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1. Introduction
A geometric polygonal complexK of rank n in Euclidean 3-space E3 is a discrete incidence
structure made up from finite or infinite, planar or skew polygons, assembled in a careful
fashion into families of geometric polygonal complexes of smaller ranks. As combinatorial
objects they are incidence complexes of rank n with polygons as 2-faces, that is, abstract
polygonal complexes of rank n (see [3, 13]). A geometric polygonal complex K is regular
if K has a flag-transitive geometric symmetry group.

The regular polygonal complexes of rank 3 in E3 are completely known. They comprise
fourty-eight regular polyhedra as well as twenty-five regular complexes which are not
polyhedra. The regular polyhedra were discovered by Grünbaum [6] and Dress [4, 5],
and are described in detail in McMullen & Schulte [10, Ch. 7E] and McMullen [8].
The regular complexes which are not polyhedra were recently classified in Pellicer &
Schulte [11, 12].

The present paper proves that a regular polygonal complex in E3 cannot have rank
larger than 4, and that the only regular polygonal complexes of rank 4 in E3 are the
eight regular 4-apeirotopes in E3 described in McMullen & Schulte [10, Ch. 7F].

2. Incidence complexes
Following [3, 13], an incidence complex of rank n, or simply an n-complex, is a partially
ordered set K with a strictly monotone rank function with range {−1, 0, . . . , n} satisfying
the following conditions. The elements of rank j are called the j-faces of K, or vertices,
edges and facets of K if j = 0, 1 or n − 1, respectively. Two faces F and G are said
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to be incident if F ≤ G or G ≤ F . Each flag (maximal totally ordered subset) of
K is required to contain exactly n + 2 faces, including a unique minimal face F−1 (of
rank −1) and a unique maximal face Fn (of rank n) as improper faces. We often find it
convenient to suppress the improper faces in designating flags. Two flags Φ and Ψ of K
are called adjacent if they differ in exactly one face; if this face is an j-face for some j
(with 0 ≤ j ≤ n − 1), then Φ and Ψ of K are j-adjacent . Further, we ask that K be
strongly flag-connected , meaning that any two flags Φ and Ψ of P can be joined by a
sequence of flags Φ = Φ0,Φ1, . . . ,Φl−1,Φl = Ψ, all containing Φ∩Ψ, such that Φi−1 and
Φi are adjacent (differ by exactly one face) for each i. Finally, K has the property that
if F and G are incident faces of ranks j − 1 and j + 1 for some j, then there are at least
two j-faces H such that F < H < G.

With regards to this latter condition, note that the corresponding condition required
in [3, 13] is more restrictive, in that, for each j, a fixed number kj of j-faces H is required
to lie between F and G. This stronger condition is always satisfied for highly symmetric
complexes like those studied in this paper.

When F and G are two faces of a complex K with F ≤ G, we call

G/F := {H | F ≤ H ≤ G}

a section of K. We usually identify a face F with the section F/F−1. For a face F we
also call Fn/F the co-face of K at F , or the vertex-figure at F if F is a vertex.

An incidence complex K is said to be regular if its (combinatorial) automorphism
group Γ(K) is transitive on the flags.

A complex K is an (abstract) polytope if, for all j and all (j − 1)-faces F and (j + 1)-
faces G with F < G, there are exactly two j-faces H such that F < H < G. This class
of complexes has attracted a lot of attention (see [10]).

More generally, an incidence complex K is called an abstract polygonal complex if
each 2-face of K is isomorphic to (the face lattice of) a convex polygon or an (infinite)
apeirogon.

For 0 ≤ k ≤ n− 1, the k-skeleton of a complex K of rank n is the incidence complex
of rank k + 1, whose faces comprise the n-face of K and all faces of K of rank less than
or equal to k, with the partial order inherited from K.

3. Geometric polygonal complexes

Our definition of a “realization” of an abstract polygonal complex is inspired by the
corresponding notion for abstract polytopes (see [7, 10]).

