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We present a tableaux procedure that checks logical relations between recursively de�ned subtypes of recursively de�ned

types and apply this procedure to the problem of resolving ambiguous names in a programming language. �is work is

part of a project to design a new programming language suitable for e�cient implementation of logic. Logical formulas

are tree-like structures with many constructors having di�erent arities and argument types. Algorithms that use these

structures must perform case analysis on the constructors, and access subtrees whose type and existence depend on the

constructor used. In many programming languages, case analysis is handled by matching, but we want to take a di�erent

approach, based on recursively de�ned subtypes. Instead of matching a tree against di�erent constructors, we will classify

it by using a set of disjoint subtypes. Subtypes are more general than structural forms based on constructors, we expect that

they can be implemented more e�ciently, and in addition can be used in static type checking. �is makes it possible to use

recursively de�ned subtypes as preconditions or postconditions of functions. We de�ne the types and the subtypes (which

we will call adjectives), de�ne their semantics, and give a tableaux-based inclusion checker for adjectives. We show how to

use this inclusion checker for resolving ambiguous �eld references in declarations of adjectives. �e same procedure can

be used for resolving ambiguous function calls.
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Мы представляем табличную процедуру, которая проверяет логические отношения между рекурсивно опреде-

ленными подтипами рекурсивно определенных типов, и применяем эту процедуру к проблеме разрешения

неоднозначных имен в языке программирования. Эта работа является частью проекта по разработке нового язы-

ка программирования, подходящего для эффективной реализации логики. Логические формулы представляют

собой древовидные структуры со множеством конструкторов, имеющих различные свойства и типы аргументов.

Алгоритмы, использующие эти структуры, должны выполнять анализ вариантов для конструкторов и получать

доступ к поддеревьям, тип и существование которых зависят от используемого конструктора. Во многих языках

программирования анализ прецедентов обрабатывается путем сопоставления, но мы хотим использовать дру-

гой подход, основанный на рекурсивно определенных подтипах. Вместо сопоставления дерева с различными

конструкторами мы будем классифицировать его с помощью набора непересекающихся подтипов.

Подтипы являются более общими, чем структурные формы, основанные на конструкторах, мы ожидаем, что они

могут быть реализованы более эффективно и, кроме того, могут использоваться при статической проверке типов.

Это позволяет использовать рекурсивно определенные подтипы в качестве предварительных условий или посту-

словий функций. Мы определяем типы и подтипы (которые мы будем называть прилагательными), определяем

их семантику и даем проверку включения прилагательных на основе таблиц. Мы показываем, как использовать

эту проверку включения для разрешения неоднозначных ссылок на поля в объявлениях прилагательных. Та же

процедура может быть использована для разрешения неоднозначных вызовов функций.

Ключевые слова: проектирование языков программирования; системы типов; доказательство теорем; построе-

ние компилятора
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1. Introduction
Our goal is to develop a programming language for implementation of logic that is convenient to use

on one hand, and efficient on the other hand. Traditionally, functional languages like OCaml ([1]), Haskell

([2]) or Scala ([3]) are considered the most suitable for implementation of logic.

Functional languages have inductive types, and use matching for accessing subtrees. Matching can be

viewed as simultaneously inspecting a tree and extracting subtrees into local variables. In our proposed

language we want to keep inductive types, but add a mechanism for definition of subtypes, which we will

use both as a replacement for matching, and as a basis for static overload resolution. The subtypes make

it possible to replace matching by usual field access as used in imperative languages like Java or C
++
. We

believe that field access will be more efficient than matching.

We want our language also to support static overloading of function names. In C, defined functions

always must have distinct names. In C
++

and Java, the same name can be reused for different argument

types. The compiler will select the definition that fits best to the arguments. This process is called overload
resolution. In this paper, we study overload resolution only for field names (which is already present in C).

The same technique is applicable to function calls.

We want some imperative features, because efficient run time handling of containers (also called

collections) is difficult in functional setting. In order to obtain this, data must have efficient low level

representation in memory. We allow a restricted form of assignment, only to top level variables and

substructures at nesting depth one. In this way, side effects due to sharing can be avoided.

We will start by explaining the subtype system. At run time, it is used for inspecting data (formulas) so

that we know which fields exist. The advantage of using subtypes for run time classification is that, once

one has the mechanism for defining and verifying them, they are more general than structure matching,

and can be used at many other points in the programming language, also at compile time.

As an example of our approach, suppose one has a propositional formula f , and one wants to know if it

constructed by and. One can either match it into and(F1, F2), or define a subtype ’constructed by and’, and
define two fields f1, f2 that can be accessed only on formulas refined by the subtype ’constructed by and’.
The advantage of subtypes is that they can be easily combined by Boolean operators. For example, it is easy

to define the subtype ’constructed by and or or’, or ’atom’ and use this as a condition in case analysis.

We will call the subtypes adjectives. In addition to adjectives that correspond to simple structural

matchings, our adjective system also allows recursively defined subtypes. This makes it possible to define

for example negation normal form or conjunctive normal form as a subtype of formulas. Although such

recursively defined subtypes can be used for run time classification, they are not intended for this purpose,

because evaluating them at run time would be costly. They are intended to be used for overload resolution

at compile time. If one restricts oneself to adjectives of constant depth (like the ones above), they can be

efficiently checked in constant time at run time.

Adjectives are somewhat similar to liquid types ([4]) or refinement types ([5]) but they have a different

aim. Adjectives are not intended for checking operations whose safety depends on arithmetic. Because of

this, adjectives do not need SMT solving. We prefer the term adjective over subtype or refinement type,
because adjectives can overlap, and are frequently created for one time use. We also want to use adjectives

for static type checking and overload resolution. In order to show that this is possible, we define a procedure

that resolves ambiguous field references in the adjectives themselves.

We start by defining the type and adjective system in this section. In Section 2 we give the semantics,

which can be used for evaluating adjectives ondata, so that they can be used as a replacement for matching.

In Section 3, we give a tableaux-based procedure for deciding satisfiability of adjectives. This procedure

can be used for checking exhaustiveness of a given case analysis, for checking exclusiveness of cases, and

for static type checking. In Section 4 we will apply the tableaux procedure on the problem of resolving
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ambiguous field references in the adjective declarations themselves. A similar algorithm could be used for

resolving ambiguous function calls. We define primitive types:

Definition 1.1. The primitive types are bool, char, nat, double, and selector. We assume that all primitive
types, with the exception of selector, have an order < defined on them.

Type selector is a global enumeration type that consists of named constants. It is intended for defining

subtypes (see Definition 1.2 below), or representing logical operators. Actually, these uses are the same

because the logical operator of a formula defines a subtype at the same time. Enumeration types in Rust

([6]) play a similar role. We write elements of selector as identifiers preceded by a question mark, e.g.

?and,?or,?implies,?equiv, or ?zero,?succ. We give examples of their use below, after the definition

of the type system.

