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Each convex polytope P = P (α) can be described by a set of linear inequalities
determined by vectors p and right hand sides α(p). For a fixed set of vectors p,
a type domain D(P0) of a polytope P0 and, in particular, of a parallelotope P0

is defined as a set of parameters α(p) such that polytopes P (α) have the same
combinatorial type as P0 for all α ∈ D(P0).

In the second part of the paper, a facet description of zonotopes and zonotopal
parallelotopes are given.

The article is published in the author’s wording.

1. Properties of type domains

A type of a polytope P , in particular, of a parallelotope, is an isomorphism class of the
partial ordered set of all faces of P .

There corresponds a Voronoi polytope PV (f) to each positive semidefinite quadratic
form f . Voronoi defined in his famous paper [1] an L-type domain of a Voronoi polytope
PV (f0) as a set of quadratic forms f such that polytopes PV (f) have the same type as
PV (f0). Voronoi conjectured in [1] that each parallelotope is affinely equivalent to a
Voronoi polytope. Since the Voronoi conjecture is not yet proved, it is useful to define a
type domain of a parallelotope not using quadratic forms.

Call a face of codimension 1 by a facet. Each n-dimensional convex centrally symmetric
polytope P can be described by the following system of inequalities

P = P (α) = {x ∈ Rn : 〈p, x〉 ≤ α(p), p ∈ P}, (1)

where P ⊂ Rn is a set of vectors including all facet vectors such that if p ∈ P , then
−p ∈ P . Here 〈p, x〉 is scalar product of vectors p, x ∈ Rn. The function α ∈ RP+ is
symmetric and non-negative, i.e. α(−p) = α(p) ≥ 0 for all p ∈ P . Call the function α by
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parameter. Let P(P ) ⊆ P be a set of all facet vectors of P . Suppose that, for any p ∈ P ,
the following hyperplane

H(α, p) = {x ∈ Rn : 〈p, x〉 = α(p)} (2)

supports P at a face G, i.e. H(α, p) ∩ P = G. The face G is a facet if p ∈ P(P ).
Actually, I consider a family of polytopes P (α) for distinct α, but for a fixed set of

vectors P . Each of polytopes of the family is obtained from any other by parallel shifts
of supporting hyperplanes H(α, p).

A type domain D(P ) of a polytope P is a set of all parameters α such that polytopes
P (α) have the same type as P for all α ∈ D(P ). The domain D(P ) is determined by
equalities and inequalities between values α(p) for distinct p.

Let P = P (α) be a polytope described by (1). Let P(G) ⊆ P(P ) be a set of
facet vectors of all facet containing G. The following assertion describes some equalities
between parameters α(p).

Proposition 1. Let G be a k-dimensional face of a polytope P . Then
(i) if t ∈ P−P(G) is such that the hyperplane H(α, t) supports P at the face G, then

α(t) =
∑

p∈P(G)

µt(p)α(p),

where µt(p) ≥ 0 are coefficients of the decomposition t =
∑

p∈P(G) µt(p)p of the vector t
by the facet vectors p ∈ P(G);

(ii) if |P(G)| > n− k, then ∑
p∈P(G)

µ(p)α(p) = 0,

where µ(p) are coefficients of a linear dependence
∑

p∈P(G) µ(p)p = 0 between vectors
p ∈ P(G).

Proof. (i) Since the hyperplane H(α, t) contains the face G, the vector t lies in the
space X(G) that is orthogonal to affine space of the face G. The space X(G) is generated
by facet vectors p ∈ P(G). Moreover the vectors p ∈ P(G) generate a cone, where the
vector t lies. Therefore the following representation t =

∑
p∈P(G) µt(p)p holds, where

µt(p) ≥ 0 for all p ∈ P(G). Any point x ∈ G satisfies the equality 〈t, x〉 = α(t) and
〈p, x〉 = α(p) for all p ∈ P(G). Multiplying the last equalities for p ∈ P(G) by µt(p)
and summing over all p, we obtain the wanted representation of α(t) through parameters
α(p).

(ii) Since the number of vectors p ∈ P(G) is greater than dimension of the space
X(G) generated by p ∈ P(G), there is a linear dependence

∑
p∈P(G) µ(p)p = 0. As

in the case (i), multiplying this dependence by x ∈ G, we obtain the wanted equality∑
p∈P(G) µ(p)α(p) = 0. 2

If facets of a polytope are centrally symmetric, then they are organized in k-belts.
Each k-belt of an n-polytope P is uniquely determined by a family of mutually parallel
(n − 2) faces that are intersections of neighboring facets of this k-belt. The following
assertion describes linear inequalities between α(p) related to 6-belts of a polytope.
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Proposition 2. Let p1, p2, p3 be facet vectors of a 6-belt of a polytope P such that p3 =
µ1p1 + µ2p2, where µ1, µ2 > 0. Then this 6-belt determines the following inequalities
between the three parameters α(pi), i = 1, 2, 3,

