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Persistent homology probes topological properties from point clouds and func-
tions. By looking at multiple scales simultaneously, one can record the births and
deaths of topological features as the scale varies. In this paper we use a statistical
technique, the empirical bootstrap, to separate topological signal from topological
noise. In particular, we derive confidence sets for persistence diagrams and confi-
dence bands for persistence landscapes.
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Introduction

Persistent homology is a method for studying the homology at multiple scales simulta-
neously. Given a manifold X embedded in a metric space Y, we consider a probability
density function p: Y — R, defined over Y but concentrated around X; that is, the
density is positive for a small neighborhood around X and very small over Y \ X. For
the right scale parameter ¢, the superlevel set p~'([t, o)) captures the homology of X.
The problem, however, is that ¢ is not known a priori. Persistent homology quantifies
the topological changes of the superlevel sets with a multiset of points in the extended
plane; we call this multiset the persistence diagram, and denote it by P. Another way
to represent the information contained in a persistence diagram is with the landscape
function £: R — R, which can be thought of as a functional summary of P; we define
these concepts in Section 1.1.

Computationally, it may be difficult to compute P or L directly. Instead, we assume
that p corresponds to a probability distribution P, from which we can sample. Given
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a sample of size n, we create an estimate of the probability density function p, using
a kernel density estimate. As n increases, p, approaches the true probability density.
Given n large enough, we compute the persistence diagram P, and the landscape L,
corresponding to p,.

Sometimes knowing the estimate of a persistence diagram or landscape is not enough.
The bigger question is: How close is the estimated persistence diagram or landscape to
the true one? We answer this question by constructing a confidence set for persistence
diagrams and a confidence band for persistence landscapes.

A (1 — «a)-confidence interval for a parameter 6 is an interval [a,b] such that the
probability P(6 € [a,b]) is at least 1 — a. In our setting, we desire to find a confidence
set for a persistence diagram P. To do so, we compute an estimated diagram P and and
interval [0, ¢| such that the bottleneck distance between P and P is contained in [0, ¢|
with probability 1 —«. That is, we find a metric ball containing P with high probability.

In this paper, we present the bootstrap, a method for computing confidence intervals,
and we apply it to persistence diagrams and landscapes. After briefly reviewing the
necessary concepts from computational topology, we give the general technique of boot-
strapping in statistics in Section 1.2. In Section 2, we apply the bootstrap to persistence
diagrams and landscapes, providing a few examples of these confidence intervals. We
conclude in Section 2.3 with a discussion of our ongoing research and open questions.

1 Background

Before presenting our results, we review the necessary definitions and theorems from
persistent homology. Then, we present the bootstrap. Due to space constraints, we
cover the basics and provide references for a more detailed description.

1.1 Persistence Diagrams and Landscapes

Let Y be a metric space, for example. let Y be a compact subspace of R”. Suppose
we have a probability density function p: Y — R concentrated in a neighborhood of a
manifold X C Y. Persistent homology monitors the evolution of the generators of the
homology groups of p~1([t,00)), the superlevel sets of p, and assigns to each generator
of these groups a birth time (or scale) b and a death time d. . The persistence dia-
gram P records each pair (b, d) as the point (%, %); that is, the z-coordinate is the
mid-life of the homological feature and the y-coordinate is the half-life or half of the
persistence of the feature.! We refer the reader to [7] for a more complete introduction
to persistent homology.

Let Dy be the space of positive, countable, T-bounded persistence diagrams; that is,
for each point (z,y) = (224, 24) € P, we have 0 < d < b < T and there are a countable
number of points for which y > 0. We note here that each point on the line x = 0
is included in the persistence diagram P with infinite multiplicity. Letting W, (Py, P2)
denote the bottleneck distance between diagrams P; and Ps, the space (D,W) is a

metric space. We then have the following stability result from [4] and generalized in [3]:

In this paper, we focus on the persistent homology of the superlevel set filtration of a density
function. Thus, the birth time b is greater than the death time d.
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Figure 1. The pink circles are the points in a persistence diagram. The cyan curve is
the landscape L£(1, ).

