymptotic stability of the overall
system) within the Hoare-style logic supported by KeYmaeraX. In Section 4 we review related work and
Section 5 concludes the paper.

There is a graphical version of these programs (basically the Control Flow Graph) called hybrid automaton.
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2. Running Example
Given is a periodic linear time invariant (LTI) dynamic system in state space form [10]

(1) = <_°a é) X(H) = Ax(t),  x(t=0)=x (1)

with the state vector x = (x1, x )T, the system matrix A, the parameter a € Ry and the initial condition as
xo € R%. Based on the theory of ordinary differential equations (ODEs) [11], the periodicity of the solution
of (1) with

21
x(t)=x(t+T), T-= Ta

is related to the eigenvalues of A denoted as A = eig(A) € C? with A; = —j/aand A; = +j/a. Let us now
consider two systems

(2)

: 0 1 o (01
Sysl = x(1) = <—a1 0) x(1), Sys2 = x(t) = (_az 0> x(1), (3)
[ — [
Al AZ
where the parameters g; for i = 1, 2 satisfy the condition
O<a<l<a . (4)

For illustration, we consider the numerical examples of the form (3) satisfying (4) with

Figure 1 and 2 show the particular solution and phase diagram for the initial value x, = (0, 3)7. The ana-
lytically determined period in (2) of

27 2r 4nm
Tl =——=4r7 s = — = —
N N
corresponds to the numerical solution. Let us now examine the dynamics of a system which switches
Periodic solution of system 1 Solution in the state space (21, z2)
6 P 6
4 i 4
2 2
. 2 2
4 4
6 6
0 5 10 15 5 0 5

tls ’ °

Fig. 1: Particular solution x(t) and in the state space of Sys1 for x, = (0, 3)7
between the two systems (3) as a function of the current state x. For this purpose, the switching function

switch(x) = x1 x2 (5)
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Periodic solution of system 2 Solution in the state space (1, x2)
6 T 6
4 i 4
2 2
i: 0 g0
» 2 2
4 4
6 6
0 5 10 15 5 5

t[s] » zy
Fig. 2: Particular solution x(t) and in the state space of Sys2 for xy = (0, 3)T
is defined to divide the state space into two non-convex subspaces
Xy = { x(t)| switch(x) <0}, Xy = { x(t)| switch(x) =0 }. (6)

Based on these definitions, two variants of a switching system can now be specified. The first switching
system SwSysl is given as

A ), itch 0
SwSysl = x(t) = 1x(t), - switch(x) < (7)
Ay x(t), switch(x) =0
The second system SwSys2 inverts the switching condition from the first system and is given as
A ), itch =0
SwSys2 = x(t) = 1x(1), - switch(x) = (8)
Ay x(t), switch(x) <0

Analogous to the previous LTI systems, the switching systems have the same initial condition x;. The partic-
ular solution of SwSys1 (7) is given in Figure 3. One can clearly see that this system is asymptotic stable for
the given initial condition, i.e. tli>n30 x(t) — 0 for x = (0, 3). By quadrant switching, two periodic systems
are joined to form an asymptotically stable system.

The opposite effect occurs in the second switching system SwSys2 (8) if the switching condition is re-
versed. Here, the amplitudes of x;(t), x2(t) fastly grow and exceed any bounds. Note that the diagrams of
Figure 4 have on their axis much greater values than all the other diagrams.

In order to understand the effect, it is worthwhile to analyze the phase diagrams for both SwSys1 and
SwSys2 (cmp. Fig. 5). As one can see at the left part, system SwSys1 is enforced in the right-upper and
left-lower quadrants (note that switch(x) = 0 holds) to have a greater value change for x, than for x;. For
example, when entering the right-upper quadrant, the value for x; is 0 and let v be the value for x;,. When
leaving this quadrant, the value for x; is now 0 and x; has a value, but this is smaller than v. An analogous
behavior we have in the right-lower and left-upper quadrant, where x; changes more than x,. In summary,
whenever the trajectory of SWSys1 crosses the diagram axes (x; = 0 or x, = 0), the non-zero value of the
coordinate (alternating xi, x;) form a monotonically decreasing series.

