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We present a tableaux procedure that checks logical relations between recursively defined subtypes of recursively defined
types and apply this procedure to the problem of resolving ambiguous names in a programming language. This work is
part of a project to design a new programming language suitable for efficient implementation of logic. Logical formulas
are tree-like structures with many constructors having different arities and argument types. Algorithms that use these
structures must perform case analysis on the constructors, and access subtrees whose type and existence depend on the
constructor used. In many programming languages, case analysis is handled by matching, but we want to take a different
approach, based on recursively defined subtypes. Instead of matching a tree against different constructors, we will classify
it by using a set of disjoint subtypes. Subtypes are more general than structural forms based on constructors, we expect that
they can be implemented more efficiently, and in addition can be used in static type checking. This makes it possible to use
recursively defined subtypes as preconditions or postconditions of functions. We define the types and the subtypes (which
we will call adjectives), define their semantics, and give a tableaux-based inclusion checker for adjectives. We show how to
use this inclusion checker for resolving ambiguous field references in declarations of adjectives. The same procedure can
be used for resolving ambiguous function calls.
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Ms1 mpefcTaBisieM TabAMUHYIO IIPOLEAYPY, KOTOpas IIPOBepsieT JOrMIecKye OTHOLICHUS MeXAYy PEKYPCUBHO OIpefie-
JICHHBIMY IIOATUIIAMY PEKYPCUBHO OIIpefeJIeHHBIX TUIIOB, U IIPMMEHsAeM 3Ty IpOLEeAypy K IpolGieMe paspelleHMs
HEeOJHO3HAUHBIX VIMEH B SI3bIKe IIPOrPaMMUPOBaHIs. 9Ta paboTa ABISETCI YaCThIO IIPOEKTA 110 paspaboTKe HOBOTO S3bI-
Ka IIpOrpaMMMPOBAHIS, IOAXOAAIIEero A abdeKTuBHON peanusaruy goruku. Jlornueckne GpopMysl IPeACTaBIIOT
c06011 JPeBOBUAHBIE CTPYKTYPBI CO MHOKECTBOM KOHCTPYKTOPOB, MMEIOILMX Pa3IMUHbIe CBOJICTBA M THUIIBI apT'YMEHTOB.
AJITOPUTMBI, UCIIOIB3YIOIINE ITI CTPYKTYPHI, HODKHBI BBIIOJIHATh aHAIN3 BAPMAHTOB [JII KOHCTPYKTOPOB I IIOJIYYaTh
TOCTYII K IIOAAEPEBbSIM, THUII I CYIIIeCTBOBAHIIE KOTOPBIX 3aBIUCAT OT MCIIONB3yeMOTro KOHCTPYKTOpa. Bo MHOTUX A3bIKax
IIpOTpaMMUPOBaHMA aHAIN3 IpelleeHTOB 00pabaThIBaeTCs IyTeM COIOCTaBJIEHMS, HO MBI XOTUM MCIIOJIB30BaTh APY-
rOJT IIOAXOM, OCHOBAHHBIN Ha PEKypPCHBHO OIpefelIeHHBIX IIOATUIIaX. BMecTo comocTaBileHNs OepeBa C pasIMUHBIMIL
KOHCTPYKTOpaMu MeI GyeM KiaccuIUupoBaTh ero ¢ IOMOIIBI0 Habopa HeltepeceKaloluXcs IOATUIIOB.

TTogTumsl ABIAIOTCS G0JIee OOLIMMI, UeM CTPYKTypHBbIe (OpPMBI, OCHOBaHHbIE Ha KOHCTPYKTOPAX, MbI OKIA€M, UTO OHI
MOTYT OBITh peann3oBaHbl 6ojee 3¢p(HheKTUBHO 1, KPOMe TOTO, MOTYT JCIIONb30BAaThCS IIPY CTATUUECKOI IIPOBEPKe TUIIOB.
9TO0 I03BOJNAET MCIIONB30BATh PEKYPCUBHO OIpe ieIeHHbIe IIOATUIIBI B KauecTBe IpeBAPUTEIbHBIX YCIOBUIL VN TIOCTY-
cIIoBUIT GyHKIMIL. MBI OIpenesseM TUIIBI M IOATUIIBI (KOTOpbIe MbI OyeM HasbIBaTh IIpMJIaraTeIbHBIMMU), OIIpeaelieM
MX CeMAHTHUKY U JaeM IIPOBepKy BKIIOUEHNs [IpUaraTeJbHBIX Ha OCHOBe Tabimi. MbI IToKa3bIBaeM, Kak JMCIIOIb30BaTh
3Ty IPOBEPKY BKJIIOUEHMS I paspellleHNsT HeOTHO3HAYHBIX CCHIIOK Ha IT0JIS B 00BABICHMAX IpIIIaraTenbHbIx. Ta xe
Ipoleaypa MOXKeT ObITh MCIIOJIb30BaHa IS paspelleHNs HeOMHO3HAUHBIX BBI30BOB (QYHKIIUIL.
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1. Introduction

Our goal is to develop a programming language for implementation of logic that is convenient to use
on one hand, and efficient on the other hand. Traditionally, functional languages like OCaml ([1]), Haskell
([2]) or Scala ([3]) are considered the most suitable for implementation of logic.

Functional languages have inductive types, and use matching for accessing subtrees. Matching can be
viewed as simultaneously inspecting a tree and extracting subtrees into local variables. In our proposed
language we want to keep inductive types, but add a mechanism for definition of subtypes, which we will
use both as a replacement for matching, and as a basis for static overload resolution. The subtypes make
it possible to replace matching by usual field access as used in imperative languages like Java or C*". We
believe that field access will be more efficient than matching.

We want our language also to support static overloading of function names. In C, defined functions
always must have distinct names. In C** and Java, the same name can be reused for different argument
types. The compiler will select the definition that fits best to the arguments. This process is called overload
resolution. In this paper, we study overload resolution only for field names (which is already present in C).
The same technique is applicable to function calls.

We want some imperative features, because efficient run time handling of containers (also called
collections) is difficult in functional setting. In order to obtain this, data must have efficient low level
representation in memory. We allow a restricted form of assignment, only to top level variables and
substructures at nesting depth one. In this way, side effects due to sharing can be avoided.

We will start by explaining the subtype system. At run time, it is used for inspecting data (formulas) so
that we know which fields exist. The advantage of using subtypes for run time classification is that, once
one has the mechanism for defining and verifying them, they are more general than structure matching,
and can be used at many other points in the programming language, also at compile time.

As an example of our approach, suppose one has a propositional formula f, and one wants to know if it
constructed by and. One can either match it into and(F,, F), or define a subtype ’constructed by and’, and
define two fields fi, f, that can be accessed only on formulas refined by the subtype ’constructed by and’.
The advantage of subtypes is that they can be easily combined by Boolean operators. For example, it is easy
to define the subtype ’constructed by and or or’, or ’atom’ and use this as a condition in case analysis.