Next we define non-primitive types, and after that follow adjectives. Strictly seen, the definition of

adjectives should come first, because types contain adjectives while adjectives do not contain types. We

find, however, that this order would be unintuitive, because it would be hard to understand the usefulness

of adjectives, without having seen the definition of types. Because of this, we start by introducing types:

Definition 1.2. Simple types are recursively defined as follows:
• A primitive type is a simple type.
• An identifier is a simple type (assuming that it has been defined as type, see Definition 1.4 below).
• If T is a simple type, A is an adjective, then T ◦A is also a simple type.

We recursively define compound types:
1. If v1,… , vn are identifiers, V1,… , Vn are simple types with n ≥ 0, then ( v1∶V1,… , vn∶Vn )

∗ is a compound
type.

2. If C is a compound type, v is an identifier and V is a simple type, then v∶V , C is a compound type as
well.

3. If C1,… , Cm with m ≥ 1 are compound types, A1,… , Am are adjectives, s is an identifier, then s?(A1 ⇒
C1,… , Am ⇒ Cm) is a compound type as well.

In case 1, the fields v1,… , vn are called repeated fields. All other fields defined in cases 2 and 3 are called scalar

fields. In case 3, idenifier s (which must refer to an earlier defined field) is called the pivot field. Case 3 defines
compound types where the existence of later fields depends on the adjective that applies to s.

We distinguish between simple and compound types, because we want every compound type to have a

name, which solves some technical problems. It has no consequences for expressiveness, because one can

always define a compound type, and use the name as simple type. This can be automatically done by the

compiler, if needed. The meaning of T ◦A is: Type T refined by adjective A.

Compound types have a tree structure, where every path is a possible realization of the type. The tree

branches whenever case 3 is used. In that case, identifier s should refer to a field that occurs before it on the

same path. We cannot impose this in Definition 1.2, because trees are constructed bottom up, and the field

s must be defined above it in an application of case 2. We give a simple example of a compound type:

Example 1.3.

T = s∶selector◦(?simp|?vect), s?( ?simp⇒ a∶A, b∶B, ()
∗
, ?vect⇒ c∶C, (d∶D, e∶E )

∗
)

Example 1.3 is purely technical. Type T is not intended to be meaningful. Also note that Definition 1.2 is

awkward to use when defining types in practice because it is intended as technical representation. It is not

intended as the syntax with which the programmer will define types. The first field s is a selector, which

must be either ?simp or ?vect. In case it is ?simp, there are two more scalar fields a of type A, and b of type B.

In case s equals ?vect, there is one more scalar field c of type C, and an unbounded number of repeated fields
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d of type D and e of type E. They must be accessed with array notation d[i] or e[i]. They are implemented

as vectors in C
++
, which means that the repeated part can dynamically grow and shrink, and an object of

type T will be reallocated when it runs out of capacity. Because repeated fields are always last, offsets of

scalar fields do not depend on the number of repeated fields present.

For the moment, we assume that different fields of different types have distinct names. This is an unrealistic

restriction for a real programming language, because field names can be reused in different types. In Section 4

we will allow reuse of field names between different options of a type, and between different types. We will

give a procedure that is able to resolve such ambiguous field references into unambiguous references.

Type definitions need to be stored in a mapping. It is convenient to use two distinct mappings, one for

the simple types, and one for the compound types:

Definition 1.4. We define two mappings ΣS and ΣC . The first mapping maps identifiers to simple types, and
the second mapping maps identifiers to compound types. If ΣS contains a value for v, we write ΣS(v) for the
value. Similarly, if ΣC contains a value for v, we write ΣC (v) for the value. We assume that ΣS and ΣC do not
contain a value for the same variable v.We also assume that ΣS is cycle free.

An example of ΣS not being cycle-free would be when ΣS(v1) = v2◦A2, and ΣS(v2) = v1◦A1. Cycles inside

ΣC are unproblematic, see for example the definition of prop below in Example 1.10.

This completes the definition of the types, next we define adjectives:

Definition 1.5. We recursively define adjectives, starting with primitive adjective constructors:
• If c is a constant of one of the primitive types bool, char, nat, double, then c and c≥ are adjectives.
• If c is a constant of type selector, then c is an adjective.
• empty is an adjective.
• If v is an identifier, then v is an adjective.

Next we define recursive adjective constructors:
• If f is an identifier, and A is an adjective, then f (A) is an adjective.
• If A is an adjective, then first(A) and rest(A) are adjectives.
• If A is an adjective, then ∀A and ∃A are adjectives.

Adjectives of any type can be combined by propositional operators:
• If A1,… , An are adjectives, then A1 ∨⋯ ∨ An, and A1 ∧⋯ ∧ An are also adjectives.
• If A is an adjective, ¬A is also an adjective.

The intuitive meaning of the adjective c is : equal to c. The intuitive meaning of c
≥
is : greater or equal to c.

The intuitive meaning of f (A) is: whose f -field satisfies A. If f is a repeated field, then A must be equal to

empty or have one of the forms ∀A, ∃A, first(A), or rest(A). The meaning of empty is that no repeated fields

are present. The meaning of f (∀A) is that all repetitions of f must satisfy A. Similarly f (∃A) means that at

least one repetition of f must satisfy A. The meaning of first(A) is that f [1] must satisfy A. The meaning of

rest(A) is that all repetitions of f , except for possibly the first, must satisfy A.

Definition 1.6. We assume a mapping ΣA that maps identifiers to pairs of form (T , A), where T is a simple
type, and A is an adjective. If ΣA contains a value for v, we write ΣA(v) for the value.

The intuitive meaning of ΣA(v) = (T , A) is: Identifier v is defined on type T as adjective A.

Definition 1.7. We write A[v] for an adjective that contains v somewhere not inside a subformula of form
f (⋅).We define a cycle as a sequence of identifiers, s.t.

ΣA(v1) = ( T2, A2[v2] ),… ,ΣA(vn−1) = ( Tn, An[vn] ), ΣA(vn) = ( T1, A1[v1] ).
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Cycles are logically problematic when they involve negation. Because the intended meaning of an

adjective is an inductively defined predicate, an adjective defined through a cycle involving negation, would

be ill-defined. This is similar to the situation in logic programming ([7]). Although it would be possible to

adapt Definitions 2.2 and 3.8 to monotonic cycles, we are not aware of a meaningful use of it. Therefore, we

think it is better to forbid cycles altogether. In the rest of this paper, we will assume that ΣA is cycle free. We

give some examples of type and adjective definitions:

Example 1.8. The type of complex numbers can be defined as follows:

complex ∶= re∶double, im∶double, ( )
∗
.

Complex numbers have two scalar fields re and im, and no repeated fields.

Example 1.9. Natural numbers can be defined as follows:

nat ∶= sel∶selector, sel?
(

?zero ⇒ ( )
∗

?succ ⇒ pred∶nat, ( )
∗
)

Adjectives odd and even can be defined on nat in mutual recursion:

even ∶= ( nat, sel(?zero) ∨ ( sel(?succ) ∧ pred(odd) ) )

odd ∶= ( nat, sel(?succ) ∧ pred(even) )

Example 1.10. We define propositional logic:

prop ∶= op∶selector, op?

