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KeYmaeraX is a Hoare-style theorem prover for hybrid systems. A hybrid system can be seen as an aggregation of both

discrete and continuous variables, whose values can change abruptly or continuously, respectively. KeYmaeraX supports

only variables having the primitive type bool or real.

Due to the mixture of discrete and continuous system elements, one promising application area for KeYmaeraX are closed-

loop control systems. A closed-loop control system consists of a plant and a controller. While the plant is basically an

aggregation of continuous variables whose values change over time accordingly to physical laws, the controller can be seen

as an algorithm formulated in a classical programming language.

In this paper, we review some recent extensions of the proof calculus applied by KeYmaeraX that make formal proofs on

the stability of dynamic systems more feasible. Based on an example, we �rst introduce to the topic and prove asymptotic

stability of a given system in a hand-wri�en mathematical style. �is approach is then compared with a formal encoding

of the problem and a formal proof established in KeYmaeraX. We also discuss open problems such as the formalization of

asymptotic stability.
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KeYmaeraX – это доказательство теорем в стиле Хоара для гибридных систем. Гибридную систему можно рассмат-

ривать как совокупность дискретных, так и непрерывных переменных, значения которых могут изменяться резко

или непрерывно соответственно. KeYmaeraX поддерживает только переменные, имеющие примитивный тип bool

или real.

Благодаря сочетанию дискретных и непрерывных элементов системы, одной из перспективных областей при-

менения KeYmaeraX являются системы управления с замкнутым контуром. Система управления с замкнутым

контуром состоит из установки и контроллера. В то время как установка в основном представляет собой сово-

купность непрерывных переменных, значения которых меняются со временем в соответствии с физическими

законами, контроллер можно рассматривать как алгоритм, сформулированный на классическом языке програм-

мирования.

В этой статье мы рассмотрим некоторые недавние расширения исчисления доказательств, применяемые KeY-

maeraX, которые делают формальные доказательства устойчивости динамических систем более выполнимыми.

Основываясь на примере, мы сначала познакомимся с темой и докажем асимптотическую устойчивость данной

системы.

Ключевые слова: киберфизическая система; теория управления; функция Ляпунова; императивный язык про-

граммирования
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1. Introduction
�e veri�cation of so�ware has made huge progress over the last 20 years, but is still considered to be

challenging [1]. Many so�ware veri�cation systems such as KeY, FramaC, VeriFast, Dafny and others rely

on a classical Hoare-style calculus [2] for verifying pre-/post-conditions.

�e theorem prover KeYmaeraX and its underlying Di�erential Dynamic Logic [3] were successful in

extending a traditional Hoare-style calculus with capabilities to reason also on the dynamics of continu-

ous functions, which are speci�ed by ordinary di�erential equations (ODEs). More precisely, KeYmaeraX

allows to verify so-called hybrid programs1
to be correct in the sense of ful�lling given pre-/post-condition

contracts. �e language of hybrid programs is a very simple traditional imperative while-language with

assignment, sequential composition, conditional execution, and iteration as basic programming constructs. In

addition, there is support for non-determinism (non-deterministic choice, non-deterministic iteration) and

a very special construct bridging the gap to evolving functions called evolving state. More details on KeY-

maeraX and its supported syntax can be found in tutorial [4]. In [5, 6], we have analyzed some de�ciencies

of the input syntax and present a number of introductory examples.

Control theory is an engineering discipline aiming at analyzing dynamic systems in general. A dynamic

system is modeled by a set of state variables, which typically change their value continuously over time. In

many cases, this change is described by ordinary di�erential equations (ODEs).

Well understood and widely applied are linear dynamic systems, whose dynamic can be described as

ẋ = Ax , where x is a vector of state variables, A the so-called system matrix, and ẋ denotes the derivation of x .

�e stability of linear systems is well-understood and proving it for a given concrete system usually requires

few mathematical arguments: Common techniques are �nding a Lyapunov function [7, 8] or analyzing the

system matrix A together with its eigenvalues.
When modeling real world processes, pure linear systems are o�en not su�cient. However, the overall

system can be modeled in many cases as a system switching through multiple linear subsystems [9]. �e

switching condition can be simple (as in our running examples shown below) or more elaborate. In any case,

we can formulate such conditions using an imperative programming language.

While classical control theory is very successful in analyzing pure linear systems, its mathematical ap-

proaches do not work well when applied to composed system. If the composition scheme is restricted to

few switching schemes, the mathematical analysis remains feasible but becomes cumbersome[9]. A more

elegant solution for this problem could be to encode the composition rules for aggregating the resulting

system in terms of an imperative programming language. To analyze such composed systems, one would

obviously need a notion of the underlying semantics of the used programming language.