We will call the subtypes adjectives. In addition to adjectives that correspond to simple structural
matchings, our adjective system also allows recursively defined subtypes. This makes it possible to define
for example negation normal form or conjunctive normal form as a subtype of formulas. Although such
recursively defined subtypes can be used for run time classification, they are not intended for this purpose,
because evaluating them at run time would be costly. They are intended to be used for overload resolution
at compile time. If one restricts oneself to adjectives of constant depth (like the ones above), they can be
efficiently checked in constant time at run time.

Adjectives are somewhat similar to liquid types ([4]) or refinement types ([5]) but they have a different
aim. Adjectives are not intended for checking operations whose safety depends on arithmetic. Because of
this, adjectives do not need SMT solving. We prefer the term adjective over subtype or refinement type,
because adjectives can overlap, and are frequently created for one time use. We also want to use adjectives
for static type checking and overload resolution. In order to show that this is possible, we define a procedure
that resolves ambiguous field references in the adjectives themselves.

We start by defining the type and adjective system in this section. In Section 2 we give the semantics,
which can be used for evaluating adjectives ondata, so that they can be used as a replacement for matching.
In Section 3, we give a tableaux-based procedure for deciding satisfiability of adjectives. This procedure
can be used for checking exhaustiveness of a given case analysis, for checking exclusiveness of cases, and
for static type checking. In Section 4 we will apply the tableaux procedure on the problem of resolving
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ambiguous field references in the adjective declarations themselves. A similar algorithm could be used for
resolving ambiguous function calls. We define primitive types:

Definition 1.1. The primitive types are bool, char, nat, double, and selector. We assume that all primitive
types, with the exception of selector, have an order < defined on them.

Type selector is a global enumeration type that consists of named constants. It is intended for defining
subtypes (see Definition 1.2 below), or representing logical operators. Actually, these uses are the same
because the logical operator of a formula defines a subtype at the same time. Enumeration types in Rust
([6]) play a similar role. We write elements of selector as identifiers preceded by a question mark, e.g.
7and,7or,7implies, Pequiv, or 7zero, 7succ. We give examples of their use below, after the definition
of the type system.

Next we define non-primitive types, and after that follow adjectives. Strictly seen, the definition of
adjectives should come first, because types contain adjectives while adjectives do not contain types. We
find, however, that this order would be unintuitive, because it would be hard to understand the usefulness
of adjectives, without having seen the definition of types. Because of this, we start by introducing types:

Definition 1.2. Simple types are recursively defined as follows:
« A primitive type is a simple type.
« An identifier is a simple type (assuming that it has been defined as type, see Definition 1.4 below).
« If T is a simple type, A is an adjective, then TA is also a simple type.
We recursively define compound types:
L Ifuvy,..., v, are identifiers, V1, ..., V,, are simple types withn = 0, then (v;: Vi, ..., vy: V,, )" is a compound
type.
2. If C is a compound type, v is an identifier and V is a simple type, then v: V, C is a compound type as
well.
3. IfCy,...,Cpy with m = 1 are compound types, Ay, ..., Ay, are adjectives, s is an identifier, then s?(A; =
Cy, ..., Am = Cp) is a compound type as well.
In case 1, the fields vy, ..., v, are called repeated fields. All other fields defined in cases 2 and 3 are called scalar
fields. In case 3, idenifier s (which must refer to an earlier defined field) is called the pivot field. Case 3 defines
compound types where the existence of later fields depends on the adjective that applies to s.

We distinguish between simple and compound types, because we want every compound type to have a
name, which solves some technical problems. It has no consequences for expressiveness, because one can
always define a compound type, and use the name as simple type. This can be automatically done by the
compiler, if needed. The meaning of T-A is: Type T refined by adjective A.

Compound types have a tree structure, where every path is a possible realization of the type. The tree
branches whenever case 3 is used. In that case, identifier s should refer to a field that occurs before it on the
same path. We cannot impose this in Definition 1.2, because trees are constructed bottom up, and the field
s must be defined above it in an application of case 2. We give a simple example of a compound type:

Example 1.3.
T = s:selectoro(?simp|?vect), s?( ?simp = a: A, b: B, (), ?vect=c¢:C,(d:D, e:E)" )

Example 1.3 is purely technical. Type T is not intended to be meaningful. Also note that Definition 1.2 is
awkward to use when defining types in practice because it is intended as technical representation. It is not
intended as the syntax with which the programmer will define types. The first field s is a selector, which
must be either ?simp or ?vect. In case it is ?simp, there are two more scalar fields a of type A, and b of type B.
In case s equals ?vect, there is one more scalar field c of type C, and an unbounded number of repeated fields
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d of type D and e of type E. They must be accessed with array notation d[i] or e[i]. They are implemented
as vectors in C**, which means that the repeated part can dynamically grow and shrink, and an object of
type T will be reallocated when it runs out of capacity. Because repeated fields are always last, offsets of
scalar fields do not depend on the number of repeated fields present.
For the moment, we assume that different fields of different types have distinct names. This is an unrealistic
restriction for a real programming language, because field names can be reused in different types. In Section 4
we will allow reuse of field names between different options of a type, and between different types. We will
give a procedure that is able to resolve such ambiguous field references into unambiguous references.

Type definitions need to be stored in a mapping. It is convenient to use two distinct mappings, one for
the simple types, and one for the compound types:

Definition 1.4. We define two mappings Xs and Zc. The first mapping maps identifiers to simple types, and
the second mapping maps identifiers to compound types. If Xs contains a value for v, we write Xs(v) for the
value. Similarly, if ¢ contains a value for v, we write 2c(v) for the value. We assume that £s and 2 do not
contain a value for the same variable v. We also assume that g is cycle free.

An example of 35 not being cycle-free would be when Xs(v;) = v20A;, and Xs(v;) = v10A;. Cycles inside
3¢ are unproblematic, see for example the definition of prop below in Example 1.10.
This completes the definition of the types, next we define adjectives:

Definition 1.5. We recursively define adjectives, starting with primitive adjective constructors:
« If ¢ is a constant of one of the primitive types bool, char, nat, double, then ¢ and c¢* are adjectives.
o If c is a constant of type selector, then c is an adjective.
« empty is an adjective.
« If v is an identifier, then v is an adjective.
Next we define recursive adjective constructors:
« Iff is an identifier, and A is an adjective, then f(A) is an adjective.
« If A is an adjective, then first(A) and rest(A) are adjectives.
« If A is an adjective, then VA and 3A are adjectives.
Adjectives of any type can be combined by propositional operators:
« If Ay, ..., A, are adjectives, then Ay v - v A, and A1 A -+ A A, are also adjectives.
« If A is an adjective, —A is also an adjective.