⎛

⎜

⎜

⎜

⎜

⎝

?var ⇒ ( c∶char )
∗

?not ⇒ sub∶prop, ( )
∗

?implies∨?equiv ⇒ sub1∶prop, sub2∶prop, ( )
∗

?and∨?or ⇒ ( subn∶prop )
∗

⎞

⎟

⎟

⎟

⎟

⎠

There is no need to define ⊤ or ⊥ separately, because ⊤ = ⋀∅, and ⊥ = ⋁∅. A variable consists of

?var combined with a finite number of characters. A negation consists of ?not combined with a single

subformula called sub.A conjunction or disjunction consists of ?and or ?or, followed by an arbitrary number

of subformulas called subn.We define a few adjectives on prop:

Example 1.11. ’Constructed by ?and’ can be expressed as op(?and). ‘Constructed by ?and or ?or’ can be
expressed as op(?and∨?or). The property of being an atom can be expressed by

atom ∶= ( prop, op(var) ).

The property of being a literal can be expressed by

literal ∶= ( prop, atom ∨ ( op(?not) ∧ sub(?atom) ) ).

Negation normal form (NNF) can be expressed by:

nnf ∶= ( prop, ⋁

{

literal

op(?and∨?or) ∧ subn( ∀nnf )
).

Conjunctive normal form (CNF) can be defined as follows:

cnf ∶= ( prop, op(?or) ∧ subn(∀(op(?and) ∧ subn( ∀literal ))) ).
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Case 3 in Definition 1.2 introduces fields whose existence depends on the adjectives fulfilled by the

pivot s. For type prop, the sub field only exists when the op field equals ?not, which can be expressed by

the adjective op(not). Similarly, field sub1 exists only when op(?implies∨?equiv). The following definition

specifies how to obtain preconditions from the definition of the compound type.

Definition 1.12. Let f be a exact identifier that is declared as field in a compound type C. We recursively
define the precondition of f , written as PREC(C, f ), as follows:

• if C has form ( v1∶V1,… , vn∶Vn )
∗
, then PREC(f , C) = ⊤.

• If C has form v∶V , C
′
, and f = v, then PREC(f , C) = ⊤. If f is declared in C

′
, then PREC(f , C) =

PREC(f , C
′
).

• If C has form s?(A1 ⇒ C1,… , Am ⇒ Cm), and f = s, then PREC(f , C) = A1 ∨⋯ ∨Am. Otherwise, f must
be declared in exactly one Cj .We define PREC(f , C) = s(Aj) ∧ PREC(f , Cj).

Since f can occur in ΣC only once, it is possible to write PREC(f ) instead of PREC(f , C),where C is the compound
type that contains f .

2. Semantics of Types and Adjectives
We will describe the semantics of adjectives and types using a simplified high level representation

of data. We assume that data are represented by trees whose subtrees are labeled with field names. This

representation is convenient for defining the semantics without having to consider low level details like

memory lay out. In the implementation we use a low level representation, where scalar fields have a fixed

offset, and repeated fields have an offset that can be computed by multiplying the index with the size of the

repeated part, and adding a base offset.

Definition 2.1. We define the set of data trees D, and the set D of finite sequences of data trees, in simultaneous
recursion:

• If d is an element of one of the primitive types T , defined in Definition 1.1, then d ∈ D.
• If d1,… , dn (n ≥ 0) is a finite sequence of data trees, then (d1,… , dn) ∈ D.We will write ‖D‖ for the length
n of D.

• If f1,… , fn are pairwise distinct identifiers, and each di ∈ D ∪ D, then {(f1, d1),… , (fn, dn)} ∈ D.

Data trees of the third type can be viewed as partial functions mapping each fi to di , such that di is either a
data tree or a sequence of data trees. When d is of the third type, we write d.f for the value attached to f when
it exists. If d.f ∈ D, we write d.f [i] for its i-th element, assuming that i ≤ ‖d.f ‖.

Wewill define when a data tree has a given type, and when a data tree (or sequence of data trees) satisfies

a given adjective. Types may contain adjectives, but adjectives do not contain types. Therefore, we start by

defining when a data tree (or sequence of data trees) makes an adjective true:

Definition 2.2. We define in simultaneous recursion when a data tree makes an adjective true, and when a
sequence of data trees makes an adjective true. We use the notation d ⊧ A for both cases.
We first consider the cases where d ∈ D ∶

• If c is a constant, then d ⊧ c iff d = c, and d ⊧ c≥ if d ≥ c.

• If f is an identifier, s.t. d.f exists, then
– if d.f is a single data tree, then d ⊧ f (A) iff d.f ⊧ A.
– if d.f is a sequence of data trees, d ⊧ f (A) iff d.f ⊧ A.

The two cases appear to be the same, but d.f have different types, hence we prefer to list them separately.
• If v is an identifier, s.t. ΣA(v) is defined, and d ∈ D, then d ⊧ v iff d ⊧ ΣA(v).

Next we list the cases where d ∈ D ∶

• (d1,… , dn) ⊧ empty iff n = 0.
• (d1,… , dn) ⊧ ∀A iff for every di we have di ⊧ A.
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• (d1,… , dn) ⊧ ∃A iff there exists a di such that di ⊧ A.
• (d1,… , dn) ⊧ first(A) iff n ≥ 1 and d1 ⊧ A.
• (d1,… , dn) ⊧ rest(A) iff n ≥ 1 and (d2,… , dn) ⊧ A.

The definitions for the propositional connectives are standard, both for d ∈ D and d ∈ D ∶

• d ⊧ A1 ∨⋯ ∨ An if there is an i (1 ≤ i ≤ n), s.t. d ⊧ Ai .
• d ⊧ A1 ∧⋯ ∧ An for all i (1 ≤ i ≤ n), one has d ⊧ Ai .
• d ⊧ ¬A iff not d ⊧ A.

We define when a tree has a certain type:

Definition 2.3. We recursively define when a data tree d has type T . We use notation d∶T . We first list the
cases where T is simple:

• For a primitive type T , we define d∶T as d ∈ T .
• If v is an identifier that is defined in ΣS , then d∶v iff d∶ΣS(v).
• If v is an identifier that is defined in ΣC , then d∶v iff d∶ΣC (v).
• d∶(T ◦A) iff d∶T and d ⊧ A.

Next we list the cases where T is compound:
• d∶( v1∶V1,… , vn∶Vn )

∗ iff either
– n = 0, or
– n > 0 and d.v1,… , d.vn are all defined, are all in D, have the same length L = ‖d.v1‖ = ⋯ = ‖d.vn‖,

and for every i (1 ≤ i ≤ n) and j (1 ≤ j ≤ L), we have d.vi[j]∶Vi .
• d∶(v∶V , C) iff d.v is defined, d.v∶V , and d∶C.
• d∶ s?(A1 ⇒ C1,… , Am ⇒ Cm) iff d.s is defined, in D, and there is exactly one 1 ≤ i ≤ m, s.t. d.s ⊧ Ai and
d∶Ci .

Example 2.4. Following up on Example 1.8, we can see that { (re, 1.0), (im, 2.0) } has type complex.