A (faithful) realization of an abstract polygonal complex K, again denoted by K, is
derived inductively from a bijection β of the vertex-set of K into some Euclidean space
E. The vertices of K are mapped by β to the vertices of the realization. Then each 1-
face of K can be viewed as being mapped under β to a line segment, called an edge of
the realization, joining the images of the vertices of the 1-face under β. Moving up in
rank, each 2-face of K, which by assumption is isomorphic to a convex polygon or an
apeirogon, is mapped to the finite or infinite polygon in E, a 2-face of the realization,
made up from the edges of the realization that are the images under β of the 1-faces of
the given 2-face of K. More generally, from the j-faces of the realization we then obtain
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each (j + 1)-face of the realization as a family of j-faces of the realization, namely those
corresponding under β to the j-faces of the underlying (j + 1)-face of K. Finally, then,
when j = n− 1 we arrive at the desired realization of K determined by β. We also call
the resulting structure a geometric polygonal complex .

Clearly, in order for this process to produce a faithful geometric copy of the given
abstract polygonal complex K we must assume that, for each j, each (j + 1)-face of
K is uniquely determined by its j-faces. Throughout we will be working under this
assumption. Note, however, that an abstract complex may not satisfy this assumption;
the regular map {3, 6}(2,0) on the 2-torus is an example.

Alternatively we can proceed more directly and define geometric polygonal complexes
with less explicit reference to realizations of abstract polygonal complexes, at least for
small ranks, beginning with rank 2. Here we restrict ourselves to Euclidean 3-space
E3, although similar notions carry over to realizations in higher-dimensional Euclidean
spaces.

Following [6], a finite polygon, or an n-gon, in E3 consists of a sequence (v1, v2, . . . , vn)
of n distinct points, as well as of the line segments (v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1).
A (discrete) infinite polygon, or apeirogon, in E3 similarly consists of an infinite sequence
of distinct points (. . . , v−2, v−1, v0, v1, v2, . . . ), as well as of the line segments (vi, vi+1) for
each i, such that each compact subset of E3 meets only finitely many line segments. In
either case the points are the vertices and the line segments the edges of the polygon.

Then following [11], a geometric polygonal complex K of rank 3, or simply a geometric
polygonal 3-complex, in E3 is a triple (V , E ,F) consisting of a set V of points, called
vertices, a set E of line segments, called edges, and a set F of (finite or infinite) polygons,
called faces (here to mean 2-faces), satisfying the following properties.

(a) The graph (V , E), the edge graph or net of K, is connected.
(b) The vertex-figure of K at each vertex of K is connected. By the vertex-figure of K

at a vertex v we mean the graph, possibly with multiple edges, whose vertices are
the vertices of K adjacent to v and whose edges are the line segments (u,w), where
(u, v) and (v, w) are edges of a common face of K. (There may be more than one
such face in K, in which case the corresponding edge (u,w) of the vertex-figure at
v has multiplicity given by the number of such faces.)

(c) Each edge of K is contained in at least two faces of K. (This requirement is less
restrictive than the corresponding condition given in [11]. For highly symmetric
complexes like those discussed here, the two conditions are equivalent.)

(d) K is discrete, in the sense that each compact subset of E3 meets only finitely many
faces of K.

Each geometric polygonal complex of rank 3 in E3 gives an incidence complex of the
same rank. In fact, a quicker definition would consist of saying that K as above consists of
a triple (V , E ,F), which, when ordered by inclusion, gives an abstract polygonal complex
of rank 3.

Proceeding with rank 4 structures, a geometric polygonal complex K of rank 4, or
simply a geometric polygonal 4-complex, in E3 is a 4-tuple (F0,F1,F2,F3) consisting
of a set V = F0 of points, called vertices, a set E = F1 of line segments, called edges,
a set F = F2 of (finite or infinite) polygons, called 2-faces , and a set F3 of geometric
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polygonal 3-complexes, called 3-faces , such that K, partially ordered by inclusion, gives
an abstract polygonal complex of rank 4 (with the same rank function).