The intuitive meaning of the adjective c is : equal to c¢. The intuitive meaning of ¢* is : greater or equal to c.
The intuitive meaning of f(A) is: whose f-field satisfies A. If f is a repeated field, then A must be equal to
empty or have one of the forms VA, 3A, first(A), or rest(A). The meaning of empty is that no repeated fields
are present. The meaning of f(VA) is that all repetitions of f must satisfy A. Similarly f(3A) means that at
least one repetition of f must satisfy A. The meaning of first(A) is that f[1] must satisfy A. The meaning of
rest(A) is that all repetitions of f, except for possibly the first, must satisfy A.

Definition 1.6. We assume a mapping 3.4 that maps identifiers to pairs of form (T, A), where T is a simple
type, and A is an adjective. If 4 contains a value for v, we write £ (v) for the value.

The intuitive meaning of X 4(v) = (T, A) is: Identifier v is defined on type T as adjective A.

Definition 1.7. We write A[v] for an adjective that contains v somewhere not inside a subformula of form
f(-). We define a cycle as a sequence of identifiers, s.t.

Za(vr) = (T, Ag[vs]), oo, Za(Un-1) = (Tny Aulvn]), Za(vn) = (Th, Ar[o1]).
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Cycles are logically problematic when they involve negation. Because the intended meaning of an
adjective is an inductively defined predicate, an adjective defined through a cycle involving negation, would
be ill-defined. This is similar to the situation in logic programming ([7]). Although it would be possible to
adapt Definitions 2.2 and 3.8 to monotonic cycles, we are not aware of a meaningful use of it. Therefore, we
think it is better to forbid cycles altogether. In the rest of this paper, we will assume that 3, is cycle free. We
give some examples of type and adjective definitions:

Example 1.8. The type of complex numbers can be defined as follows:
complex :=re: double, im: double, ().
Complex numbers have two scalar fields re and im, and no repeated fields.

Example 1.9. Natural numbers can be defined as follows:

?7zero = () )

nat : = sel: selector, sel? .
?succ = pred: nat, ()
Adjectives odd and even can be defined on nat in mutual recursion:

even := (nat, sel(?zero) v ( sel(?succ) A pred(odd) ))
odd (nat, sel(?succ) A pred(even) )

Example 1.10. We define propositional logic:

2var = (c:char)
?not = sub: prop, ()
1= op: ?
prop op: selector, op ?impliesv?equiv = sub;: prop, sub,: prop, ()
?andv?or = (suby: prop )’

There is no need to define T or L separately, because T = /\ @, and L = \/@. A variable consists of
?var combined with a finite number of characters. A negation consists of ?not combined with a single
subformula called sub. A conjunction or disjunction consists of ?and or ?or, followed by an arbitrary number
of subformulas called sub,. We define a few adjectives on prop:

Example 1.11. ’Constructed by ?and’ can be expressed as op(?and). ‘Constructed by ?and or ?or’ can be
expressed as op(?andv?or). The property of being an atom can be expressed by

atom := ( prop, op(var) ).
The property of being a literal can be expressed by
literal := ( prop, atom v (op(?not) A sub(?atom)) ).

Negation normal form (NNF) can be expressed by:

literal
nnf := ( prop, \/{ op(?andv?or) A sub,(Vnnf) )

Conjunctive normal form (CNF) can be defined as follows:
enf := ( prop, op(?or) A sub,(V(op(?and) A suby( Vliteral ))) ).
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Case 3 in Definition 1.2 introduces fields whose existence depends on the adjectives fulfilled by the
pivot s. For type prop, the sub field only exists when the op field equals ?not, which can be expressed by
the adjective op(not). Similarly, field sub; exists only when op(?impliesv?equiv). The following definition
specifies how to obtain preconditions from the definition of the compound type.

Definition 1.12. Let f be a exact identifier that is declared as field in a compound type C. We recursively
define the precondition of f, written as PREC(C, f), as follows:
« if C has form (vy: V..., v,: V)", then PREC(f, C) = T.
« If C has form v: V, C’, and f = v, then PREC(f,C) = T. If f is declared in C’, then PREC(f, C) =
PREC(f, C').
o If C has form s?(A; = Cy,..., Ay, = Cp), and f = s, then PREC(f, C) = Ay v --- v Ap,. Otherwise, f must
be declared in exactly one C;. We define PREC(f, C) = s(A;) A PREC(f, C)).
Since f can occur in X¢ only once, it is possible to write PREC(f) instead of PREC(f, C), where C is the compound
type that contains f.

2. Semantics of Types and Adjectives

We will describe the semantics of adjectives and types using a simplified high level representation
of data. We assume that data are represented by trees whose subtrees are labeled with field names. This
representation is convenient for defining the semantics without having to consider low level details like
memory lay out. In the implementation we use a low level representation, where scalar fields have a fixed
offset, and repeated fields have an offset that can be computed by multiplying the index with the size of the
repeated part, and adding a base offset.

Definition 2.1. We define the set of data trees D, and the set D of finite sequences of data trees, in simultaneous
recursion:

« If d is an element of one of the primitive types T, defined in Definition 1.1, then d € D.

e Ifdy,...,d, (n = 0) is a finite sequence of data trees, then (d,, ..., d,) € D. We will write |D| for the length

n of D.

e Iffi,..., fa are pairwise distinct identifiers, and each d; € D u D, then {(f1, d1), ..., (fu, d)} € D.
Data trees of the third type can be viewed as partial functions mapping each f; to d;, such that d; is either a
data tree or a sequence of data trees. When d is of the third type, we write d.f for the value attached to f when
it exists. If d.f € D, we write d.f[i] for its i-th element, assuming that i < |d.f].