Theorem 1.1 (Stability Theorem). Let M be finitely triangulable. Let f,g: M — R be
two continuous functions. Then, the corresponding persistence diagrams Py and Py are

well defined, and Woo(Pr, Py) < ||f — 9lloo-

[2] introduced another representation called the persistence landscape, which is in
one-to-one correspondence with persistence diagrams. A persistence landscape is a con-
tinuous, piecewise linear function £: Z* x R — R. To define the persistence landscape
function, we replace each persistence point p = (x,y) = (%, b%d) with the triangle
function

s—aty z€lr—ya] [z-d ze€[d%
tp(z): m—{—y—z ZG(Q?,.ZE—l—y]: b— 2 Ze(b%l,b]
0 otherwise 0 otherwise.

Notice that p is itself on the graph of #,(z). We obtain an arrangement of curves by
overlaying the graphs of the functions {¢,(2) },ep; see Figure 1. The persistence landscape
is defined formally as a walk through this arrangement:

Lp(k,z) = kmax t,(2), (1)
peEP
where kmax is the kth maximum value in the set; in particular, lmax is the usual
maximum function. Observe that Lp(k, z) is 1-Lipschitz. For the ease of exposition, we
will focus on k = 1 in this paper, using £(z) = Lp(1, z). However, the ideas we present
in Section 2.2 hold for k£ > 1. Our definition of the persistence landscape is equivalent
to the original definition given in [2].

1.2 The Standard Bootstrap

Introduced in [8], the bootstrap is a general method for estimating standard errors and
for computing confidence intervals. We focus on the latter in this paper, but refer the
interested reader to [9, 5], and [13] for more details on the versatility of the bootstrap.
Let X4,..., X, be independent and identically distributed random variables taking
values in the measure space (X, X, P). Suppose we are interested in estimating the
real-valued parameter 6 corresponding to the distribution P of the observation. We
estimate 6 using the statistic 6 = 9(X1,...,X,), which is some function of the data.
For example, # and 0 could be the population mean and the sample mean, respectively.
The distribution of the difference § — 6 contains all the information that we need to
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construct a confidence interval of level 1 — « for 6; that is, an interval [a,b] depending
on the data Xj,...,X, such that P(¢ € [a,b]) > 1 — a. If we knew the cumulative
distribution F of § — 6, then the quantiles F~1(1—a/2) and F~(a/2) can be computed.
Furthermore, setting a = — F~1(1—a/2) and b = 0 — F~(a/2), we immediately obtain
a (1 — «a)-confidence interval for 6:

P(ee[a,b})zp(wl(%) <f-0 < F (1—%)):1—(1.

Unfortunately, the distribution of 6—0 depends on the unknown distribution P.

In the first step in the bootstrap procedure, we approximate the unknown P with
the empirical measure P, that puts mass 1/n at each X; in the sample. Let X7, ..., X*
be sample of size n from P,. Equivalently, we can think of drawing X7,..., X from
Xy, ..., X, with replacement. We estimate the distribution F(r) with the distribution
F(r) = P,(8* — 6 <), where 6* = g(X7,..., X?).

The distribution F is still not analytically computable, but can be approximated
by simulation: for large B, obtain B different values of f* and approximate F'(r), and
hence F(r), with F(r) = < Z]B:l I (éj — 6 < r). Since the quantiles of F’ approximate the
quantiles of F', we define the estimated confidence interval as

C, = [é—ﬁn-la —af2), é—ﬁgl(a/z)]. 2)
In summary, the standard bootstrap procedure is:

1. Compute the estimate § = g(Xq,..., Xn).

2. Draw X*, ..., X* from P, and compute §* = g(X7,..., X7).

~
*

3. Repeat the previous step B times to obtain éi‘, 0%
4. Compute the quantiles of F and construct the confidence interval Ch.