Example 2.5. Using the declaration of prop in Example 1.10, the propositional formula p will be represented
by a data tree dp with fields

dp .op = ?atom

dp .c = (
′
p
′
)

The propositional formula q will be represented by dq with fields

dq .op = ?atom

dq .c = (
′
q
′
)

Similarly, the propositional formula r will be represented by dr with

dr .op = ?atom

dr .c = (
′
r
′
)

The formula q ∨ r will be represented by d with

d.op = ?or

d.sub = (dq , dr )

Finally, the formula p → (q ∨ r) will be represented by d′ with

d.op = ?implies

d.sub1 = dp

d.sub2 = d
′
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3. A Tableaux Calculus
In this section we define a calculus for checking satisfiability of adjectives. This is sufficient to answer

all logical questions that are needed for the implementation of our programming language. In order to show

that adjectives A1,… , An cover all possible cases in a switch, it is sufficient to show that A ∧ ¬A1 ∧⋯ ∧ ¬An

is unsatisfiable, where A is the adjective part of the type of the switch expression. In order to show that

a switch has no overlapping cases, it is sufficient to show that A ∧ Ai ∧ Aj is unsatisfiable for all distinct i

and j. In order to show that a function f1 defined on adjective A1 is a better fit than function f2 defined on

adjective A2, it is sufficient to show that A1 ∧ ¬A2 is unsatisfiable, while A2 ∧ ¬A1 is satisfiable.

In order to use our calculus, types need to be decomposed into their adjective part, and the part

that specifies their implementation. The calculus needs the adjective part of a type, but does not use

the implementation. We will define two functions that decompose a simple type into their adjective and

implementation components.

Definition 3.1. An implementation type is either a primitive type, or an identifier defined in ΣC , i.e. the name
of a compound type. For a simple type T , we define ADJ(T ) and IMPL(T ) as follows:

• If T is primitive then ADJ(T ) = ⊤, and IMPL(T ) = t.
• If v is an identifier defined in ΣC , then ADJ(v) = ⊤, and IMPL(v) = v.
• ADJ(T ◦A) = ADJ(T ) ∧ A, and IMPL(T ◦A) = IMPL(T ).

For example, if T = prop◦nnf◦cnf, then ADJ(T ) = nnf ∧ cnf, and IMPL(T ) = prop.

Theorem 3.2. If T is a simple type, and d is a data tree, then d∶T iff d∶IMPL(T ) and d ⊧ ADJ(T ).

The theorem can be easily verified by applying the rules of Definition 2.2.

At this point, we can define a simple interface of our tableaux procedure. Its input is just a single type T .

The procedure establishes that there exists no data term d with type T . The applications that we mentioned

in the introduction, can be obtained as follows:

• Establish that there exists no data term d of type T that satisfies adjective A ∶ Call the procedure with

T ◦A.

• Establish that every data term d of type T , that satisfies A, must also satisfy B ∶ Call the procedure

with T ◦A◦¬B.

The procedure works on the following normal form, which is similar to negation normal form:

Definition 3.3. We recursively define when an adjective is in path normal form (PNF):
• If c is a constant of a primitive type, then c, ¬c, c≥ and ¬c≥ are in PNF. In the last two cases, c cannot
have type selector.

• empty and ¬empty are in PNF.
• If v is an identifier, then v and ¬v are in PNF.
• If A is in PNF, then f (A), first(A), rest(A), ∀A, and ∃A are in PNF.
• If A1,… , An (n ≥ 0) are in PNF, then A1 ∨⋯ ∨ An and A1 ∧⋯ ∧ An are in PNF.

Definition 3.4. An adjective A can be brought into PNF by calling PNF(A, pos), where PNF(A, p) is defined by
cases as follows:
If A has form c, c

≥
, empty, or v, then

PNF(A, pos) = A

PNF(A,neg) = ¬A
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For the remaining cases:

PNF(A1 ∨⋯ ∨ An, pos) = PNF(A1, pos) ∨⋯ ∨ PNF(An, pos)

PNF(A1 ∨⋯ ∨ An,neg) = PNF(A1,neg) ∧⋯ ∧ PNF(An,neg)

PNF(A1 ∧⋯ ∧ An, pos) = PNF(A1, pos) ∧⋯ ∧ PNF(An, pos)

PNF(A1 ∧⋯ ∧ An,neg) = PNF(A1,neg) ∨⋯ ∨ PNF(An,neg)

PNF(f (A), p) = f ( PNF(A, p) ) for p ∈ {pos,neg}
PNF(first(A), p) = first( PNF(A, p) ) for p ∈ {pos,neg}
PNF(rest(A), p) = rest( PNF(A, p) ) for p ∈ {pos,neg}
PNF(∃A, pos) = ∃ PNF(A, pos)

PNF(∃A,neg) = ∀ PNF(A,neg)

PNF(∀A, pos) = ∀ PNF(A, pos)

PNF(∀A,neg) = ∃ PNF(A,neg)

PNF(¬A, pos) = PNF(A,neg)

PNF(¬A,neg) = PNF(A, pos)

The following theorem can be straightforwardly proven, using Definition 2.2:

Theorem 3.5. Let A be an adjective. For every data tree d, we have d ⊧ A iff d ⊧ PNF(A, pos). Similarly, d ⊧ ¬A
iff d ⊧ PNF(A,neg).

The path normal form of ¬(A ∨ f (rest(∀¬B))) equals ¬A ∧ f (rest(∃B)).

Definition 3.6. We define a path as a finite sequence (f1,… , fn)with (n ≥ 0),where each fi is either an identifier
(representing a field name), or an element of {∃, ∀, first, rest}.We write � for the empty path, and use notation
�.f for extending path � with f . If path � ′ can be obtained from path � by zero or more extensions, we call �
a prefix of � ′.We call � a strict prefix of � ′ if at least one extension was used.

We assume that there exists a total order < on paths with the property that if �1 is a strict prefix of �2, then
�1 < �2. Such an order can be easily obtained by fixing a total order on all possible fi , and using the alphabetic,
lexicographic extension.

Definition 3.7. An adjective stack S is a finite sequence of triples (�i , Ai , �i), where each �i is a path, each Ai
is an adjective, and each �i ∈  . We write S[�] for the set {A | ∃� s.t. (�, A, �) occurs in S } and S�[�] for the
set {A | (�, A, �) occurs in S }.

The attribute �i stores the level of Ai on path �i . More precisely, an adjective that was obtained from a

formula on a strict prefix of �i will have level 0. An adjective that was obtained from an adjective with level

� on the same path, receives level � + 1.

We define the tableaux procedure. In order to obtain termination, the procedure uses a blocking rule.

Whenever a new path � is entered, it checks that there is no strict prefix �
′
of � containing a set of adjectives

that are included in the formulas on the current path. For example, if path (f ) contains A, B, and path (f , g)

contains formulas A, B, C, we can close the branch. This rule is correct, because for every data tree d, the

subtree d.f .g is a subtree of d.f . If it is possible that d.f .g ⊧ A ∧ B ∧ C, then one can replace d.f by d.f .g and

obtain a smaller data tree, for which d.f ⊧ A ∧ B.

The tableaux procedure always tries to extend in deterministic fashion first. If that does not result in a

conflict, it selects a path � and tries all possible non-deterministic choices on this path. It keeps on trying

until it either has explored all choices, or obtained a consistent stack S.