We will define when a data tree has a given type, and when a data tree (or sequence of data trees) satisfies
a given adjective. Types may contain adjectives, but adjectives do not contain types. Therefore, we start by
defining when a data tree (or sequence of data trees) makes an adjective true:

Definition 2.2. We define in simultaneous recursion when a data tree makes an adjective true, and when a
sequence of data trees makes an adjective true. We use the notation d £ A for both cases.
We first consider the cases where d € D :
« Ifcisaconstant, thend k c iffd = ¢, and d F c* if d = c.
« Iff is an identifier, s.t. d.f exists, then
— ifd.f is a single data tree, then d k f(A) iff d.f £ A.
- ifd.f is a sequence of data trees, d k f(A) iff d.f £ A.
The two cases appear to be the same, but d.f have different types, hence we prefer to list them separately.
« If v is an identifier, s.t. X s(v) is defined, and d € D, then d k v iff d F Z4(v).
Next we list the cases where d € D :
* (dy,...,d,) F empty iffn = 0.
 (dy, ..., dy) £ VA iff for every d; we have d; & A.
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o (di, ..., dy) F A iff there exists a d; such that d; k A.
e (di, ..., dy) Efirst(A) iffn = 1 and d; F A.
o (dy,....,dy) Frest(A) iffn = 1 and (dy, ..., dp) F A.
The definitions for the propositional connectives are standard, both ford € D andd € D :
e dEAjv--VvA,ifthereisani(l1<i=<n), st drA,.
e dEA AN NA, foralli(l i< n),onehasdE A;.
« dE-AiffnotdE A

We define when a tree has a certain type:

Definition 2.3. We recursively define when a data tree d has type T. We use notation d: T. We first list the
cases where T is simple:
« For a primitive type T, we defined: T asd € T.
« Ifv is an identifier that is defined in Xg, then d: v iff d: Zs(v).
« If v is an identifier that is defined in ¢, then d: v iff d: Z¢c(v).
o d:(T-A) iffd: T and d F A.
Next we list the cases where T is compound:
o d: (v Vi, ., 0p: Vy ) iff either
- n=0,or
- n>0andd.v,...,d.v, are all defined, are all in D, have the same length L = |d.v| = - = |d.v,|,
and foreveryi(1 < i< n)andj(1=<j=< L), wehaved.v[j]: V;.
d: (v: 'V, C)iffd.v is defined, d.v: V, and d: C.
o d:s?2A) = Cy,..., A, = Cy) iff d.s is defined, in D, and there is exactly onel < i < m, s.t. d.s k A; and
d: C.

Example 2.4. Following up on Example 1.8, we can see that { (re, 1.0), (im, 2.0) } has type complex.

Example 2.5. Using the declaration of prop in Example 1.10, the propositional formula p will be represented
by a data tree d,, with fields

dy.op = ?atom
dpc = (7))
The propositional formula q will be represented by d, with fields
dgop = ?atom
dq-C = (,q,)

Similarly, the propositional formula r will be represented by d, with

dr.op = ?atom
d,.c (’r)

The formula q v r will be represented by d with

dop = 7Yor
dsub = (dg, d,)

Finally, the formula p — (q v r) will be represented by d’ with

dop = ?implies
dsub; = d,
d.Subz = d/
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3. A Tableaux Calculus

In this section we define a calculus for checking satisfiability of adjectives. This is sufficient to answer
all logical questions that are needed for the implementation of our programming language. In order to show
that adjectives Ay, ..., A, cover all possible cases in a switch, it is sufficient to show that A A —A; A+ A A,
is unsatisfiable, where A is the adjective part of the type of the switch expression. In order to show that
a switch has no overlapping cases, it is sufficient to show that A A A; A A; is unsatisfiable for all distinct i
and j. In order to show that a function f; defined on adjective A; is a better fit than function f; defined on
adjective Ay, it is sufficient to show that A; A —A; is unsatisfiable, while A; A —A; is satisfiable.

In order to use our calculus, types need to be decomposed into their adjective part, and the part
that specifies their implementation. The calculus needs the adjective part of a type, but does not use
the implementation. We will define two functions that decompose a simple type into their adjective and
implementation components.

Definition 3.1. An implementation type is either a primitive type, or an identifier defined in X, i.e. the name
of a compound type. For a simple type T, we define ADJ(T) and IMPL(T) as follows:

« If T is primitive then ADJ(T) = T, and IMPL(T) = t.

« If v is an identifier defined in 3¢, then AD](v) = T, and IMPL(v) = v.

. ADJ(T-A) = ADJ(T) A A, and IMPL(T-A) = IMPL(T).

For example, if T = propennfocnf, then ADJ(T) = nnf A cnf, and IMPL(T) = prop.
Theorem 3.2. If T is a simple type, and d is a data tree, then d: T iff d: IMPL(T) and d ¥ AD](T).

The theorem can be easily verified by applying the rules of Definition 2.2.

At this point, we can define a simple interface of our tableaux procedure. Its input is just a single type T.
The procedure establishes that there exists no data term d with type T. The applications that we mentioned
in the introduction, can be obtained as follows:

« Establish that there exists no data term d of type T that satisfies adjective A : Call the procedure with

ToA.
« Establish that every data term d of type T, that satisfies A, must also satisfy B : Call the procedure
with ToA-—B.
The procedure works on the following normal form, which is similar to negation normal form:

Definition 3.3. We recursively define when an adjective is in path normal form (PNF):
« If ¢ is a constant of a primitive type, then ¢, —c, ¢ and —c> are in PNF. In the last two cases, ¢ cannot
have type selector.
« empty and ~empty are in PNF.
« Ifv is an identifier, then v and —v are in PNF.
« If A is in PNF, then f(A), first(A), rest(A), VA, and 3A are in PNF.
o IfAq,...,Ap(n 2 0) are in PNF, then Ay v ---v A, and Ay A -+ A Ay, are in PNF.

Definition 3.4. An adjective A can be brought into PNF by calling PNF(A, pos), where PNF(A, p) is defined by
cases as follows:
If A has form c, ¢, empty, or v, then

PNF(A, pos) = A

PNF(A, neg) = A
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For the remaining cases:

PNF(A; v - v Ay, pos) = PNF(A;, pos) v --- v PNF(A,, pos)
PNF(A; v --- v Ay, neg) = PNF(Ay, neg) A --- A PNF(A,, neg)
PNF(A; A -+ A Ap, pos) = PNF(Ay, pos) A -+ A PNF(A,, pos)
PNF(A; A - A Ap,neg) = PNF(Ay, neg) v --- v PNF(A,, neg)
PNE(f(A), p) = f(PNF(4, p)) for p € {pos, neg}
PNF(first(A), p) = first(PNF(A, p)) for p € {pos, neg}
PNF(rest(A), p) = rest(PNF(A, p) ) for p € {pos, neg}
PNF(3A, pos) = 3PNF(A, pos)
PNF(3A, neg) = VPNF(A, neg)
PNF(VA, pos) = VPNF(A, pos)
(
(
(

e~}

NF(VA, neg) = 3PNF(A, neg)
PNF(—A, pos) = PNF(A, neg)
PNF(—A, neg) = PNF(A, pos)

The following theorem can be straightforwardly proven, using Definition 2.2:

Theorem 3.5. Let A be an adjective. For every data tree d, we have d ¥ A iff d F PNF(A, pos). Similarly, d F = A
iff d £ PNF(A, neg).

The path normal form of —(A v f(rest(v—B))) equals A A f(rest(3B)).