For system SwSys2, the opposite is true: When crossing the axes, the non-zero component of the coor-
dinate becomes larger. Thus, SwSys2 is not stable.

To sum up, combining two periodic systems Sys1, Sys2 to a switched system can result both in an asymp-
totic stable system SwSys1 or in an unstable system SwSys2. The difference in the definition of SwSys1 and
SwSys2 is rather marginal. Therefore, it would be very helpful to have a verification tool able to check
formally, whether the resulting system is stable or not.
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Switching System I: z(t), za(t) Solution in the state space
T T

100

Fig. 3: Particular solution of SwSys1 (7) for x, = (0, 3)7

Switching System IL: @,(t), z(t) Solution in the state space

40

20

20}

40}

60 |-

80}

L L 100 L ' L L
5 10 15 -200 -150 -100 -50 0 50
t[s] zy

Fig. 4: Particular solution of SwSys2 (8) for x, = (0, 3)7

Lyapunov Stability Analysis

V(x) = x7 + x5 Vx #0

331
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A system is called to be stable, iff the system will never leave an € region around the origin (i.e. |x| < €)
when started in an appropriate J region (|x| < §). Note that § can be freely chosen once ¢ has been fixed.
Both § and e must be positive (¢ > 0,5 > 0). A formalization of this definition is presented below in (16).

A system is called to be asymptotic stable, iff in addition lim;_,.x(t) = 0 holds. Figure 6 shows a system,
which is stable but not asymptotic stable.

We proceed with a mathematical proof for the stability of the first switching system SwSys1 using Lya-
punov’s direct method [7, 8, 12]. We start with considering one - heuristically chosen - Lyapunov function
candidate for the original systems Sys1, Sys2
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6. Phase portrait of stable switching system A Phase portrait of unstable switching system
= \RN/ —
2t 2|
or or
o) | -2
a4t 4t
° \\i — N ———— /4
" . . | ‘ | ‘ | ) 8
5 5 4 P 0 > P 3 3 8 6 4 2 0 2 4 6 8

Fig. 5: Phase diagram for SwSys1/SwSys2

Fig. 6: Definition of Stability
The time derivative of the function V(x) results in
V(X) = 2x % +2x, %y . (10)

Substituting x; and %, by the right hand side of the LTI systems in (3) with 0 < a; < 1 < a; two Lyapunov
function candidates are obtained for Sysl1, Sys2:

Vi(x) =2x1 6 (1 - a), Va(x) = 2x1 %2 (1 - az) (11)

Each separate function V;(x) does not satisfy the requirement of a Lyapunov function with Vi(x) < 0. vx.
This is valid only segment-wise and with the introduced switching function (5) and switching condition (6)
of x it follows that Vs,,sys1 is a Lyapunov function with

. 2x1%(1-a;) <0, switch(x)<0
VSwSysl = [ 0 (12)

2x1 % (1-az) <0, switch(x) =

where VSw.Sysl < 0 holds for all x # 0. The switching condition in (12) corresponds to the one in system
SwSys1 (7) which therefore proves the asymptotic stability.
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3. Running Example for KeYmaeraX

In this section, we will present an elegant and succinct specification of both the linear and the switched
system presented in the previous section using the input formalism of KeYmaeraX. In KeYmaeraX, a dynamic
system is described in form of a program «.

As a first attempt, the linear system Sys1 might look as a program could as follows:

asys1 = {X, = Alx} (13)

Unfortunately, KeYmaeraX does not allow the usage of state matrix A; since all constants and variables
have to have a primitive type (real, bool). Also, the state vector x cannot be directly used and must be split
into its components x1, x,. Thus, we have to rewrite our first attempt (13) as

asyst = {x1" = x2,x2" = -a; = x1} (14)

The system Sys1 can be described in KeYmaeraX by just one evolving state. For the system SwSys1, we
combine the two evolving states representing Sys1 and Sys2 using the non-deterministic choice construct
(operator ++) and enclose this by a non-deterministic iteration (operator *):

ASwSys1 = (
{x1" = x2,x2" = —a; » x1 & switch(x) < 0}
++ (15)
{x1" = x2,x2" = —ay » x1 & switch(x) = 0}