There are two sources of error in the Bootstrap procedure. We first approximate /" with
F and then we estimate I’ by simulation. The second error can be made arbitrarily
small, by choosing B large enough. Therefore, this error is usually ignored in the theory

of the bootstrap. Formally, one has to show that sup,. ‘ﬁ (r)—F (7")’ 20 , which implies

that the confidence interval C,,, defined in (2), is asymptotically consistent at level 1 — a;
that is, liminf, ,,,P(0 € C},) > 1 — .

1.3 The Bootstrap Empirical Process

When a random variable is a function rather than a real value, the bootstrap procedure
described above can be used to construct a confidence interval for the function evaluated
at a particular element of the domain. Instead, we use the bootstrap empirical process,
which can be used to find a confidence band for a function h(t); that is, we find a pair
of functions a(t) and b(t) such that the probability that h(t) € [a(t),b(t)] for all ¢ is at
least 1 — . We describe this technique below, but refer the reader to [14] and [12] for
more details.
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An empirical process is a stochastic process based on a random sample. Let Xy,..., X,
be independent and identically distributed random variables taking values in the mea-
sure space (X, X, P). For a measurable function f : X — R, we denote Pf = [ fdP and
P.f = [ fdP, = n 'Y | f(X;). By the law of large numbers P, f converges almost
surely to Pf. Given a class F of measurable functions, we define the empirical process

G,, indexed by F as
{an}fe}' = {\/E(Pnf - Pf)}fe]:'

Example 1.2. If F = {I(z < t)}er, then {P.f}rer = {n 'Y [(X; < t)}hier,
which is the empirical distribution function seen as a stochastic process indexed by t.
Furthermore, we have {G,f}rer = {n Y23 " I1(X; <t) — P(X; < t)}ier-

Definition 1.3. A class F of measurable functions f : X — R is called P-Donsker if
the process {G,, f}rer converges in distribution to a limit process in the space {>°(F),
where (> (F) is the collection of all bounded functions f : F — R. The limit process is a
Gaussian process G with zero mean and covariance function £ GfGg:= Pfg— PfPg;
this process is known as a Brownian Bridge.

Let Pif =n~t> " | f(X[) where {X7,..., X} is a bootstrap sample from P,, the
measure that puts mass 1/n on each element of the sample {X1,..., X,,}. The bootstrap
empirical process G indexed by F is defined as

{G;f}fef = {\/E(P:f - Pnf)}fef-

Theorem 1.4 (Theorem 2.4 in [11]). F is P-Donsker if and only if G} converges in
distribution to G in £ (F).

In words, Theorem 1.4 states that F is P-Donsker if and only if the bootstrap em-
pirical process converges in distribution to the limit process G given in Definition 1.3.
Suppose we are interested in constructing a confidence band of level 1 — « for {Pf}ser,

where F is P-Donsker. Let § = sup rer |Gnf|. We proceed as follows:
1. Draw X7,..., X" from P, and compute §* = supsex |Gy f].
2. Repeat the previous step B times to obtain éf, e ,é*B.
3. Compute g, = inf {q : % Ele I(é}‘ >q) < Oz} .
4. For f € F define the confidence band C,,(f) = [Pnf — % , Pof + %] .
A consequence of Theorem 1.4 is that, for large n and B, the interval [0, ¢,] has coverage

1 — « for 6 and the band Cn(f)ser has coverage 1 — a for {Pf}ser.

2 Applications of the Bootstrap

In this section, we apply the bootstrap from the previous section to persistence diagrams,
as well as to persistence landscapes.
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2.1 Persistence Diagrams

Let X4,..., X, be a sample from the distribution P, supported on a smooth manifold
X CRP. Let pp(z) = [y 75 (”x "") dP(u), where K : R — R is an integrable function

satisfying f K(u du = 1 and K(u) is nonnegative for all u; thus p, is a probability
distribution. The function K is called a kernel and the parameter h > 0 is its bandwidth.
Then py, is the density of the probability measure P, which is the convolution P, = PxK},
where K, (4) = h"PK(h™'A) and K(A) = [, K(t)dt. P, is a smoothed version of P.