Definition 3.6. We define a path as a finite sequence (fy, ..., f,) with (n = 0), where each f; is either an identifier
(representing a field name), or an element of {3,V, first, rest}. We write € for the empty path, and use notation
n.f for extending path m with f. If path &’ can be obtained from path r by zero or more extensions, we call
a prefix of ©’. We call rr a strict prefix of 7/ if at least one extension was used.

We assume that there exists a total order < on paths with the property that if m is a strict prefix of 7z, then
m < 1. Such an order can be easily obtained by fixing a total order on all possible f;, and using the alphabetic,
lexicographic extension.

Definition 3.7. An adjective stack S is a finite sequence of triples (7;, A;, A;), where each 7; is a path, each A;
is an adjective, and each A\; € N'. We write S[rr] for the set { A |3A s.t. (, A, A) occurs in S } and S;[x] for the
set { A|(m, A, A) occurs in S }.

The attribute A; stores the level of A; on path x;. More precisely, an adjective that was obtained from a
formula on a strict prefix of ; will have level 0. An adjective that was obtained from an adjective with level
A on the same path, receives level A + 1.

We define the tableaux procedure. In order to obtain termination, the procedure uses a blocking rule.
Whenever a new path r is entered, it checks that there is no strict prefix 7’ of 7 containing a set of adjectives
that are included in the formulas on the current path. For example, if path (f) contains A, B, and path (f, g)
contains formulas A, B, C, we can close the branch. This rule is correct, because for every data tree d, the
subtree d.f.g is a subtree of d.f. If it is possible that d.f.g ¥ A B A C, then one can replace d.f by d.f.g and
obtain a smaller data tree, for which d.f k A A B.

The tableaux procedure always tries to extend in deterministic fashion first. If that does not result in a
conflict, it selects a path & and tries all possible non-deterministic choices on this path. It keeps on trying
until it either has explored all choices, or obtained a consistent stack S.

Definition 3.8. We define a procedure that tries to establish that no data term d can have type T. The procedure
starts by creating a stack with one element:

S =((e,ADJ(T),0)).
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After that, it calls b = deterministic(0). If b = L, it returns L. Otherwise, it returns nondeterministic(e).
We list the subprocedures, starting with the procedure deterministic(d). All subprocedures have access to the
stack S. We write |S| for the size of the stack, and write the i-th element in the form S; = (m;, A;, ;).
Procedure deterministic(d) must be called with a natural number 1 < d < ||S|. It returns L or T, with L
indicating contradiction. The implementation is as follows:
1. Setc=d.
2. Ifc = ||, then
+ If A has form v with v an identifier that has no definition in X4, then return L.
« If A has form ~c* with c the minimal element in its type, then return L.
« Foralli < ¢ with m; = 7, check whether A; and A, are in conflict, using the rules listed below. If
they are in conflict, return L. Otherwise try the next ;. The rules are:
— A complementary pair A, A is in conflict.
— A pair c1, c; of any primitive type with ¢; # ¢, is in conflict.
A pair of form —ci, ¢; with ¢; < ¢, is in conflict.
A pair of form ci, ¢, with ¢; > ¢y, is in conflict.
A pair of form ¢, ¢; with ¢; < ¢ is in conflict.
« Assign c = c+ 1 and go back to step 1.
3. If d = ||S|, check if one of the deterministic extension rules in the table below is applicable on A,. If yes,
then for every deterministic consequence A’, push (rrg, A’, Aq + 1) to S.

v = PNF(A, pos) if X4 contains a definition of form v := (T, A)
-v = PNF(A, neg) if X4 contains a definition of form v := (T, A)
VA = empty v (first(A) A rest(VA))

JA = —empty A (first(A) v rest(3A4))

AinNA, = A;foreachl<iszn

4. If Ay has form f(A’), then push (r4.f, A’,0) and (ry.f, ADJ(T),0) to S, where ADJ(T) is the adjective
component of the type T of f.
5. Setd = d + 1. Goto step 1.
Procedure nondeterministic(;r) must be called with a path & that occurs in S. It returns L or T, with L indicating
contradiction. The implementation is as follows:
1. For every strict prefix n’ of , do:
(a) if So[7’] < S[r], then return L. (This is the blocking rule, mentioned above.)
2. Call nondeterministic(r, 1).
Procedure nondeterministic(r, n) must be called with a path & that occurs in S, and with 1 < n < |S|. It returns
1 or T, with L indicating contradiction. The implementation is as follows:
1. Find the smallest n’ = n, such that A,s has form A; v v A, withm = 2.
2. Ifnon’ was found in the previous step, then find the next path =’ > 7 occurring in S, using the alphabetic
lexicographic order >. Call b = nondeterministic(r’) and return b. If no path could be found, return L.
3. Set n = n’. We know that S, has form (7, Ay Vv Vv Am, A), with m = 2. For i from 1 to n, do the following:
« Sets =|S|. Push (r, A;, A + 1) on the stack.
« Call b = deterministic(s). If b # L, call b = nondeterministic(z,n + 1). [f b = T return T.
+ Restore S to length s.
4. Setn = n+ 1. Restart at step 1.

Procedure nondeterministic(r) implements a loop checker which guarantees termination. Its correctness
is based on the fact that, if a satisfying data tree can be found, it can be pruned into a data tree in which the
calculus does not repeat initial states. We state the following without proof:

424



A Recursive Inclusion Checker for Recursively Defined Subtypes

Theorem 3.9. The tableaux calculus of Definition 3.8 terminates.

In order to establish correctness of Theorem 3.9, it is sufficient establish that every branch is finite. During
search, the procedure will only introduce subadjectives of the initial type, combined with subadjectives of
identifiers defined in X 4. Therefore, blocking must eventually happen.

Theorem 3.10. The procedure of Definition 3.8 is complete.

Hoxazamemnvcmeo. The proof will be a bit informal. We have to prove that if no data tree d with d: T exists,
then the procedure of Definition 3.8 will reject T. We will prove the converse: If T is not rejected, then
there exists a data tree d, s.t. d: T. Suppose that T is not rejected. This implies that the procedure terminates
with an open branch. Let S = (my, A1, A1), ..., (74, An, An) be the state of the stack with which the tableaux
procedure terminated.

For a path occurring in S, let

S(r) = {A | S contains a tuple (1;, A;, A;), s.t. m; = 7w and A; has form ¢, ¢* or ~c*}.

For an arbitrary constant c, define
I(c) {c}
I(c®) { | =c},
I(=c®) = {|c <c}

It is easily checked that for every x occurring in S, we have (\{I(A) | A € S(r)} # @, because otherwise the
branch would be closed. Hence, we can select a constant ¢, from each such set. Let Ag be the adjective

Ag = /\{n(c,,) | w occurs in S}.

The adjective Ag states that for a given data tree d, selecting field sequence & will result in constant c,. It is
easy to construct a data tree ds, s.t. ds F Ag by starting with the required constants, and combining them as
required by As. We show by backward induction (that is from n towards 1), that

dS E ﬂi(Ai) VANRAAIVAN ﬂn(An).