InSys2
x1'=x2
x2'=—a2 *x1
x1 *x2>0

running InSys1
x1'=x2 X;iizl* .
x2'=—al *xI1 .
x1 ¥x2<0

Fig. 7: System descriptions of Sys1, SwSys1 in KeYmaeraX (as hybrid automaton)

The graphical version of the programs (13) and (15) are shown in Figure 7.
3.1. Proving stability using KeYmaeraX

In terms of differential dynamic logic, the stability of system SwSys1 formulates as:

Ve(0<e—>35(0<dAxP+x5<8— [aSWsysl]xf +x2 <€) (16)

Establishing a formal proof using KeYmaeraX for such a property of system SwSys1 remained for quite a
long time rather a challenge. This was due to the fact that the proof’s fundamental argument - the Lyapunov

function V(x) = x? + x? - could not be encoded directly when establishing the proof.
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However, Tan and Platzer report in their very recent paper [13], how the proof calculus has been recently
conservatively extended, i.e. new proof rules have been derived and can be used now directly within proof
tactics. One of the new proof rules looks as follows:

FfO0)=0rv(0)=0 3y >0vx(x]’<y? > v>0r0 <0)
F AStab(x” = f(x))

Lyap.

The formal proof for the stability of the switched system SwSysl has been published in [14] and is
available online?.

Please note, that (16) only formalizes stability but not asymptotic stability. To formulate asymptotic
stability, one would need to encode a situation that is far in the future (lim;_,) as asymptotic stability means
that there will be a point in time, after which the system will always remain within an € region. How can we
catch this point in time in a formula defining asymptotic stability? In order to formalize asymptotic stability,
one has to choose - probably - a different form than the usual invariant ¢ — [«]¢ that has been successfully
applied for formalizing stability. This problem has to remain as an open question here. Note, however,
that also the conclusion of [14] considers the formalization of asymptotic stability within KeYmaeraX as an
unsolved problem and future work.

4. Related Work

In his landmark paper published in 1892 (see [7] for a French and [8] for an English translation), A.M.
Lyapunov identifies and describes mathematical tools for analyzing dynamic systems. A Lyapunov function
for a given system is an energy measure that has to be decreasing/non-increasing as the system evolves over
time. Once an appropriate Lyapunov function is found, it can witness the stability of the system.

Much research has gone into finding suitable Lyapunov functions automatically. Some numerical ap-
proaches [15], [16] are based on sum-of-square programming techniques while other approaches exploit
Grobner basis [17], Lie derivatives [18], or constraint solving techniques [19]. Switched systems [20], [9],
[21] can vary considerably in their switching mechanics (see also [14] for an overview). A stability proof
for switched system often requires to find more sophisticated Lyapunov functions taken all different sys-
tem modes into account. In [22], a more relaxed notion of stability is presented together with a verification
methods based on model checking.

5. Conclusion

In this paper, we report on experiences we gained when merging verification techniques from two en-
gineering disciplines: control theory and software engineering.

Control theory has developed numerous techniques to verify certain properties of modeled systems.
One of the most important properties is stability. One fundamental verification technique is finding a Lya-
punov function as an upper bound for the system’s state change. When the Lyapunov function decreases
monotonously, the system changes will become smaller and smaller over time and the system converts
towards a stable point. Another often used verification technique for linear system is the analysis of the
eigenvalues of the system matrix.

It becomes more and more popular in control theory to combine rather trivial systems by some glue code
(written in an imperative programming language) in order to form more complex systems. Here, the behavior
of the overall system depends also from the semantics of the used imperative programming language.

The traditional, math-based verification techniques usually fail to verify such composed systems, because
they do not have a notion of programming constructs. KeYmaeraX is a theorem prover that covers both
areas: continuously and abruptly evolving systems. Very recently, KeYmaeraX was extended by dedicated
verification support for stability properties of dynamic systems. Thus, it is now possible to formally verify

%see https://github.com/LS-Lab/KeYmaeraX-projects/blob/master/stability/switchedsystems.kyx
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the stability also of such systems, which are composed of subsystems and which switch between these
subsystems. The switching decision can be any algorithm encoded by a simple imperative programming
language.

From a practical point of view, the most urgent future work is to find an elegant encoding of the notion

of asymptotic stability within the formalism supported by KeYmaeraX.
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