�e theorem prover KeYmaeraX is able to capture both the continuous dynamics of systems as well as

algorithms for switching the current mode. We will review in this paper some recent achievements that will

make the formal veri�cation of system stability more feasible. We also discuss some shortcomings of the

dynamic logic and the proof calculus underlying KeYmaeraX.

�is paper is organized as follows: Section 2 presents two linear systems and then two di�erent compo-

sitions of it. �ough the composition algorithms di�er only very slightly, the two resulting systems di�er

dramatically. One of them remains stable, the other one becomes instable. In Section 2, we also give a

mathematical proof for the stability of the �rst composed system. In Section 3, we provide an encoding of

the running examples for KeYmaeraX and outline the formal proof within KeYmaeraX. We also report on

yet unresolved obstacles such as the formulation of the veri�cation goal (asymptotic stability of the overall

system) within the Hoare-style logic supported by KeYmaeraX. In Section 4 we review related work and

Section 5 concludes the paper.

1
�ere is a graphical version of these programs (basically the Control Flow Graph) called hybrid automaton.

328



Notes on Recent Achievements in Proving Stability using KeYmaeraX

2. Running Example
Given is a periodic linear time invariant (LTI) dynamic system in state space form [10]

ẋ(t) = (
0 1
−a 0) x(t) = Ax(t) , x(t = 0) = x0 (1)

with the state vector x = ( x1 , x2 )T , the system matrix A, the parameter a ∈ ℝ0 and the initial condition as

x0 ∈ ℝ2
. Based on the theory of ordinary di�erential equations (ODEs) [11], the periodicity of the solution

of (1) with

x(t) = x(t + T ) , T = 2�√a (2)

is related to the eigenvalues of A denoted as � = eig(A) ∈ ℂ2
with �1 = −j√a and �2 = +j√a. Let us now

consider two systems

Sys1 ≡ ẋ(t) = (
0 1
−a1 0)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
A1

x(t) , Sys2 ≡ ẋ(t) = (
0 1
−a2 0)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
A2

x(t) , (3)

where the parameters ai for i = 1, 2 satisfy the condition

0 < a1 < 1 < a2 . (4)

For illustration, we consider the numerical examples of the form (3) satisfying (4) with

a1 =
1
4 , a2 =

9
4 .

Figure 1 and 2 show the particular solution and phase diagram for the initial value x0 = ( 0 , 3 )T . �e ana-

lytically determined period in (2) of

T1 =
2�√a1

= 4 � , T2 =
2�√a2

= 4 �
3

corresponds to the numerical solution. Let us now examine the dynamics of a system which switches
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Fig. 1: Particular solution x(t) and in the state space of Sys1 for x0 = ( 0 , 3 )T

between the two systems (3) as a function of the current state x . For this purpose, the switching function

switcℎ(x) = x1 x2 (5)
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Fig. 2: Particular solution x(t) and in the state space of Sys2 for x0 = ( 0 , 3 )T

is de�ned to divide the state space into two non-convex subspaces

X1 = { x(t) | switcℎ(x) < 0 } , X2 = { x(t) | switcℎ(x) ≥ 0 } . (6)

Based on these de�nitions, two variants of a switching system can now be speci�ed. �e �rst switching

system SwSys1 is given as

SwSys1 ≡ ẋ(t) =
{
A1 x(t) , switcℎ(x) < 0
A2 x(t) , switcℎ(x) ≥ 0

. (7)

�e second system SwSys2 inverts the switching condition from the �rst system and is given as

SwSys2 ≡ ẋ(t) =
{
A1 x(t) , switcℎ(x) ≥ 0
A2 x(t) , switcℎ(x) < 0

. (8)

Analogous to the previous LTI systems, the switching systems have the same initial condition x0. �e partic-

ular solution of SwSys1 (7) is given in Figure 3. One can clearly see that this system is asymptotic stable for

the given initial condition, i.e. lim
t→∞

x(t) → 0 for x0 = ( 0 , 3 )T . By quadrant switching, two periodic systems

are joined to form an asymptotically stable system.

�e opposite e�ect occurs in the second switching system SwSys2 (8) if the switching condition is re-

versed. Here, the amplitudes of x1(t), x2(t) fastly grow and exceed any bounds. Note that the diagrams of

Figure 4 have on their axis much greater values than all the other diagrams.