Assume that we already have established that ds k 7;.1(Aj+1) A -+ A m,(A,). We proceed by case analysis on
the form of A;. We need to consider only the forms of A; that do not close the branch.

« if A; is an identifier v, then we know that v has a definition (T, A’) in 3,4, since otherwise the
branch would have been closed. Hence we know that PNF(A’, pos) occurs among A1, ..., A,. As a
consequence, ds E PNF(A’, pos). By Theorem 3.5, we know that ds £ A”.

« If A;is a negated identifier v, then if v has no definition in ¥ 4, we have ds ¥ m;(v), so that ds F m;(—v).
If v has a definition (T, A”) in X4, then PNF(A’, neg) occurs among Aj,, ..., A,. By induction, ds F
PNF(A’, neg). By Theorem 3.5, we have ds k —A”.

« The other cases can be obtained by inspecting the cases in Definition 2.2.

Theorem 3.11. The procedure of Definition 3.8 is sound.

Hoxazamemvcmeo. In order to prove soundness, one must prove that if the procedure rejects a type T, then
there is no data tree d with d: T. We will prove the converse: If there is a data tree d with d: T, then T will
not be rejected by the procedure.

This would be trivial, if the blocking rule would not exist. It is easy to show that if d: T, there exists a
stack S = (my, A1, A1), .., (7, Ap, An), with (711, A1, 41) = (€, ADJ(T), 0), that represents an open branch of the
tableaux procedure when the blocking rule is not used.
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Now assume that S will be closed when the blocking rule can be used. We will show that there exists a
shorter stack S which also starts with S] = (e, ADJ(T), 0), and which also represents an open branch of the
tableaux procedure when the blocking rule cannot be used. Repeating this process will result in a stack that
does not contain any more applications of the blocking rule.

Let S be a stack with S; = (¢, ADJ(T), 0), taken from an open branch of the tableaux procedure, when
blocking is not used. Suppose that somewhere in S, the blocking rule would be applicable. This means that
there exist 7 and 7/, s.t. 7/ is a strict prefix of , and Sy[7"] ¢ S[r]. We prune S as follows:

« Remove every (m;, A;, A;), s.t. 7’ is a prefix of 7; and 7; is a strict prefix of 7.

« For every (7, A;, A;), s.t. which 7 is a prefix of 7; write 7; as 7 - 7/, and replace it by 7’ - 7.

It can be checked that the resulting S’ is shorter, because there is at least one (7, A;, A;) with m; = 7/
which will be removed. Moreover, S’ still represents an open branch of the tableaux procedure without
blocking. Hence we can continue the procedure and obtain an open branch on which the blocking rule is
not applicable. O

4. Resolving Overloads in Types and Adjectives

Until now we have insisted that field and adjective names are always unique. In Example 1.10, we used
sub, suby, suby, and sub, as different variations of the name sub, dependent on whether we were taking a
subformula of a negated formula, a formula constructed by a binary operator, or a formula constructed by
an n-ary operator.

Similarly, we did not consider reuse of adjective names between different types. In reality, it is perfectly
possible to have different types of formulas, for example modal, first-order and propositional, and define
different nnf adjectives on each of them.

Modern programming languages like C** or Java allow the use of ambiguous names which are made
unambiguous by the compiler. For example, in C**, one can define different print operators << on different
types, and the compiler will pick the right one, when the programmer writes <<. This is called overload
resolution. Without overload resolution, the programmer needs to invent a new name for every type that
needs to be printed. For example, in C one has to include the type in the name of a print function, like
printfol or printmodal.

We want overload resolution in our programming language: it should be possible that the user defines
different nnf adjectives on different types and reuses the same name 'nnf” for them. Similarly, we want that
the user can call all variations sub, suby, sub, and sub,, just ’sub’.

Concretely, we want overload resolution on field names, adjective names, and function names. There
will be no overload on type names, because we think it is unfeasable, and allowing ambiguous type names
would result in ambiguous code.

In order to handle overload resolution, we introduce what we call inexact identifiers. Inexact identifiers
are the identifiers that are used by the programmer in the program. We will call the identifiers that we have
been using until now, exact identifiers. We assume a function v’ that maps exact identifiers v to their inexact
representations. The inexact representations are used in the program. As an example, one can introduce an
inexact name sub and set sub’ = sub’ = sub, = sub’, = sub. Whenever identifier ‘sub’ occurs in the program,
the compiler has to find out which of the exact variations of sub is meant. We define inexact identifiers:

Definition 4.1. We assume an infinite set of inexact identifiers. We assume a map v’ that maps exact identifiers
v to inexact identifiers.

Now we explain how inexact identifiers are used in the program. In order to do that, we modify the
definitions of type and of adjective. In Definition 1.2, in the definition of compound types, we make the
following modifications:

1. the identifiers vy, ..., v,, are inexact.
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2. the identifier v is inexact.

3. identifier s is inexact.

In Definition 1.5, we will allow the identifiers v and f to be inexact. Apart from that, there are no
changes.

Example 4.2. We define propositional and multimodal logic:

ident := (c: char)".

?var = ident, ()’
?not = sub: prop, ()’
:= op: ?
prop op: selector, op ?impliesv?equiv. = sub;: prop, sub;: prop, ()
?andv?or = ('sub: prop )’

Similarly, one can define multimodal logic with inexact identifiers:

?var = ident, ()"
?not = sub: prop, ()
modal := op: selector, op?| ?impliesv?equiv = suby: prop, sub;: prop, ()
?and, ?or = (sub:prop )
?boxv?dia = sub: prop, ()

In Example 4.2, the inexact field name sub occurs both in prop and in modal. In type prop, it occurs one
time as scalar field, and one time as repeated field. If one knows that that f.op = ?var, one can access f.sub.
If one knows that f.op € {?and, ?or}, one can access f.sub[i]. Fieldname sub also occurs three times in type
modal, two times as a scalar field, and one time as a repeated field.

Example 4.3. The adjectives atom and literal can be defined both on prop and on modal:

op(?var)
op(?var)
atom v op(?not) A sub(?atom)
atom v op(?not) A sub(?atom)

atom: prop
atom: modal
literal: prop
literal: modal

Similarly, NNF can be defined both on prop and on modal:

N . \/ literal
nnt: prop := op(?andv?or) A sub(vnnf)

literal
nnf: prop := \/ op(?andv?or) A sub(vnnf)
op(?boxv?dia) A sub(nnf)

In the example, there are different occurrences of sub, and it has to be determined which of the possible
definitions is being referred to. Before we start discussing the treatment of inexact identifiers, note that
defined identifiers in X5, 3¢ and X 4 are always exact. Moreover, we do not allow the use of ambiguous type
names. This means that when a defined or built-in type is used, it must be referred to by its exact name.

