UDC 511.6

A Definition of Type Domain of a Parallelotope

Grishukhin V. P.

Central Economics and Mathematics Institute RAS Nakhimovskii prosp., 47, Moscow, 117418, Russia

e-mail: grishuhn@cemi.rssi.ru

received October 10, 2013

Keywords: parallelotope, type domain, zonotope

Each convex polytope $P = P(\alpha)$ can be described by a set of linear inequalities determined by vectors p and right hand sides $\alpha(p)$. For a fixed set of vectors p, a type domain $\mathcal{D}(P_0)$ of a polytope P_0 and, in particular, of a parallelotope P_0 is defined as a set of parameters $\alpha(p)$ such that polytopes $P(\alpha)$ have the same combinatorial type as P_0 for all $\alpha \in \mathcal{D}(P_0)$.

In the second part of the paper, a facet description of zonotopes and zonotopal parallelotopes are given.

The article is published in the author's wording.

1. Properties of type domains

A type of a polytope P, in particular, of a parallelotope, is an isomorphism class of the partial ordered set of all faces of P.

There corresponds a Voronoi polytope $P_V(f)$ to each positive semidefinite quadratic form f. Voronoi defined in his famous paper [1] an L-type domain of a Voronoi polytope $P_V(f_0)$ as a set of quadratic forms f such that polytopes $P_V(f)$ have the same type as $P_V(f_0)$. Voronoi conjectured in [1] that each parallelotope is affinely equivalent to a Voronoi polytope. Since the Voronoi conjecture is not yet proved, it is useful to define a type domain of a parallelotope not using quadratic forms.

Call a face of codimension 1 by a *facet*. Each n-dimensional convex centrally symmetric polytope P can be described by the following system of inequalities

$$P = P(\alpha) = \{ x \in \mathbb{R}^n : \langle p, x \rangle \le \alpha(p), \ p \in \mathcal{P} \},$$
(1)

where $\mathcal{P} \subset \mathcal{R}^n$ is a set of vectors including all facet vectors such that if $p \in \mathcal{P}$, then $-p \in \mathcal{P}$. Here $\langle p, x \rangle$ is scalar product of vectors $p, x \in \mathbb{R}^n$. The function $\alpha \in \mathbb{R}^{\mathcal{P}}_+$ is symmetric and non-negative, i.e. $\alpha(-p) = \alpha(p) \geq 0$ for all $p \in \mathcal{P}$. Call the function α by

parameter. Let $\mathcal{P}(P) \subseteq \mathcal{P}$ be a set of all facet vectors of P. Suppose that, for any $p \in \mathcal{P}$, the following hyperplane

$$H(\alpha, p) = \{ x \in \mathbb{R}^n : \langle p, x \rangle = \alpha(p) \}$$
⁽²⁾

supports P at a face G, i.e. $H(\alpha, p) \cap P = G$. The face G is a facet if $p \in \mathcal{P}(P)$.

Actually, I consider a family of polytopes $P(\alpha)$ for distinct α , but for a fixed set of vectors \mathcal{P} . Each of polytopes of the family is obtained from any other by parallel shifts of supporting hyperplanes $H(\alpha, p)$.

A type domain $\mathcal{D}(P)$ of a polytope P is a set of all parameters α such that polytopes $P(\alpha)$ have the same type as P for all $\alpha \in \mathcal{D}(P)$. The domain $\mathcal{D}(P)$ is determined by equalities and inequalities between values $\alpha(p)$ for distinct p.

Let $P = P(\alpha)$ be a polytope described by (1). Let $\mathcal{P}(G) \subseteq \mathcal{P}(P)$ be a set of facet vectors of all facet containing G. The following assertion describes some equalities between parameters $\alpha(p)$.