In order to understand the e�ect, it is worthwhile to analyze the phase diagrams for both SwSys1 and

SwSys2 (cmp. Fig. 5). As one can see at the le� part, system SwSys1 is enforced in the right-upper and

le�-lower quadrants (note that switcℎ(x) ≥ 0 holds) to have a greater value change for x2 than for x1. For

example, when entering the right-upper quadrant, the value for x1 is 0 and let v be the value for x2. When

leaving this quadrant, the value for x2 is now 0 and x1 has a value, but this is smaller than v. An analogous

behavior we have in the right-lower and le�-upper quadrant, where x1 changes more than x2. In summary,

whenever the trajectory of SWSys1 crosses the diagram axes (x1 = 0 or x2 = 0), the non-zero value of the

coordinate (alternating x1, x2) form a monotonically decreasing series.

For system SwSys2, the opposite is true: When crossing the axes, the non-zero component of the coor-

dinate becomes larger. �us, SwSys2 is not stable.

To sum up, combining two periodic systems Sys1, Sys2 to a switched system can result both in an asymp-

totic stable system SwSys1 or in an unstable system SwSys2. �e di�erence in the de�nition of SwSys1 and

SwSys2 is rather marginal. �erefore, it would be very helpful to have a veri�cation tool able to check

formally, whether the resulting system is stable or not.
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Fig. 3: Particular solution of SwSys1 (7) for x0 = ( 0 , 3 )T

Fig. 4: Particular solution of SwSys2 (8) for x0 = ( 0 , 3 )T

2.1. Lyapunov Stability Analysis

A system is called to be stable, i� the system will never leave an � region around the origin (i.e. |x | < �)

when started in an appropriate � region (|x | < �). Note that � can be freely chosen once � has been �xed.

Both � and � must be positive (� > 0, � > 0). A formalization of this de�nition is presented below in (16).

A system is called to be asymptotic stable, i� in addition limt→∞x(t) = 0 holds. Figure 6 shows a system,

which is stable but not asymptotic stable.

We proceed with a mathematical proof for the stability of the �rst switching system SwSys1 using Lya-

punov’s direct method [7, 8, 12]. We start with considering one - heuristically chosen - Lyapunov function

candidate for the original systems Sys1, Sys2

V (x) = x21 + x22 ∀x ≠ 0 (9)
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Fig. 5: Phase diagram for SwSys1/SwSys2

Fig. 6: De�nition of Stability

�e time derivative of the function V (x) results in

V̇ (x) = 2 x1 ẋ1 + 2 x2 ẋ2 . (10)

Substituting ẋ1 and ẋ2 by the right hand side of the LTI systems in (3) with 0 < a1 < 1 < a2 two Lyapunov

function candidates are obtained for Sys1, Sys2:

V̇1(x) = 2 x1 x2 (1 − a1) , V̇2(x) = 2 x1 x2 (1 − a2) (11)

Each separate function V̇i(x) does not satisfy the requirement of a Lyapunov function with V̇i(x) < 0. ∀x .

�is is valid only segment-wise and with the introduced switching function (5) and switching condition (6)

of x it follows that VSwSys1 is a Lyapunov function with

̇VSwSys1 =
{
2 x1 x2 (1 − a1) < 0 , switcℎ(x) ≤ 0
2 x1 x2 (1 − a2) < 0 , switcℎ(x) ≥ 0

(12)

where ̇VSwSys1 < 0 holds for all x ≠ 0. �e switching condition in (12) corresponds to the one in system

SwSys1 (7) which therefore proves the asymptotic stability.
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3. Running Example for KeYmaeraX
In this section, we will present an elegant and succinct speci�cation of both the linear and the switched

system presented in the previous section using the input formalism of KeYmaeraX. In KeYmaeraX, a dynamic

system is described in form of a program � .

As a �rst a�empt, the linear system Sys1 might look as a program could as follows:

�Sys1 ≡ {x ′ = A1x} (13)

Unfortunately, KeYmaeraX does not allow the usage of state matrix A1 since all constants and variables

have to have a primitive type (real, bool). Also, the state vector x cannot be directly used and must be split

into its components x1, x2. �us, we have to rewrite our �rst a�empt (13) as

�Sys1 ≡ {x1′ = x2, x2′ = −a1 ∗ x1} (14)

�e system Sys1 can be described in KeYmaeraX by just one evolving state. For the system SwSys1, we

combine the two evolving states representing Sys1 and Sys2 using the non-deterministic choice construct

(operator ++) and enclose this by a non-deterministic iteration (operator *):

�SwSys1 ≡ (
{x1′ = x2, x2′ = −a1 ∗ x1 & switcℎ(x) ≤ 0}

++
{x1′ = x2, x2′ = −a2 ∗ x1 & switcℎ(x) ≥ 0}

) ∗

(15)

 

running

x1' = x2

x2' = − a1 * x1

 

    
InSys2

x1' = x2

x2' = − a2 * x1

x1 * x2 ≥ 0

InSys1

x1' = x2

x2' = − a1 * x1

x1 * x2 ≤ 0

Fig. 7: System descriptions of Sys1, SwSys1 in KeYmaeraX (as hybrid automaton)

�e graphical version of the programs (13) and (15) are shown in Figure 7.