Resolving of inexact identifiers starts with a preprocessing step on Xs and X¢. During this step, declared
fields are replaced by unique exact identifiers, and any adjectives used in field declarations are moved to 2 4.
This is done by replacing them with a unique exact identifier, and defining this identifier in ¥4. After the
preprocessing step, all inexact identifiers are in adjectives in > 4.
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Adjectives occurring in the types of function declarations will be dealt with in the same way. They are
replaced with identifiers, defined in X 4, somewhat similar to the way subformulas are replaced in the CNF
transformation ([8]). In our case the goal is not efficiency, but to make overload resolution possible in the
first place.

We allow reuse of the same inexact field name in a compound type, as long as the different occurrences
of the field name are in different states of the type. For example in prop in Example 4.2, it is possible to reuse
fieldname sub between formulas built by ?not and formulas built by ?andv?or, but renaming both fields sub,
and sub, into sub at the same time would be impossible. It would be still possible to rename one of them
into sub.

We first discuss how type definitions in X5 and 3¢ are processed.

Definition 4.4. Let D = (wy: Wy,..., w,: W,,) be a sequence of declarations. Let wy.1: Wyi1 be a single
declaration. We define
D+ (Wps1t What) = (wit Wi, oo, Woirt Waa).

Definition 4.5. We define procedure preprocsimple(T) that preprocesses a simple type T. The result is again
a simple type. It makes additions to X 4 in the process.
The implementation of preprocsimple(T) is as follows:
« Let A = ADJ(T), and let T" = IMPL(T). If A = T, then return T’. If A # T, then create a new exact
identifier a, assign 34(«) := (T, A), and return T a.

Definition 4.6. We define procedure preproccompound(C, D) that preprocesses a compound type C within
declaration context D. The second argument is is used for checking that no inexact identifier is reused on a
possible realization of C.
« IfC has form (v: V..., v5: V), then
if there exist (w: W) € D and 1 < i < n, s.t. W’ = v;, then create an error.
if there exist 1 < i < j < n, s.t. v; = vj, then create an error.
Otherwise, create new, exact identifiers e; for each v;, and set e, = v;.
- Set V! = preprocsimple(V;).
— Return (e V/,...,e,: V) ).
o IfC has form (v: V, C’) then if there is a (w: W) € D, s.t. w’ = v, create an error.
Otherwise, let e be a new, exact identifier for v. Set €’ = v. Set V/ = preprocsimple(V). Return

e: V/, preproccompound(C’, D + (e: V’)).

« If C has form s?(A; = Cy,..., Ay = Cy,), then there must a be unique (w: W) € D, s.t. w’ =s.
— Ifno such w exists, or w is not unique, then create an error.
- Otherwise, create new exact identifiers o, ..., am, and set L () = (W, Aj), for each 1 < j < m.
— Affter that, return

w?( ¢y = preproccompound(Cy, D), ..., &, = preproccompound(C,, D) ).

We now apply procedures preprocsimple and preproccompound as follows:
« For every identifier v in the domain of X, replace Xg(v) by preprocsimple( Xs(v) ).
« For every identifier v in the domain of X, replace X(v) by preproccompound(Zc(v), ()).

Example 4.7. After being replaced by preproccompound, the definition of prop will have the following form
in Zc :

o = ident, ()
o a; = sub:prop, ()
prop := op: selector, 4 — suby: prop, suby: prop, ()
as = (suby:prop)
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selector, ?var)

selector, ?not)

selector, ?impliesv?equiv )
selector, ?andv?or)

ay - selector :=
ay: selector :=
a3 selector :
ay: selector :

A~ N A~ ~

At this moment, we have moved all inexactness into 3. 4. Adjective definitions in X 4 have form ¥ 4(v) = (T, A),
where v is an exact identifier, T is the type on which the defined adjective can be aplied, and A is the adjective.
Unfortunately, T is a simple type, which also may contain inexact adjectives. As an example where this could
occur, one could define adjective cnf (Example 1.10) on propennf instead of prop. The definition would have
form 3 4(cnf) = (propennf, A”), where A’ is an inexact version of the expression given in Example 1.10, and
nnf has a definition of form 3 4(nnf) = (prop, A” ), where A” is the expression of Example 4.3.

In order to solve this, we apply a preprocessing stage on X4, similar to the preprocessing of Xs. We
replace all adjectives occuring in domains by exact identifiers, while adding the definitions to X 4.

« For every identifier v in the domain of X4, write Z4(v) as (T, A). After that, replace X4(v) by

(preprocsimple(T), A).

Note that the call of preprocsimple may implicitly add new identifiers to X 4. These new identifiers need not
be considered because their domain is an implementation type without adjectives. Hence there is no risk
of non-termination. Unfortunately, there potentially exists a circular dependency between preconditions of
adjectives that is hard to detect, as illustrated by the following example:

Example 4.8. Suppose that 34 contains adjective definitions with the following circular structure:

v = (Tyeay,-)
U2 = (Tzoazy"‘)

2
0(1 = (Tl’... '02' )
oy = (Tpyer 0F )

If at some other point an occurrence of v, needs to be resolved, then v, is an overload candidate. In order to
decide if vy should be used, one has to resolve the adjective of X (), which contains vz? . In order to decide if v,
is an overload candidate for this occurrence of v}, one has to resolve the adjective in ¥(c), which again contains
v}, This circular dependency is not solvable. Note that using v} or v} inside the right hand side of vy or v, is
unproblematic.

The circular dependency in Example 4.8 is unsolvable, so the compiler has to reject it. Unfortunately, it
is difficult to detect, because it only exists if the use of v} in %(;) is applied on implementation type Ty, and
the use of v in X(ay) is applied on implementation type T;. If for example the use of v} in 3(;) is not on T,
then v, is not a candidate for overload, and there is no problem.

We solve this problem by starting to resolve an adjective definition, and whenever we encounter a
precondition that has to be resolved first, we recursively try to solve this precondition. If this iteratively
results in returning to the original definition, we reject 4. In order to detect when we returned to the
original definition, we maintain a set E of adjective definitions that we have encountered already. A circular
dependency occurs when we need to resolve the precondition of an identifier that already occurs in E.

At this stage, all inexact identifiers are confined in X4, in the second components A of the definitions
Za(v) = (T, A). We give the procedure:

Definition 4.9. Let 34 be the map of inexact adjective definitions. We define procedure RESOLVE(v) that tries
to resolve the overloads in 3 4(v).

It uses a set E of identifiers that were already encountered. Initially, E = @. The purpose of E is to detect
circular dependencies of the type shown in Example 4.8. The implementation is as follows:
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« If v has no definition in X 4(v), then the result is an error.