Our target of inference in this sectlon is Py, the persistence diagram of the superlevel
sets of p,. The standard estimator for py is the kernel density estimator

L ()

notice that if X; are fixed, then py, is a porbability distribution. Let 73h be the correspond-
ing persistence diagram. We wish to find a confidence set for Py, i.e. , an interval [0, ¢,,]
such that limsup,_,.. P(Weo(Ph, Pu) € [0,¢,]) > 1 — . From Theorem 1.1 (Stability),
it suffices to find ¢, such that limsup,,_, . P(||pn — ph||oO > ) < a.

To find ¢,,, we use the bootstrap. Let F = {fm( )= 5K (”“ “”) } . Using the no-
zeX

tation of Section 1.3, it follows that Pf, = pp(x), Pf: = ph(x) and 0 = supy 7 |Gnfo| =
V1||Pn — phllso- The approximated 1 —« quantile g, can be obtained through simulation,
ie, gy =inf{g : Zle I(v/n||p% —pn|l > q) < a}, where p] (x) denotes the probability
distribution corresponding to the j** bootstrap sample. The following result holds under
suitable regularity conditions on the kernel K for which F is Donsker; see [10].

Theorem 2.1 (Lemma 15 in [1]). We have that

limsup]P’(\/ﬁHﬁh — Diloo > qa> < a.

n—oo
By the Stability Theorem, we conclude: lim,,_,. P <Wm(73h, Pr) > \%) < a.

Example 2.2 (Torus). We embed the torus S* x S' in R® and we use the rejection
sampling algorithm of [6] (R = 1.5,r = 0.8) to sample 10,000 points uniformly from
the torus. Then, we compute the persistence diagram 73h using the Gaussian kernel with
bandwidth h = 0.25 and use the bootstrap to construct the 0. 95% confidence interval
[0, 0.01] for W (’Ph,Ph) see Figure 2. Notice that the confidence set correctly captures
the topology of the torus. That is, only the points representing real features of the torus
are significantly far from the horizontal axis.

2.2 Landscapes

Let the diagrams Pi,...,P, be a sample from the distribution P over the space of
persistence diagrams Dp. Thus, by definition, we have 1 +y < T < ocand 0 <y < T/2
for all (z,y) € U;P;.

Let Lq,...,L, be the landscape functions corresponding to Py,...,P,. That is,
L;(t) = Lp,(1,t), as defined in (1). We define the mean landscape u(t) = Ep[L;(t)],
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Figure 2. Left: Persistence Diagram of the superlevel sets of a kernel density estimator
on the 3D torus described in Example 2.2. The boxes of side = 2 x 0.01 around the
points represent the 95% confidence set for Pp,. Middle: 2D projection of the superlevel
set {z : pp(x) > 0.034}. Right: 2D projection of the superlevel set {z : pp(x) > 0.027}.

and the empirical mean landscape L,(t) = L 3" | £;(t). In this section, we show that
the process /n(L,(t) — u(t)) converges to a Gaussmn process, so that we may use the
procedure given in Section 1.3.

Let F = {fy : 0 <t < T}, where f; : D — R is defined by fi(P) = Lp(1,1).
We note here that f,(P) = 0if t ¢ (0,7). We can now write v/n(L,(t) — u(t)) as an
empirical process indexed by ¢ € [0, T :

VA (1) = () = Vi (% >t - u(t)) — V(Puf, = Pf) = Guf:

We note that the constant function F(P) = T'/2 is a measurable envelope for F.

Given a probability measure @ over F, let ||f — gllg2 = +/ [ |f — ¢/?dQ and let

N(F,Ly(Q),e) be the covering number of F, that is, the size of the smallest e-net in
this metric.

Lemma 2.3 (Theorem 2.5 in [12]). Let F be a class of measurable functions satisfying
fol \/log supg NV (F, La2(Q), €| Fl|g,2)de < oo, where F' is a measurable envelope of F and

the supremum is taken over all finitely discrete probability measures Q with ||F|g2 > 0.
If PF? < oo, then F is P-Donsker.