Definition 3.8. We define a procedure that tries to establish that no data term d can have type T . The procedure
starts by creating a stack with one element:

S = ( (�,ADJ(T ), 0) ).
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After that, it calls b = deterministic(0). If b = ⊥, it returns ⊥. Otherwise, it returns nondeterministic(�).

We list the subprocedures, starting with the procedure deterministic(d). All subprocedures have access to the
stack S.We write ‖S‖ for the size of the stack, and write the i-th element in the form Si = (�i , Ai , �i).

Procedure deterministic(d) must be called with a natural number 1 ≤ d ≤ ‖S‖. It returns ⊥ or ⊤, with ⊥

indicating contradiction. The implementation is as follows:
1. Set c = d.
2. If c ≤ ‖S‖, then

• If A has form v with v an identifier that has no definition in ΣA, then return ⊥.
• If A has form ¬c

≥ with c the minimal element in its type, then return ⊥.
• For all i < c with �i = �c , check whether Ai and Ac are in conflict, using the rules listed below. If
they are in conflict, return ⊥. Otherwise try the next �i . The rules are:
– A complementary pair A,¬A is in conflict.
– A pair c1, c2 of any primitive type with c1 ≠ c2 is in conflict.
– A pair of form ¬c

≥

1
, c

≥

2
with c1 ≤ c2 is in conflict.

– A pair of form c
≥

1
, c2 with c1 > c2, is in conflict.

– A pair of form ¬c
≥

1
, c2 with c1 ≤ c2 is in conflict.

• Assign c = c + 1 and go back to step 1.
3. If d ≤ ‖S‖, check if one of the deterministic extension rules in the table below is applicable on Ad . If yes,

then for every deterministic consequence A′, push (�d , A′, �d + 1) to S.

v ⇒ PNF(A, pos) if ΣA contains a definition of form v ∶= (T , A)

¬v ⇒ PNF(A,neg) if ΣA contains a definition of form v ∶= (T , A)

∀A ⇒ empty ∨ ( first(A) ∧ rest(∀A) )

∃A ⇒ ¬empty ∧ ( first(A) ∨ rest(∃A) )

A1 ∧⋯ ∧ An ⇒ Ai for each 1 ≤ i ≤ n

4. If Ad has form f (A
′
), then push (�d .f , A′, 0) and (�d .f ,ADJ(T ), 0) to S, where ADJ(T ) is the adjective

component of the type T of f .
5. Set d = d + 1. Goto step 1.

Procedure nondeterministic(� )must be called with a path � that occurs in S. It returns⊥ or⊤,with⊥ indicating
contradiction. The implementation is as follows:

1. For every strict prefix � ′ of �, do:
(a) if S0[� ′] ⊆ S[�], then return ⊥. (This is the blocking rule, mentioned above.)

2. Call nondeterministic(�, 1).

Procedure nondeterministic(�, n)must be called with a path � that occurs in S, and with 1 ≤ n ≤ ‖S‖. It returns
⊥ or ⊤, with ⊥ indicating contradiction. The implementation is as follows:

1. Find the smallest n′ ≥ n, such that An′ has form A1 ∨⋯ ∨ Am with m ≥ 2.

2. If no n′ was found in the previous step, then find the next path � ′ > � occurring in S, using the alphabetic
lexicographic order >. Call b = nondeterministic(�

′
) and return b. If no path could be found, return ⊥.

3. Set n = n′.We know that Sn has form (�, A1 ∨⋯ ∨Am, �), with m ≥ 2. For i from 1 to n, do the following:
• Set s = ‖S‖. Push (�, Ai , � + 1) on the stack.
• Call b = deterministic(s). If b ≠ ⊥, call b = nondeterministic(�, n + 1). If b = ⊤ return ⊤.
• Restore S to length s.

4. Set n = n + 1. Restart at step 1.

Procedurenondeterministic(� ) implements a loop checkerwhich guarantees termination. Its correctness

is based on the fact that, if a satisfying data tree can be found, it can be pruned into a data tree in which the

calculus does not repeat initial states. We state the following without proof:
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Theorem 3.9. The tableaux calculus of Definition 3.8 terminates.

In order to establish correctness of Theorem 3.9, it is sufficient establish that every branch is finite. During

search, the procedure will only introduce subadjectives of the initial type, combined with subadjectives of

identifiers defined in ΣA. Therefore, blocking must eventually happen.

Theorem 3.10. The procedure of Definition 3.8 is complete.

Доказательство. The proof will be a bit informal. We have to prove that if no data tree d with d∶T exists,

then the procedure of Definition 3.8 will reject T . We will prove the converse: If T is not rejected, then

there exists a data tree d, s.t. d∶T . Suppose that T is not rejected. This implies that the procedure terminates

with an open branch. Let S = (�1, A1, �1),… , (�n, An, �n) be the state of the stack with which the tableaux

procedure terminated.

For a path occurring in S, let

S(� ) = {A ∣ S contains a tuple (�i , Ai , �i), s.t. �i = � and Ai has form c, c
≥
or ¬c

≥
}.

For an arbitrary constant c, define

I (c) = {c}

I (c
≥
) = {c

′
| c
′
≥ c},

I (¬c
≥
) = {c

′
| c
′
< c}.

It is easily checked that for every � occurring in S, we have ⋂{I (A) ∣ A ∈ S(� )} ≠ ∅, because otherwise the

branch would be closed. Hence, we can select a constant c� from each such set. Let AS be the adjective

AS =⋀{� (c� ) | � occurs in S}.

The adjective AS states that for a given data tree d, selecting field sequence � will result in constant c� . It is

easy to construct a data tree dS , s.t. dS ⊧ AS by starting with the required constants, and combining them as

required by AS .We show by backward induction (that is from n towards 1), that

dS ⊧ �i(Ai) ∧⋯ ∧ �n(An).

Assume that we already have established that dS ⊧ �i+1(Ai+1) ∧ ⋯ ∧ �n(An). We proceed by case analysis on

the form of Ai .We need to consider only the forms of Ai that do not close the branch.

• if Ai is an identifier v, then we know that v has a definition (T , A
′
) in ΣA, since otherwise the

branch would have been closed. Hence we know that PNF(A
′
, pos) occurs among Ai+1,… , An. As a

consequence, dS ⊧ PNF(A
′
, pos). By Theorem 3.5, we know that dS ⊧ A

′
.

• If Ai is a negated identifier ¬v, then if v has no definition in ΣA,we have dS ̸⊧ �i(v), so that dS ⊧ �i(¬v).

If v has a definition (T , A
′
) in ΣA, then PNF(A

′
,neg) occurs among Ai+1,… , An. By induction, dS ⊧

PNF(A
′
,neg). By Theorem 3.5, we have dS ⊧ ¬A

′
.

• The other cases can be obtained by inspecting the cases in Definition 2.2.

Theorem 3.11. The procedure of Definition 3.8 is sound.

Доказательство. In order to prove soundness, one must prove that if the procedure rejects a type T , then

there is no data tree d with d∶T .We will prove the converse: If there is a data tree d with d∶T , then T will

not be rejected by the procedure.