Proposition 1. Let G be a k-dimensional face of a polytope P. Then

(i) if $t \in \mathcal{P} - \mathcal{P}(G)$ is such that the hyperplane $H(\alpha, t)$ supports P at the face G, then

$$\alpha(t) = \sum_{p \in \mathcal{P}(G)} \mu_t(p) \alpha(p),$$

where $\mu_t(p) \ge 0$ are coefficients of the decomposition $t = \sum_{p \in \mathcal{P}(G)} \mu_t(p)p$ of the vector t by the facet vectors $p \in \mathcal{P}(G)$;

(ii) if $|\mathcal{P}(G)| > n - k$, then

$$\sum_{p \in \mathcal{P}(G)} \mu(p) \alpha(p) = 0,$$

where $\mu(p)$ are coefficients of a linear dependence $\sum_{p \in \mathcal{P}(G)} \mu(p)p = 0$ between vectors $p \in \mathcal{P}(G)$.

Proof. (i) Since the hyperplane $H(\alpha, t)$ contains the face G, the vector t lies in the space X(G) that is orthogonal to affine space of the face G. The space X(G) is generated by facet vectors $p \in \mathcal{P}(G)$. Moreover the vectors $p \in \mathcal{P}(G)$ generate a cone, where the vector t lies. Therefore the following representation $t = \sum_{p \in \mathcal{P}(G)} \mu_t(p)p$ holds, where $\mu_t(p) \ge 0$ for all $p \in \mathcal{P}(G)$. Any point $x \in G$ satisfies the equality $\langle t, x \rangle = \alpha(t)$ and $\langle p, x \rangle = \alpha(p)$ for all $p \in \mathcal{P}(G)$. Multiplying the last equalities for $p \in \mathcal{P}(G)$ by $\mu_t(p)$ and summing over all p, we obtain the wanted representation of $\alpha(t)$ through parameters $\alpha(p)$.

(ii) Since the number of vectors $p \in \mathcal{P}(G)$ is greater than dimension of the space X(G) generated by $p \in \mathcal{P}(G)$, there is a linear dependence $\sum_{p \in \mathcal{P}(G)} \mu(p)p = 0$. As in the case (i), multiplying this dependence by $x \in G$, we obtain the wanted equality $\sum_{p \in \mathcal{P}(G)} \mu(p) \alpha(p) = 0$.

If facets of a polytope are centrally symmetric, then they are organized in k-belts. Each k-belt of an n-polytope P is uniquely determined by a family of mutually parallel (n-2) faces that are intersections of neighboring facets of this k-belt. The following assertion describes linear inequalities between $\alpha(p)$ related to 6-belts of a polytope. **Proposition 2.** Let p_1, p_2, p_3 be facet vectors of a 6-belt of a polytope P such that $p_3 = \mu_1 p_1 + \mu_2 p_2$, where $\mu_1, \mu_2 > 0$. Then this 6-belt determines the following inequalities between the three parameters $\alpha(p_i)$, i = 1, 2, 3,

$$\mu_1 \alpha(p_1) + \mu_2 \alpha(p_2) \ge \alpha(p_3). \tag{3}$$

Proof. The facet vectors p_1, p_2, p_3 of a 6-belt of P lie in a 2-plane Π_2 that is orthogonal to mutually parallel (n-2)-faces of this belt. Therefore these three vectors are lnearly dependent. Let this dependence be $p_3 = \mu_1 p_1 + \mu_2 p_2$, where $\mu_1, \mu_2 > 0$. Any point $x \in H(\alpha, p_1) \cap H(\alpha, p_2)$ of the intersection of supporting hyperplanes of facets $F(p_1)$ and $F(p_2)$ is cut off from $P(\alpha)$ by the hyperplane $H(\alpha, p_3)$ that supports the facet $F(p_3)$. Hence, for this x, we have $\langle p_3, x \rangle \geq \alpha(p_3)$. Since $p_3 = \mu_1 p_1 + \mu_2 p_2$, this equality takes the form $\mu_1 \langle p_1, x \rangle + \mu_2 \langle p_2, x \rangle \geq \alpha(p_3)$. Obviously, the equalities $\langle p_1, x \rangle = \alpha(p_1)$ and $\langle p_2, x \rangle = \alpha(p_2)$ hold. These two equalities and the above inequality give the triangle inequality (3).