We can move up further in rank and similarly define higher rank geometric polygonal
complexes in E3. The basic set-up is exactly the same. The j-faces of an n-complex are
built from the (j − 1)-complexes representing the (j − 1)-faces of the j-face.

A geometric polygonal complex is a geometric polytope, or a geometric polyhedron
when the rank is 3, if the underlying incidence complex is an abstract polytope. An
apeirotope or apeirohedron is an infinite polytope or polyhedron, respectively.

A geometric polygonal complex K is called (geometrically) regular if its (geometric)
symmetry group G(K) in E3 is transitive on the flags of K. The symmetry groupG(K) of a
polygonal complex K is a (generally proper) subgroup of its combinatorial automorphism
group Γ(K). In fact, G(K) is a flag-transitive subgroup of Γ(K) if K is regular. For a
geometrically regular polytope, the symmetry group coincides with the full automorphism
group and is necessarily simply flag-transitive. However, this is not true in general for
geometrically regular polygonal complexes.

We later require the classification of the regular apeirotopes of rank 4 in E3 (see [10,
Ch. 7F]). There are eight examples shown in the following display:

{4, 3, 4} = {{4, 3}, {3, 4}}, {{4, 6 | 4}, {6, 4}3};
{{∞, 3}6#{ }, {3, 3}}, {{∞, 4}4#{∞}, {4, 3}3};
{{∞, 3}6#{ }, {3, 4}}, {{∞, 6}3#{∞}, {6, 4}3};
{{∞, 4}4#{ }, {4, 3}}, {{∞, 6}3#{∞}, {6, 3}4}.

For notation we refer to [10, Ch. 7F]. The eight examples fall into four pairs of “Petrie-
duals"(listed in the same row), where the apeirotopes in each pair share the same 2-
skeleton. The familiar cubical tessellation {4, 3, 4} and its Petrie-dual listed in the first
row both have (finite) square faces. All other apeirotopes have (infinite planar) zigzag
faces.

4. Groups of regular incidence complexes
The structure of a regular incidence complex K can be completely described in terms of
a well-behaved system of generating subgroups of any flag-transitive subgroup Λ of the
full automorphism group Γ(K) of K (see [13]).

Let K be a regular incidence complex of positive rank n, and let Λ be any flag-
transitive subgroup of Γ(K). Let Φ := {F0, . . . , Fn−1} be a (fixed) base flag of K, where
Fi denotes the i-face in Φ for each i. For Ω ⊆ Φ, let ΛΩ denote the stabilizer of Ω in Λ,
so in particular ΛΦ is the stabilizer of Φ itself, and Λ∅ = Λ. For i = −1, 0, . . . , n define
the subgroup

Ri := ΛΦ\{Fi} = 〈ϕ ∈ Λ | Fjϕ = Fj for all j 6= i〉.

Then R−1 = Rn = ΛΦ ≤ Ri for each i = 0, . . . , n − 1, and |Ri : R−1| − 1 is the number
of flags i-adjacent to Φ. Moreover,

Ri ·Rj = Rj ·Ri (−1 ≤ i < j − 1 ≤ n− 1), (1)

as products of subgroups.
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The subgroup Λ is generated by the distinguished generating subgroups R0, . . . , Rn−1,
that is,

Λ = 〈R0, . . . , Rn−1〉.
In fact, a stronger statement holds. When ∅ 6= I ⊆ {−1, 0, . . . , n} set ΛI := 〈Ri | i ∈ I〉;
and when I = ∅ set ΛI := R−1 = ΛΦ. Note that ΛI = ΛI\{−1,n} for each subset I. Then,
for each Ω ⊆ Φ,

ΛΩ = 〈Ri | Fi 6∈ Ω〉 = Λ{i|Fi 6∈Ω}.