Theorem 2.4 (Weak Convergence of Landscapes). Let G be a Brownian bridge with
covariance function k(t,u) = [ fi(P)fu(P)dP(P)— [ fi(P)dP(P) [ fu(P)dP(P). Then,
Gy, converges in distribution to G.

Proof. Since persistence landscapes are 1-Lipschitz, we have | fi — fullo2 < [t — ul.
Construct a regular grid 0 =ty < t; < --- < ty = T/2, where t;11 —t; = ¢||F|lg2 =
eT/2. We claim that {f;, : 1 < j < N} is an (¢7/2)-net for F: choose f; € F; then
there is a j so that tj S t S tj—l-l and Hftj+1 - ftHQ’Q S |tj+1 - t| S |tj+1 - t]| = €T/2
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Figure 3. Left: The set of circles from which samples are taken. Right: The confidence
band for the persistence landscape corresponding to the distance to the point set.

1/e. Hence, fol \/logsupQ N(F,Ly(Q),e||Fll2)de < oco. F = T/2 is trivially square-
integrable. By Lemma 2.3, G,, converges in distribution to G. ]

The fact that {f;, : 1 < j < N}isan (¢ T/2)-net implies supg N(F, Ly(Q), €[| Flg2) <

Now that we have shown that G, converges to a Gaussian process, we can follow
the procedure outlined in Section 1.3. Let P, be the empirical measure that puts mass
1/n at each diagram P;. We draw Py, ... P! from P, and construct the corresponding
landscapes L3,..., L. Let £, be the empirical mean and 6* = sup,cp |v/n(L,(t) —
L.(t))|. Repeating this B times, we obtain 67, ...0%, and we compute the quantile g,.

Theorem 2.5 (Confidence Band for Persistent Landscapes). The interval C,(t) indexed

by t € R, defined by C,(t) = [Zn(t) v Ln(t) + \q/;"ﬁ], is a confidence band for u(t):

TLILIEO]P’(H(t) € Cp(t) forallt)>1—a.
Example 2.6 (Circles). Given the nine circles of radii 0.4 and 0.3, shown in Figure 3,
we obtain a sample X1, ..., X100 as follows: first, choose a circle C; uniformly at random,
then sample a point iid from C;. Let P be the (Betti 1) persistence diagram corresponding
to the Rips filtration for the sample, and L be the landscape corresponding to P. 2 We
repeat this 50 times to obtain diagrams Pi, ... Psy and landscapes Ly, . .. Ly.

Then, we use the bootstrap procedure to obtain the quantile q, = 0.234. Together
with Lso, this gives us an approzvimated 95% confidence band for u(t) = Ep(Li(t)). On
the right of Figure 8 we show the empirical mean landscape Lsy with the 95% confidence
band for u(t).

2.3 Discussion

In this paper, we have described the bootstrap as it applies to persistence diagrams and
landscapes. The purpose of this paper was to introduce the bootstrap and the bootstrap

2Note that, since in this example we are using sublevel sets, the role of birth and death in the
definitions of section 1.1 is inverted. The death time d is greater than the birth time b.
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empirical process to topologists. In a related paper ([1]), aimed towards a statistical
audience, we derive the convergence rates for the technique presented in Section 2.1,
as well as present three other methods for computing confidence sets for persistence
diagrams.

The persistence landscape can be thought of as a summary function of a persistence
diagram. The bootstrap method that we presented in Section 2.2 trivially generalizes to
handle all landscapes L(k,t). Furthermore, we need not limit the scope of this method to
landscape functions. In a future paper, we plan to investigate other meaningful summary
functions as well as the convergence rates for the techniques presented in Section 2.2.

We have demonstrated how the bootstrap works for two examples, given in Figure 2
and Figure 3. Part of our ongoing research is investigating applications for these con-
fidence intervals; in particular, we are applying it to real (rather than simulated) data
sets. One can use the confidence intervals for hypothesis testing, but an open question
is how to determine the power of such a test.
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