3.1. Proving stability using KeYmaeraX

In terms of di�erential dynamic logic, the stability of system SwSys1 formulates as:

∀� (0 < � → ∃� (0 < � ∧ x21 + x22 < � → [�SwSys1] x21 + x22 < �)) (16)

Establishing a formal proof using KeYmaeraX for such a property of system SwSys1 remained for quite a

long time rather a challenge. �is was due to the fact that the proof’s fundamental argument - the Lyapunov

function V (x) = x21 + x22 - could not be encoded directly when establishing the proof.

333



Baar T., Schulte H.

However, Tan and Platzer report in their very recent paper [13], how the proof calculus has been recently

conservatively extended, i.e. new proof rules have been derived and can be used now directly within proof

tactics. One of the new proof rules looks as follows:

Lyap>
⊢ f (0) = 0 ∧ v(0) = 0 ⊢ ∃
 > 0∀x(|x |2 ≤ 
 2 → v > 0 ∧ v′ < 0)

⊢ AStab(x ′ = f (x))
�e formal proof for the stability of the switched system SwSys1 has been published in [14] and is

available online
2
.

Please note, that (16) only formalizes stability but not asymptotic stability. To formulate asymptotic

stability, one would need to encode a situation that is far in the future (limt→∞) as asymptotic stability means

that there will be a point in time, a�er which the system will always remain within an � region. How can we

catch this point in time in a formula de�ning asymptotic stability? In order to formalize asymptotic stability,

one has to choose - probably - a di�erent form than the usual invariant � → [�] that has been successfully

applied for formalizing stability. �is problem has to remain as an open question here. Note, however,

that also the conclusion of [14] considers the formalization of asymptotic stability within KeYmaeraX as an

unsolved problem and future work.

4. Related Work
In his landmark paper published in 1892 (see [7] for a French and [8] for an English translation), A.M.

Lyapunov identi�es and describes mathematical tools for analyzing dynamic systems. A Lyapunov function

for a given system is an energy measure that has to be decreasing/non-increasing as the system evolves over

time. Once an appropriate Lyapunov function is found, it can witness the stability of the system.

Much research has gone into �nding suitable Lyapunov functions automatically. Some numerical ap-

proaches [15], [16] are based on sum-of-square programming techniques while other approaches exploit

Gröbner basis [17], Lie derivatives [18], or constraint solving techniques [19]. Switched systems [20], [9],

[21] can vary considerably in their switching mechanics (see also [14] for an overview). A stability proof

for switched system o�en requires to �nd more sophisticated Lyapunov functions taken all di�erent sys-

tem modes into account. In [22], a more relaxed notion of stability is presented together with a veri�cation

methods based on model checking.

5. Conclusion
In this paper, we report on experiences we gained when merging veri�cation techniques from two en-

gineering disciplines: control theory and so�ware engineering.

Control theory has developed numerous techniques to verify certain properties of modeled systems.

One of the most important properties is stability. One fundamental veri�cation technique is �nding a Lya-

punov function as an upper bound for the system’s state change. When the Lyapunov function decreases

monotonously, the system changes will become smaller and smaller over time and the system converts

towards a stable point. Another o�en used veri�cation technique for linear system is the analysis of the

eigenvalues of the system matrix.

It becomes more and more popular in control theory to combine rather trivial systems by some glue code

(wri�en in an imperative programming language) in order to form more complex systems. Here, the behavior

of the overall system depends also from the semantics of the used imperative programming language.

�e traditional, math-based veri�cation techniques usually fail to verify such composed systems, because

they do not have a notion of programming constructs. KeYmaeraX is a theorem prover that covers both

areas: continuously and abruptly evolving systems. Very recently, KeYmaeraX was extended by dedicated

veri�cation support for stability properties of dynamic systems. �us, it is now possible to formally verify

2
see https://github.com/LS-Lab/KeYmaeraX-projects/blob/master/stability/switchedsystems.kyx
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the stability also of such systems, which are composed of subsystems and which switch between these

subsystems. �e switching decision can be any algorithm encoded by a simple imperative programming

language.

From a practical point of view, the most urgent future work is to �nd an elegant encoding of the notion

of asymptotic stability within the formalism supported by KeYmaeraX.
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