Here both sides coincide with ΛΦ if Ω = Φ. In addition, the following intersection property
holds:

ΛI ∩ ΛJ = ΛI∩J (I, J ⊆ {−1, 0, . . . , n}). (2)

The partial order on K can be completely described in terms of the subgroups
R−1, R0, . . . , Rn of Λ. In fact,

Fiϕ ≤ Fjψ ↔ ψ−1ϕ ∈ Λ{i+1,...,n}Λ{−1,0,...,j−1} (−1 ≤ i ≤ j ≤ n; ϕ, ψ ∈ Λ),

or equivalently,

Fiϕ ≤ Fjψ ↔ Λ{−1,0,...,n}\{i}ϕ ∩ Λ{−1,0,...,n}\{j}ψ 6= ∅ (−1 ≤ i ≤ j ≤ n; ϕ, ψ ∈ Λ).

Conversely, if a group Λ has a system of generating subgroups R−1, R0, . . . , Rn with
properties (1) and (2), then Λ is a flag-transitive subgroup of the full automorphism
group of a regular incidence complex K of rank n (see [13]).

For abstract regular polytopes, the groups R0, . . . , Rn−1 are generated by involutions
ρ0, . . . , ρn−1, where ρi maps the base flag to its unique i-adjacent flag (see [10, Ch. 2]).
Also, ΛΦ is trivial in this case.

5. Rank 3

The regular polygonal complexes of rank 3 in E3 have been completely enumerated. They
comprise fourty-eight regular polyhedra and twenty-five regular complexes which are not
polyhedra.

The regular polyhedra in E3 were discovered by Grünbaum [6] and Dress [4, 5] and
are sometimes referred to as the Grünbaum-Dress polyhedra. For a quicker method of
arriving at the classification see also McMullen & Schulte [9] and [10, Ch. 7E]. The
regular polyhedra include many well-known figures such as the Platonic solids, the
Kepler-Poinsot polyhedra and the Petrie-Coxeter polyhedra (see [1, 2]).

The regular polygonal complexes in E3 which are not polyhedra were enumerated in
Pellicer & Schulte [11, 12]. The flag-stabilizers of their symmetry groups are either trivial
or have order 2, and the methods of enumeration in these two cases are quite different.

There are four regular polygonal complexes with a non-trivial flag-stabilizer, and
each is the 2-skeleton of a regular 4-apeirotope in E3. The eight regular 4-apeirotopes
in E3 fall into four pairs of Petrie-duals, and the apeirotopes in each pair have the same
2-skeleton (see [10, Ch. 7F]). Thus each regular polygonal complex with a non-trivial
flag-stabilizer is the common 2-skeleton of two regular 4-apeirotopes.

There are also twenty-one regular polygonal complexes with a trivial flag-stabilizers,
which are not polyhedra; accordingly, these complexes are referred to as the simply
flag-transitive regular polygonal complexes.
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6. Higher ranks

In this section we bound the rank of a regular polygonal complex in E3 by 4, and show
that the eight regular 4-apeirotopes mentioned earlier are the only examples in rank 4.

SupposeK is a regular polygonal complex of rank n ≥ 4. Then its geometric symmetry
group G(K) is a flag-transitive subgroup of Γ(K) to which the above structure results
for flag-transitive subgroups of Γ(K) apply with Λ = G(K). In particular, G(K) =
〈R0, . . . , Rn−1〉, where R0, . . . , Rn−1 are the distinguished generating subgroups of G(K)
defined with respect to a base flag Φ = {F0, . . . , Fn−1} of K. Since K is a polygonal
complex, the base 2-face F2 is a regular polygon in E3, planar or non-planar.