This would be trivial, if the blocking rule would not exist. It is easy to show that if d∶T , there exists a

stack S = (�1, A1, �1),… , (�n, An, �n), with (�1, A1, �1) = (�,ADJ(T ), 0), that represents an open branch of the

tableaux procedure when the blocking rule is not used.
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Now assume that S will be closed when the blocking rule can be used. We will show that there exists a

shorter stack S
′
which also starts with S

′

1
= (�,ADJ(T ), 0), and which also represents an open branch of the

tableaux procedure when the blocking rule cannot be used. Repeating this process will result in a stack that

does not contain any more applications of the blocking rule.

Let S be a stack with S1 = (�,ADJ(T ), 0), taken from an open branch of the tableaux procedure, when

blocking is not used. Suppose that somewhere in S, the blocking rule would be applicable. This means that

there exist � and �
′
, s.t. �

′
is a strict prefix of �, and S0[�

′
] ⊆ S[�].We prune S as follows:

• Remove every (�i , Ai , �i), s.t. �
′
is a prefix of �i and �i is a strict prefix of �.

• For every (�i , Ai , �i), s.t . which � is a prefix of �i write �i as � ⋅ �
′

i
, and replace it by �

′
⋅ �

′

i
.

It can be checked that the resulting S
′
is shorter, because there is at least one (�i , Ai , �i) with �i = �

′

which will be removed. Moreover, S
′
still represents an open branch of the tableaux procedure without

blocking. Hence we can continue the procedure and obtain an open branch on which the blocking rule is

not applicable.

4. Resolving Overloads in Types and Adjectives
Until now we have insisted that field and adjective names are always unique. In Example 1.10, we used

sub, sub1, sub2, and subn as different variations of the name sub, dependent on whether we were taking a

subformula of a negated formula, a formula constructed by a binary operator, or a formula constructed by

an n-ary operator.

Similarly, we did not consider reuse of adjective names between different types. In reality, it is perfectly

possible to have different types of formulas, for example modal, first-order and propositional, and define

different nnf adjectives on each of them.

Modern programming languages like C
++

or Java allow the use of ambiguous names which are made

unambiguous by the compiler. For example, in C
++
, one can define different print operators << on different

types, and the compiler will pick the right one, when the programmer writes <<. This is called overload
resolution. Without overload resolution, the programmer needs to invent a new name for every type that

needs to be printed. For example, in C one has to include the type in the name of a print function, like

printfol or printmodal.
We want overload resolution in our programming language: it should be possible that the user defines

different nnf adjectives on different types and reuses the same name ’nnf’ for them. Similarly, we want that

the user can call all variations sub, sub1, sub2 and subn, just ’sub’.

Concretely, we want overload resolution on field names, adjective names, and function names. There

will be no overload on type names, because we think it is unfeasable, and allowing ambiguous type names

would result in ambiguous code.

In order to handle overload resolution, we introduce what we call inexact identifiers. Inexact identifiers
are the identifiers that are used by the programmer in the program. We will call the identifiers that we have

been using until now, exact identifiers. We assume a function v
?
that maps exact identifiers v to their inexact

representations. The inexact representations are used in the program. As an example, one can introduce an

inexact name sub and set sub
?
= sub

?

1
= sub

?

2
= sub

?

n
= sub.Whenever identifier ‘sub’ occurs in the program,

the compiler has to find out which of the exact variations of sub is meant. We define inexact identifiers:

Definition 4.1. We assume an infinite set of inexact identifiers. We assume amap v? that maps exact identifiers
v to inexact identifiers.

Now we explain how inexact identifiers are used in the program. In order to do that, we modify the

definitions of type and of adjective. In Definition 1.2, in the definition of compound types, we make the

following modifications:

1. the identifiers v1,… , vn, are inexact.
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2. the identifier v is inexact.

3. identifier s is inexact.

In Definition 1.5, we will allow the identifiers v and f to be inexact. Apart from that, there are no

changes.

Example 4.2. We define propositional and multimodal logic:

ident ∶= ( c∶char )
∗
.

prop ∶= op∶selector, op?

⎛

⎜

⎜

⎜

⎜

⎝

?var ⇒ ident, ( )
∗

?not ⇒ sub∶prop, ( )
∗

?implies∨?equiv ⇒ sub1∶prop, sub2∶prop, ( )
∗

?and∨?or ⇒ ( sub∶prop )
∗

⎞

⎟

⎟

⎟

⎟

⎠

Similarly, one can define multimodal logic with inexact identifiers:

modal ∶= op∶selector, op?

⎛

⎜

⎜

⎜

⎜

⎜

⎝

?var ⇒ ident, ( )
∗

?not ⇒ sub∶prop, ( )
∗

?implies∨?equiv ⇒ sub1∶prop, sub2∶prop, ( )
∗

?and, ?or ⇒ ( sub∶prop )
∗

?box∨?dia ⇒ sub∶prop, ( )
∗

⎞

⎟

⎟

⎟

⎟

⎟

⎠

In Example 4.2, the inexact field name sub occurs both in prop and in modal. In type prop, it occurs one

time as scalar field, and one time as repeated field. If one knows that that f .op = ?var, one can access f .sub.

If one knows that f .op ∈ {?and, ?or}, one can access f .sub[i]. Fieldname sub also occurs three times in type

modal, two times as a scalar field, and one time as a repeated field.

Example 4.3. The adjectives atom and literal can be defined both on prop and on modal:

atom∶prop ∶= op(?var)

atom∶modal ∶= op(?var)

literal∶prop ∶= atom ∨ op(?not) ∧ sub(?atom)

literal∶modal ∶= atom ∨ op(?not) ∧ sub(?atom)

Similarly, NNF can be defined both on prop and on modal:

nnf∶prop ∶=⋁

{

literal

op(?and∨?or) ∧ sub(∀nnf)

nnf∶prop ∶=⋁

⎧
⎪
⎪

⎨
⎪
⎪
⎩

literal

op(?and∨?or) ∧ sub(∀nnf)

op(?box∨?dia) ∧ sub(nnf)

In the example, there are different occurrences of sub, and it has to be determined which of the possible

definitions is being referred to. Before we start discussing the treatment of inexact identifiers, note that

defined identifiers in ΣS , ΣC and ΣA are always exact. Moreover, we do not allow the use of ambiguous type

names. This means that when a defined or built-in type is used, it must be referred to by its exact name.

Resolving of inexact identifiers starts with a preprocessing step on ΣS and ΣC . During this step, declared

fields are replaced by unique exact identifiers, and any adjectives used in field declarations are moved to ΣA.

This is done by replacing them with a unique exact identifier, and defining this identifier in ΣA. After the

preprocessing step, all inexact identifiers are in adjectives in ΣA.

427



de Nivelle H.

Adjectives occurring in the types of function declarations will be dealt with in the same way. They are

replaced with identifiers, defined in ΣA, somewhat similar to the way subformulas are replaced in the CNF

transformation ([8]). In our case the goal is not efficiency, but to make overload resolution possible in the

first place.