Since the 3 facet vectors p_i for i = 1, 2, 3 are equivalent, each 6-belt gives 3 inequalities of type (3). If at least one of these inequalities, say (3), holds as equality, then the 6-belt is transformed into a 4-belt (p_1, p_2) . In this case p_3 is not a facet vector, i.e. $p_3 \notin \mathcal{P}(P)$.

2. Parallelotopes

Proposition 1 gives nothing for a primitive parallelotope. If $P(\alpha)$ is a primitive or zonotopal parallelotope, then one can choose length of facet vectors p such that $\alpha(p) = \langle p, Dp \rangle$ for all $p \in \mathcal{P}$, where D is a positive definite matrix, and the type domain $\mathcal{D}(P)$ is determined by matrices D (see [1] and [6]).

If $P(\alpha)$ is a parallelotope, then each facet of it is centrally symmetric. Facets are special cases of *standard* faces of a parallelotope. Standard faces were defined by Dolbilin in [5]. Each standard face F is centrally symmetric. It is useful consider parallelotopes described by (1), where hyperplanes $H(\alpha, p)$ for all $p \in \mathcal{P}$ support standard faces of $P(\alpha)$. Vectors p of these hyperplanes may be find using item (i) of Proposition 1.

Let c_p be the center of a standard face F(p) determined by a vector $p \in \mathcal{P}$. Then the parallelotope $P(\alpha)$ can be described by the inequalities (1) with $\alpha(p) = \langle p, c_p \rangle$.

Theorem 1. A parallelotope $P(\alpha)$ is affinely equivalent to a Voronoi polytope if and only if there are lengths of facet vectors p such that $\alpha(p) = \langle p, Dp \rangle$ for some positive definite matrix D.

Proof. Let $P(\alpha)$ be a parallelotope that is affinely equivalent to a Voronoi polytope. It is proved in [4] that then one can choose lengths of facet vectors p such that $c_p = Dp$, where D is a positive semi-definite matrix.

Conversely, if $\alpha(p) = \langle p, Dp \rangle$, then $c_p = Dp$. By [4], this means that $P(\alpha)$ is affinely equivalent to a Voronoi polytope.

If $P = P(\alpha)$ is not primitive, then P has k-faces G such that $|\mathcal{P}(G)| > n - k$. In this case, the type domain $\mathcal{D}(P)$ is a face of the type domain of a primitive parallelotope.

Call a parallelotope P rigid if its type domain $\mathcal{D}(P)$ is one-dimensional. For a rigid parallelotope P, Proposition 1 allows to prove its rigidity, since a rigid parallelotope has sufficiently many k-faces G with $|\mathcal{P}(G)| > n - k$. In particular, one can show by this method that the Voronoi polytopes $P_V(D_4)$, $P_V(E_n)$, $P_V(E_n^*)$ for n = 6, 7, are rigid.

3. Zonotopes

In this section I give explicit expressions of $\alpha(p)$ for zonotopes and zonotopal parallelotopes.

Recall that a zonotope $Z(U) = \sum_{u \in U} b_u z(u)$ generated by a set of vectors $U \subset \mathbb{R}^n$ is the Minkowski sum of weighted segments

$$z(u) = \{x \in \mathbb{R}^n : x = \lambda u : -1 \le \lambda \le 1\}$$

Hence

$$Z(U) = \{ x \in \mathbb{R}^n : x = \sum_{u \in U} \lambda_u u : -b_u \le \lambda_u \le b_u, \ u \in U \}.$$

$$\tag{4}$$

Here $b_u \ge 0$ are non-negative weights for all $u \in U$. Below, Z(U) denotes always the above sum. This is in a sense a "vertex description" of the zonotope Z(U). Each vertex v of Z(U) has a description $v = \sum_{u \in U} b_u(\pm u)$, where from two signs \pm only one is taken. But we need a facet description of Z(U).