Now each of the subgroups R3, . . . , Rn−1 consists of isometries stabilizing F0, F1, F2

and hence acting trivially (pointwise) on the entire affine hull of the polygon F2. This
forces F2 to be planar. In fact, otherwise the subgroups R3, . . . , Rn−1 would have to be
trivial; but this is impossible since n ≥ 4. On the other hand, if F2 is planar, then a
nontrivial element from R3, . . . , Rn−1 could only be the euclidean reflection, ρ3 (say), in
the affine hull of F2. In this case we can immediately exclude the possibility that n > 4;
in fact, if n > 4 then necessarily R3 = R4 = 〈ρ3〉, which is impossible. This then only
leaves the possibility that n = 4, the face F2 is planar, R3 = 〈ρ3〉, and there are just two
facets of K meeting at F2.

Now suppose that n = 4 and that F2 and ρ3 are as described. Then the 2-skeleton
L of K is a regular polygonal complex of rank 3 in E3 whose symmetry group contains
G(K). In particular, L has face mirrors , meaning that L has planar 2-faces and that the
affine hulls of the 2-faces are mirrors of plane symmetries of L. In fact, ρ3 is a reflective
symmetry of L in the affine hull of the 2-face F2 of L, and its conjugates under G(K)
(or G(L)) provide all reflective symmetries in affine hulls of 2-faces of L. In particular,
L is not simply flag-transitive, since ρ3 stabilizes the flag {F0, F1, F2} of L.

We now appeal to the classification in [11, 12] of the regular polygonal complexes
of rank 3 in E3. In fact, it was shown in [11] that a regular polygonal 3-complex with
face mirrors in E3 is necessarily the 2-skeleton of a regular 4-apeirotope P in E3 with
the same symmetry group, and that the fourth distinguished generator of the symmetry
group G(P) of P is given by the reflection in the planar base 2-face. Thus L is the
2-skeleton of a regular 4-apeirotope P with G(P) = G(L). It is also known that the
number of 2-faces, r, on an edge of P and thus of L must be 3 or 4.

Now the facets of K are also regular polygonal complexes of rank 3 in E3 and have
their 2-faces among the 2-faces of L. In particular, the basic facet F3 of K gives rise
to the complex K3 := F3/F−1 whose full symmetry group G(K3) contains the stabilizer
〈R0, R1, R2〉 of F3 in G(K) as a flag-transitive subgroup. We must show that K3 is a
polyhedron. Then, since there are just two facets of K meeting at F2, the complex K
itself would have to be a 4-apeirotope.

Since K3 is a subcomplex of L, the number of 2-faces, r3, on an edge of K3 must be 2,
3 or 4. We wish to show that r3 = 2. Clearly, we cannot have r3 = r since L is connected.
In fact, otherwise, every 2-face of K containing an edge of K3 would also have to be a
2-face of K3; but then connectedness would force all 2-faces of K to be 2-faces of K3,
which is impossible. Hence it remains to exclude the case when r = 4 and r3 = 3. Now
suppose r = 4 and r3 = 3. Then we know from [11] that the pointwise stabilizer of the
base edge F1 of K3 in G(K3) is a cyclic group C3 or a dihedral group D3. Either way,
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the affine hulls of the (planar) faces of K3 meeting at F1 must be inclined at 120◦. On
the other hand, the affine hulls of the four 2-faces of P (or K or L) meeting at F1 either
coincide (when the faces are opposite relative to F1) or are inclined at 90◦. In any case,
the two scenarios are incompatible and rule out the possibility that r = 4 and r3 = 3.
Thus r3 = 2.

At this point we know that both K and P are regular 4-apeirotopes with a common 2-
skeleton. In particular, K must be among the eight regular 4-apeirotopes in E3. Another
appeal to [11] then shows that K must in fact coincide with either P itself or with the
Petrie-dual of P .

In summary we have established the following theorem.

Theorem 1. There are no regular geometric polygonal complex in E3 of rank n ≥ 5.
The only regular geometric polygonal complexes of rank 4 in E3 are the eight regular
4-apeirotopes in E3.
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В статье рассматриваются ранги правильных полигональных комплексов и уста-
навливается, что ранги таких комплексов в E3 не могут превышать 4 и в E3 имеется
только восемь правильных полигональных комплексов ранга 4.

Статья публикуется в авторской редакции.
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