We allow reuse of the same inexact field name in a compound type, as long as the different occurrences

of the field name are in different states of the type. For example in prop in Example 4.2, it is possible to reuse

fieldname sub between formulas built by ?not and formulas built by ?and∨?or, but renaming both fields sub1

and sub2 into sub at the same time would be impossible. It would be still possible to rename one of them

into sub.

We first discuss how type definitions in ΣS and ΣC are processed.

Definition 4.4. Let D = (w1∶W1,… , wn∶Wn ) be a sequence of declarations. Let wn+1∶Wn+1 be a single
declaration. We define

D + (wn+1∶Wn+1) = (w1∶W1,… , wn+1∶Wn+1 ).

Definition 4.5. We define procedure preprocsimple(T ) that preprocesses a simple type T . The result is again
a simple type. It makes additions to ΣA in the process.
The implementation of preprocsimple(T ) is as follows:

• Let A = ADJ(T ), and let T ′ = IMPL(T ). If A = ⊤, then return T
′
. If A ≠ ⊤, then create a new exact

identifier �, assign ΣA(�) ∶= (T ′, A), and return T ′◦�.

Definition 4.6. We define procedure preproccompound(C, D) that preprocesses a compound type C within
declaration context D. The second argument is is used for checking that no inexact identifier is reused on a
possible realization of C.

• If C has form ( v1∶V1,… , vn∶Vn )
∗
, then

– if there exist (w∶W ) ∈ D and 1 ≤ i ≤ n, s.t. w?
= vi , then create an error.

– if there exist 1 ≤ i < j ≤ n, s.t. vi = vj , then create an error.
– Otherwise, create new, exact identifiers ei for each vi , and set e?i = vi .
– Set V ′

i
= preprocsimple(Vi).

– Return ( e1∶V ′

1
,… , en∶V

′

n
)
∗
.

• If C has form (v∶V , C
′
) then if there is a (w∶W ) ∈ D, s.t. w?

= v, create an error.
Otherwise, let e be a new, exact identifier for v. Set e? = v. Set V ′

= preprocsimple(V ). Return

e∶V
′
, preproccompound(C

′
, D + (e∶V

′
) ).

• If C has form s?(A1 ⇒ C1,… , Am ⇒ Cm), then there must a be unique (w∶W ) ∈ D, s.t. w?
= s.

– If no such w exists, or w is not unique, then create an error.
– Otherwise, create new exact identifiers �1,… , �m, and set ΣA(�j) = (W,Aj), for each 1 ≤ j ≤ m.
– After that, return

w?( �1 ⇒ preproccompound(C1, D),… , �m ⇒ preproccompound(Cm, D) ).

We now apply procedures preprocsimple and preproccompound as follows:

• For every identifier v in the domain of ΣS , replace ΣS(v) by preprocsimple( ΣS(v) ).

• For every identifier v in the domain of ΣC , replace ΣC (v) by preproccompound( ΣC (v), ( ) ).

Example 4.7. After being replaced by preproccompound, the definition of propwill have the following form
in ΣC ∶

prop ∶= op∶selector,

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

�1 ⇒ ident, ( )
∗

�2 ⇒ sub∶prop, ( )
∗

�3 ⇒ sub1∶prop, sub2∶prop, ( )
∗

�4 ⇒ ( subn∶prop )
∗

428



A Recursive Inclusion Checker for Recursively Defined Subtypes

�1∶selector ∶= ( selector, ?var )

�2∶selector ∶= ( selector, ?not )

�3∶selector ∶= ( selector, ?implies∨?equiv )

�4∶selector ∶= ( selector, ?and∨?or )

At this moment, we havemoved all inexactness into ΣA.Adjective definitions in ΣA have form ΣA(v) = (T , A),

where v is an exact identifier, T is the type onwhich the defined adjective can be aplied, andA is the adjective.

Unfortunately, T is a simple type, which also may contain inexact adjectives. As an example where this could

occur, one could define adjective cnf (Example 1.10) on prop◦nnf instead of prop. The definition would have

form ΣA(cnf) = ( prop◦nnf, A
′
), where A

′
is an inexact version of the expression given in Example 1.10, and

nnf has a definition of form ΣA(nnf) = ( prop, A
′′
), where A

′′
is the expression of Example 4.3.

In order to solve this, we apply a preprocessing stage on ΣA, similar to the preprocessing of ΣS . We

replace all adjectives occuring in domains by exact identifiers, while adding the definitions to ΣA.

• For every identifier v in the domain of ΣA, write ΣA(v) as (T , A). After that, replace ΣA(v) by

( preprocsimple(T ), A).

Note that the call of preprocsimplemay implicitly add new identifiers to ΣA. These new identifiers need not

be considered because their domain is an implementation type without adjectives. Hence there is no risk

of non-termination. Unfortunately, there potentially exists a circular dependency between preconditions of

adjectives that is hard to detect, as illustrated by the following example:

Example 4.8. Suppose that ΣA contains adjective definitions with the following circular structure:

v1 ∶= ( T1◦�1,⋯ )

v2 ∶= ( T2◦�2,⋯ )

⋯

�1 ∶= ( T1,⋯ v
?

2
⋯ )

�2 ∶= ( T2,⋯ v
?

1
⋯ )

If at some other point an occurrence of v?
1
needs to be resolved, then v1 is an overload candidate. In order to

decide if v1 should be used, one has to resolve the adjective of ΣA(�1), which contains v?
2
. In order to decide if v2

is an overload candidate for this occurrence of v?
2
, one has to resolve the adjective in Σ(�2), which again contains

v
?

1
. This circular dependency is not solvable. Note that using v?

1
or v?

2
inside the right hand side of v1 or v2 is

unproblematic.

The circular dependency in Example 4.8 is unsolvable, so the compiler has to reject it. Unfortunately, it

is difficult to detect, because it only exists if the use of v
?

2
in Σ(�1) is applied on implementation type T2, and

the use of v
?

1
in Σ(�2) is applied on implementation type T1. If for example the use of v

?

2
in Σ(�1) is not on T2,

then v2 is not a candidate for overload, and there is no problem.

We solve this problem by starting to resolve an adjective definition, and whenever we encounter a

precondition that has to be resolved first, we recursively try to solve this precondition. If this iteratively

results in returning to the original definition, we reject ΣA. In order to detect when we returned to the

original definition, we maintain a set E of adjective definitions that we have encountered already. A circular

dependency occurs when we need to resolve the precondition of an identifier that already occurs in E.

At this stage, all inexact identifiers are confined in ΣA, in the second components A of the definitions

ΣA(v) = (T , A).We give the procedure:

Definition 4.9. Let ΣA be the map of inexact adjective definitions. We define procedure RESOLVE(v) that tries
to resolve the overloads in ΣA(v).

It uses a set E of identifiers that were already encountered. Initially, E = ∅. The purpose of E is to detect
circular dependencies of the type shown in Example 4.8. The implementation is as follows:
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• If v has no definition in ΣA(v), then the result is an error.
• If v ∈ E, then the result is also an error. This means that a circular dependency was detected.
• Otherwise, add v to E.
• Write ΣA(v) in the form (U , A). If U has form (T ◦w), then call RESOLVE(w).
• Let A′ = RESOLVET (∅, A), and replace ΣA(v) by A′. Note that this function calls RESOLVET , that will
be defined in Definition 4.10.