« If v € E, then the result is also an error. This means that a circular dependency was detected.

« Otherwise, add v to E.

« Write 3 4(v) in the form (U, A). If U has form (Tow), then call RESOLVE(w).

« Let A = RESOLVET(®, A), and replace 3. 4(v) by A’. Note that this function calls RESOLVEr, that will
be defined in Definition 4.10.

Function RESOLVE(v) possibly calls itself in order to make w exact. This will be detected, because we
will have v € E. There is no way to detect such circularity a priori, because its existence depends on the way
overloads are resolved.

The second procedure RESOLVE (T, A) tries to resolve the fields and adjectives in the non-exact adjective
Ain context I'. Context I' is needed because it may contain preconditions of fields.

In case more than one overload candidate exists, we will take the nearest fit. This approach is used by
C** and Java. For example, if some class A is a subclass of B, which is a subclass of C, and some function f
has definitions f(A) and f(C), then the call f(a) will be resolved as f(A), while the call f(b) will be resolved as
f(C). We have no notion of subclass, but we have implication between adjectives. Using implication between
adjectives, the rule becomes as follows: If an application of some inexact identifier f has different overload
candidates fi, ..., f,, with f{ = - f} = f, s.t. each f; is defined on adjective A;, then we resolve f as follows:
If there is a unique A;, s.t. A; implies all of Ay, ..., Ay, then f will be resolved as f;. In the definition, we will
write I' k A, which means that I', - A is unsatisfiable. It should be noted that this is always in the context of
a fixed X5, 2 ¢, and ¥ 4. We do not want to use the notation Xs, 3¢, 24, F A, because it becomes too long.

Definition 4.10. Let T be an implementation type, let T be a set of exact adjectives applicable on T, and let A
be an inexact adjective. RESOLVE (T, A) tries to resolve the overloads in A when applied on T in contextT. If it
succeeds it returns the exact version of A. We define RESOLVE (I, A) by cases on the form of A.
« If A is an (inexact) identifier v, then let vy, ..., v, be the adjectives defined in 34, that have vi? = v and
for which 3 4(v;) has form (T, A;) or (Tow;, A)).
Set C = @. For each i € {1,..., n}, do the following:

— Ifw; is absent, add i to C.

— Otherwise, call RESOLVE(w;). (This is the first version, defined in Definition 4.9.) If after that,
T Ew;, then add i to C.

At this moment C is a subset of {1, ..., n} containing the candidates that can still be considered as overloads
for v. Fori € C do:

— forj e C\{i} do:

« IfT, w; E wj, then remove j from C.
If|C| # 1, then create an error message. Otherwise, return v; where i is the unique element of C.
« If A is a constant c, then if ¢ has primitive type T, return c. Otherwise create an error.
« If A has form c*, and ¢ has a primitive type that is not selector, then return c¢*. Otherwise, create an error.
« If A has form f(A’), then let f, ..., f, be the fields (scalar or repeated) defined on type T, that have f; = f.
Note that T must be a defined compound type, because primitive types have no fields. Set C = {1, ..., n}.
For each i € C do:

- let PREC(f}) = gi1(Ai1) A - A gik,(Aik,) with k; = 0, be the precondition of field f; as defined in
Definition 1.12. Each A;j is either a implementation type or has form T,jow;; with w;; an exact
identifier defined on implementation type T;;. For every w;; (1 < j < k;) that is present, call
RESOLVE(w; ), defined in Definition 4.9.

- After that, check thatT k gi1(Ai1) A A gik,(Aik,). If not, then remove i from C.
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If|C| # 1, then the result is error. Otherwise, let i be the unique element of C. Assume that the declaration
of f; has form fi: W.If f; is a scalar field, then return

fi{( RESOLVEppr(w)(ADJ(W), A') ).
if f; is a repeated field, then return
fi( RESOLVE ypy () (ADJ(W), A) ).

In the latter case, we called RESOLVE" defined below.
o If A has form Ay v - v A,, then

RESOLVE (T, A) = RESOLVE (T, A;) v - v RESOLVE (T, Ay).

o If A has form Ay A -+ A Ay, then setT'y =T For i = 1 to n do the following:
— Let Al = RESOLVER(T}, A;).
- SetTiy =T u {Al}.

After that, return A7 A -+ A A),.
Next we define RESOLVE" which resolves repeated fields.

« If A has form VA’, then return VRESOLVE (@, A”).

« If A has form 3A’, then return IRESOLVE (@, A’).

« If A = empty, and T is not a compound type, then the result is an error. Otherwise return empty.

In order to make nnf of Example 4.3 exact, one has to start by calling RESOLVE(nnf). Procedure
RESOLVE will insert nnf into E, and call RESOLVE,p(®, A), with A the expanded definition of nnf. Since
Ais a disjunction, RESOLVE,;p(®, A) will process the disjuncts independently.

The first disjunct equals literal. Procedure RESOLVE,,op(®, literal) will establish that literal is the unique
overload and return literal. It will not look at the definition of literal. If one wants to resolve the overloads
in the definition of literal, one must call RESOLVE(literal) separately.

The second disjunct equals op(?andv?or) A sub(vnnf). RESOLVE,q,( @, op(?andv?or) A sub(vnnf) )
will recursively call RESOLVE,,;qp( op(?andv?or) ), which will resolve op (inexact) into op (exact) and call
RESOLVE¢jector(?andv?or), which will return ?andv?or since both are constants. After that, it will call

RESOLVE;0p( op( ?andv?or), sub(vnnf) ).

There are two possible overloads for sub, namely sub for the ?not case, and suby. We have PREC(sub) =
op(?not), and PREC(suby) = op(?andv?or). Since only the latter is provable from the premiss, suby will be
picked. Since suby is a repeated field, the procedure will recursively call RESOLVE],.(?, vnnf), which will
recursively call RESOLVE,;op (2, nnf). This call will return nnf without expanding it, after which the original

call of RESOLVE,, will construct the complete exact overload

\/ literal
op(?andv?or) v sub(vnnf)

5. Conclusions

Our goal is to develop and implement an efficient programming language in which it is convenient to
implement algorithms on trees whose forms are very different.

In order to obtain this, we have defined a flexible type system together with a way of refining these types
by means of adjectives. The adjectives are intended as a replacement for matching in functional languages. In
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order to make this replacement possible, we have given a precise semantics for adjectives, so that adjectives
can be evaluated on concrete data.

We provided a terminating tableaux calculus for deciding propositional relations between adjectives,
and applied this procedure to overload resolution in imprecise formulations of adjectives. The overload
resolution procedure replaces ambiguous field references in adjective definitions by exact field references.
A similar algorithm can be used for resolving ambiguous overloads in function calls.
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