Let $p \in \mathbb{R}^n$ be a vector. Define a subset $U_p \subseteq U$ as follows.

$$U_p = \{ u \in U : \langle p, u \rangle = 0 \}.$$

The following Lemma 1 helps to find a facet description of Z(U).

Lemma 1. A shift of the zonotope $Z(U_p)$ is a face G of the zonotope Z(U). The center of the face G is an end-point of the vector

$$c_p = \sum_{u \in U - U_p} b_u \frac{\langle p, u \rangle}{|\langle p, u \rangle|} u.$$
(5)

The affine hyperplane

$$H_p = \{ x \in \mathbb{R}^n : \langle p, x \rangle = \langle p, c_p \rangle \}$$
(6)

supports Z(U) at the face $G = c_p + Z(U_p) \subset H_p$. In particular, if $U_p = U$, then $c_p = 0$ and G = Z(U), and if $U_p = \emptyset$, then G is a vertex that coincides with c_p .

Proof. Using (4), it is easy to see that c_p is a point of Z(U). We show that the affine hyperplane H_p supports Z(U), i.e. $\langle p, x \rangle \leq \langle p, c_p \rangle$ for all $x \in Z(U)$. It is sufficient to verify these inequalities for vertices. We have $\langle p, v \rangle = \sum_{u \in U} b_u(\pm \langle p, u \rangle)$. Since $b_u \geq 0$ and $\langle p, u \rangle \in \{0, \pm 1\} | \langle p, u \rangle |$ for all $u \in U$, the following inequality holds

$$\langle p, v \rangle \leq \sum_{u \in U - U_p} b_u \frac{(\langle p, u \rangle)^2}{|\langle p, u \rangle|} = \langle p, c_p \rangle.$$

This inequality implies that the hyperplane H_p supports Z(U), and $c_p + Z(U_p) = G$ is a face of Z(U).

Lemma 1 implies the following important

Theorem 2. Let $U \subset \mathbb{R}^n$ be a set of vectors. Let $b_u \geq 0$ be non-negative weights for all $u \in U$. Let \mathcal{P} be a set of vectors containing all facet vectors p of the zonotope $Z(U) = \sum_{u \in U} b_u z(u)$. Then the zonotope Z(U) has the following description by linear inequalities

$$Z(U) = \{ x \in \mathbb{R}^n : \langle p, x \rangle \le \alpha_U(p) \text{ for all } p \in \mathcal{P} \},$$
(7)

where

$$\alpha_U(p) = \sum_{u \in U - U_p} b_u \frac{(\langle p, u \rangle)^2}{|\langle p, u \rangle|}.$$
(8)

Each inequality in (7) supports a face of Z(U).

Consider a zonotope Z(U) generated by a unimodular set of vectors U. It is known (see, for example, [7], [3]) that a zonotope Z(U) is a parallelotope if and only if vectors $u \in U$ are in proportion with vectors of a unimodular set of vectors. According to description of Z(U) by (4), we can suppose that the set U is itself unimodular. Recall that a set is *unimodular* if each its vector has an integral representation in any its basic subset.

Let F be a facet of Z(U) with its facet vector p which is, recall, orthogonal to F. The facet F is also a zonotope $Z(U_F)$, where $U_F = U_p$. The unimodular set U represents a regular matroid M_U (see any book on Matroid Theory, for example, [2]). The subset U_F represents a copoint of M_U . A definition of a copoint implies that the set of equalities $\langle p, u \rangle = 0$ for all $u \in U_F$ determines uniquely up to a multiple a facet vector p. It is known, see, for example, [2], [3], that, for any copoint U_F of a regular matroid, lengths of its facet vectors p can be chosen such that they satisfy the following condition

$$\langle p, u \rangle \in \{0, \pm 1\} \text{ for all } u \in U.$$
 (9)

It is important that fulfillment of this condition for all facet vectors is equivalent to unimodularity of the set U (see, for example, [2], [3]).