Function RESOLVE(v) possibly calls itself in order to make w exact. This will be detected, because we

will have v ∈ E. There is no way to detect such circularity a priori, because its existence depends on the way

overloads are resolved.

The second procedureRESOLVET (Γ, A) tries to resolve the fields and adjectives in the non-exact adjective

A in context Γ. Context Γ is needed because it may contain preconditions of fields.

In case more than one overload candidate exists, we will take the nearest fit. This approach is used by

C
++

and Java. For example, if some class A is a subclass of B, which is a subclass of C, and some function f

has definitions f (A) and f (C), then the call f (a)will be resolved as f (A),while the call f (b)will be resolved as

f (C).We have no notion of subclass, but we have implication between adjectives. Using implication between

adjectives, the rule becomes as follows: If an application of some inexact identifier f has different overload

candidates f1,… , fn, with f
?

1
= ⋯ f

?

n
= f , s.t. each fi is defined on adjective Ai , then we resolve f as follows:

If there is a unique Ai , s.t. Ai implies all of A1,… , An, then f will be resolved as fi . In the definition, we will

write Γ ⊧ A, which means that Γ,¬A is unsatisfiable. It should be noted that this is always in the context of

a fixed ΣS ,ΣC , and ΣA.We do not want to use the notation ΣS ,ΣC ,ΣA, Γ ⊧ A, because it becomes too long.

Definition 4.10. Let T be an implementation type, let Γ be a set of exact adjectives applicable on T , and let A
be an inexact adjective. RESOLVET (Γ, A) tries to resolve the overloads in A when applied on T in context Γ. If it
succeeds it returns the exact version of A.We define RESOLVET (Γ, A) by cases on the form of A.

• If A is an (inexact) identifier v, then let v1,… , vn be the adjectives defined in ΣA, that have v?i = v and
for which ΣA(vi) has form (T , Ai) or (T ◦wi , Ai).

Set C = ∅. For each i ∈ {1,… , n}, do the following:
– If wi is absent, add i to C.
– Otherwise, call RESOLVE(wi). (This is the first version, defined in Definition 4.9.) If after that,
Γ ⊧ wi , then add i to C.

At this momentC is a subset of {1,… , n} containing the candidates that can still be considered as overloads
for v. For i ∈ C do:

– for j ∈ C⧵{i} do:
∗ If Γ, wi ⊧ wj , then remove j from C.

If ‖C‖ ≠ 1, then create an error message. Otherwise, return vi where i is the unique element of C.
• If A is a constant c, then if c has primitive type T , return c. Otherwise create an error.
• If A has form c

≥
, and c has a primitive type that is not selector, then return c≥. Otherwise, create an error.

• If A has form f (A
′
), then let f1,… , fn be the fields (scalar or repeated) defined on type T , that have f ?i = f .

Note that T must be a defined compound type, because primitive types have no fields. Set C = {1,… , n}.

For each i ∈ C do:
– let PREC(fi) = gi,1(Ai,1) ∧ ⋯ ∧ gi,ki

(Ai,ki
) with ki ≥ 0, be the precondition of field fi as defined in

Definition 1.12. Each Ai,j is either a implementation type or has form Ti,j◦wi,j with wi,j an exact
identifier defined on implementation type Ti,j . For every wi,j (1 ≤ j ≤ ki) that is present, call
RESOLVE(wi,j), defined in Definition 4.9.

– After that, check that Γ ⊧ gi,1(Ai,1) ∧⋯ ∧ gi,kn
(Ai,ki

). If not, then remove i from C.
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If ‖C‖ ≠ 1, then the result is error. Otherwise, let i be the unique element of C. Assume that the declaration
of fi has form fi∶W. If fi is a scalar field, then return

fi( RESOLVEIMPL(W )(ADJ(W ), A
′
) ).

if fi is a repeated field, then return

fi( RESOLVE
∗

IMPL(W )
(ADJ(W ), A

′
) ).

In the latter case, we called RESOLVE∗ defined below.
• If A has form A1 ∨⋯ ∨ An, then

RESOLVET (Γ, A) = RESOLVET (Γ, A1) ∨⋯ ∨ RESOLVET (Γ, An).

• If A has form A1 ∧⋯ ∧ An, then set Γ1 = Γ. For i = 1 to n do the following:
– Let A′

i
= RESOLVET (Γi , Ai).

– Set Γi+1 = Γi ∪ {A′i}.
After that, return A′

1
∧⋯ ∧ A

′

n
.

Next we define RESOLVE∗ which resolves repeated fields.
• If A has form ∀A

′
, then return ∀RESOLVET (∅, A′).

• If A has form ∃A
′
, then return ∃RESOLVET (∅, A′).

• If A = empty, and T is not a compound type, then the result is an error. Otherwise return empty.

In order to make nnf of Example 4.3 exact, one has to start by calling RESOLVE(nnf). Procedure

RESOLVE will insert nnf into E, and call RESOLVEprop(∅, A), with A the expanded definition of nnf. Since

A is a disjunction, RESOLVEprop(∅, A) will process the disjuncts independently.

The first disjunct equals literal. Procedure RESOLVEprop(∅, literal)will establish that literal is the unique

overload and return literal. It will not look at the definition of literal. If one wants to resolve the overloads

in the definition of literal, one must call RESOLVE(literal) separately.

The second disjunct equals op(?and∨?or) ∧ sub(∀nnf). RESOLVEprop( ∅, op(?and∨?or) ∧ sub(∀nnf) )

will recursively call RESOLVEprop( op(?and∨?or) ), which will resolve op (inexact) into op (exact) and call

RESOLVEselector(?and∨?or), which will return ?and∨?or since both are constants. After that, it will call

RESOLVEprop( op( ?and∨?or), sub(∀nnf) ).

There are two possible overloads for sub, namely sub for the ?not case, and sub∀. We have PREC(sub) =

op(?not), and PREC(sub∀) = op(?and∨?or). Since only the latter is provable from the premiss, sub∀ will be

picked. Since sub∀ is a repeated field, the procedure will recursively call RESOLVE
∗

prop
(∅, ∀nnf), which will

recursively call RESOLVEprop(∅, nnf). This call will return nnf without expanding it, after which the original

call of RESOLVEprop will construct the complete exact overload

⋁

{

literal

op(?and∨?or) ∨ sub(∀nnf)

5. Conclusions
Our goal is to develop and implement an efficient programming language in which it is convenient to

implement algorithms on trees whose forms are very different.

In order to obtain this, we have defined a flexible type system together with a way of refining these types

bymeans of adjectives. The adjectives are intended as a replacement for matching in functional languages. In
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order to make this replacement possible, we have given a precise semantics for adjectives, so that adjectives

can be evaluated on concrete data.

We provided a terminating tableaux calculus for deciding propositional relations between adjectives,

and applied this procedure to overload resolution in imprecise formulations of adjectives. The overload

resolution procedure replaces ambiguous field references in adjective definitions by exact field references.

A similar algorithm can be used for resolving ambiguous overloads in function calls.
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