Let a vector p satisfies the condition (9). Then $|\langle p, u \rangle| \in \{0, 1\}$, and, since $\langle p, u \rangle = 0$ for $u \in U_p$, c_p can be written as

$$c_p = \sum_{u \in U} b_u(\langle p, u \rangle)u.$$
(10)

Theorem 3. Let $U \subset \mathbb{R}^n$ be a unimodular set of vectors. Let $b_u \ge 0$ be non-negative weights for all $u \in U$. Let \mathcal{P} be a set of all facet vectors p of the zonotope $Z(U) = \sum_{u \in U} b_u z(u)$. Let facet vectors are chosen such that they satisfy conditions (9). Then the zonotope Z(U) has the following description by linear inequalities

$$Z(U) = \{ x \in \mathbb{R}^n : \langle p, x \rangle \le f_U(p) \text{ for all } p \in \mathcal{P} \},$$
(11)

where

$$f_U(p) = \sum_{u \in U} b_u(\langle p, u \rangle)^2 = \langle p, \sum_{u \in U} b_u(uu^T)p \rangle,$$
(12)

is a positive semi-definite quadratic form on vectors $p \in \mathcal{P}$.

Proof. If p is a facet vector, then it satisfies conditions (9). Hence $|\langle p, u \rangle| = 1$ for all $u \in U - U_p$ and the hyperplane (6) takes the form

$$H_p(f) = \{ x \in \mathbb{R}^n : \langle p, x \rangle = f_U(p) \}.$$
(13)

This implies the assertion of this theorem.

By Theorem 1, Theorem 3 shows that the zonotopal parallelotope Z(U) is affinely equivalent to a Voronoi polytope.

References

- G.F. Voronoi, Nouvelles applications de paramètres continus á la théorie de forms quadratiques, Deuxième memoire, J. reine angew. Math. 134 (1908), 198–287, 136 (1909), 67–178.
- 2. M. Aigner, Combinatorial Theory, Springer-Verlag, 1979.
- M. Deza, V. Grishukhin, Voronoi's conjecture and space tiling zonotopes, Mathematika 51 (2004) 1–10.
- 4. M. Deza, V. Grishukhin, Properties of parallelotopes equivalent to Voronoi's conjecture, Europ. J. Combinatorics **25** (2004) 517–533.
- N.P. Dolbilin, Properties of faces of parallelohedra, Proc. Steklov Inst. of Math. 266 (2009) 112–126.
- R.M. Erdahl, Zonotopes, Dicings, and Voronoi's conjecture on Parallelohedra, Eur. J. Combin. 20 (1999) 527–549.
- A. Björner, M. Las Vergnas, B. Sturmfels, N. White, G.H. Ziegler, Oriented Matroids, (Encyclopedia of Mathematics and its Applications 46) Cambridge Univ. Press (1999).

Определение области типа параллелоэдра

Гришухин В.П.

Центральный экономико-математический институт РАН 117418 Россия, г. Москва, Нахимовский просп., 47

Ключевые слова: параллелоэдр, область типа, зонотоп

Любой выпуклый многогранник $P = P(\alpha)$ может быть описан системой линейных неравенств, определяемых векторами p и правыми частями $\alpha(p)$. Для фиксированного множества векторов p определяется область типа $\mathcal{D}(P_0)$ многогранника P_0 , и в частности параллелоэдра P_0 , как такое множество параметров $\alpha(p)$, что многогранники $P(\alpha)$ имеют тот же комбинаторный тип, что и P_0 для всех $\alpha \in \mathcal{D}(P_0)$. Во второй части статьи дается фасетное описание зонотопов и зонотопных параллелоэдров.

Статья публикуется в авторской редакции.

Сведения об авторе: Гришухин Вячеслав Петрович, Центральный экономико-математический институт РАН д-р физ.-мат. наук