µ1α(p1) + µ2α(p2) ≥ α(p3). (3)

Proof. The facet vectors p1, p2, p3 of a 6-belt of P lie in a 2-plane Π2 that is orthogonal
to mutually parallel (n − 2)-faces of this belt. Therefore these three vectors are lnearly
dependent. Let this dependence be p3 = µ1p1 + µ2p2, where µ1, µ2 > 0. Any point
x ∈ H(α, p1)∩H(α, p2) of the intersection of supporting hyperplanes of facets F (p1) and
F (p2) is cut off from P (α) by the hyperplane H(α, p3) that supports the facet F (p3).
Hence, for this x, we have 〈p3, x〉 ≥ α(p3). Since p3 = µ1p1 + µ2p2, this equality takes
the form µ1〈p1, x〉 + µ2〈p2, x〉 ≥ α(p3). Obviously, the equalities 〈p1, x〉 = α(p1) and
〈p2, x〉 = α(p2) hold. These two equalities and the above inequality give the triangle
inequality (3). 2

Since the 3 facet vectors pi for i = 1, 2, 3 are equivalent, each 6-belt gives 3 inequalities
of type (3). If at least one of these inequalities, say (3), holds as equality, then the 6-belt
is transformed into a 4-belt (p1, p2). In this case p3 is not a facet vector, i.e. p3 6∈ P(P ).

2. Parallelotopes
Proposition 1 gives nothing for a primitive parallelotope. If P (α) is a primitive or
zonotopal parallelotope, then one can choose length of facet vectors p such that α(p) =
〈p,Dp〉 for all p ∈ P , where D is a positive definite matrix, and the type domain D(P )
is determined by matrices D (see [1] and [6]).

If P (α) is a parallelotope, then each facet of it is centrally symmetric. Facets are
special cases of standard faces of a parallelotope. Standard faces were defined by Dolbilin
in [5]. Each standard face F is centrally symmetric. It is useful consider parallelotopes
described by (1), where hyperplanes H(α, p) for all p ∈ P support standard faces of
P (α). Vectors p of these hyperplanes may be find using item (i) of Proposition 1.

Let cp be the center of a standard face F (p) determined by a vector p ∈ P . Then the
parallelotope P (α) can be described by the inequalities (1) with α(p) = 〈p, cp〉.
Theorem 1. A parallelotope P (α) is affinely equivalent to a Voronoi polytope if and
only if there are lengths of facet vectors p such that α(p) = 〈p,Dp〉 for some positive
definite matrix D.

Proof. Let P (α) be a parallelotope that is affinely equivalent to a Voronoi polytope.
It is proved in [4] that then one can choose lengths of facet vectors p such that cp = Dp,
where D is a positive semi-definite matrix.

Conversely, if α(p) = 〈p,Dp〉, then cp = Dp. By [4], this means that P (α) is affinely
equivalent to a Voronoi polytope. 2

If P = P (α) is not primitive, then P has k-faces G such that |P(G)| > n− k. In this
case, the type domain D(P ) is a face of the type domain of a primitive parallelotope.

Call a parallelotope P rigid if its type domain D(P ) is one-dimensional. For a rigid
parallelotope P , Proposition 1 allows to prove its rigidity, since a rigid parallelotope has
sufficiently many k-faces G with |P(G)| > n − k. In particular, one can show by this
method that the Voronoi polytopes PV (D4), PV (En), PV (E∗n) for n = 6, 7, are rigid.
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3. Zonotopes
In this section I give explicit expressions of α(p) for zonotopes and zonotopal parallelotopes.

Recall that a zonotope Z(U) =
∑

u∈U buz(u) generated by a set of vectors U ⊂ Rn is
the Minkowski sum of weighted segments

z(u) = {x ∈ Rn : x = λu : −1 ≤ λ ≤ 1}.

Hence
Z(U) = {x ∈ Rn : x =

∑
u∈U

λuu : − bu ≤ λu ≤ bu, u ∈ U}. (4)

Here bu ≥ 0 are non-negative weights for all u ∈ U . Below, Z(U) denotes always the
above sum. This is in a sense a "vertex description"of the zonotope Z(U). Each vertex v
of Z(U) has a description v =

∑
u∈U bu(±u), where from two signs ± only one is taken.

But we need a facet description of Z(U).
Let p ∈ Rn be a vector. Define a subset Up ⊆ U as follows.

Up = {u ∈ U : 〈p, u〉 = 0}.

The following Lemma 1 helps to find a facet description of Z(U).

Lemma 1. A shift of the zonotope Z(Up) is a face G of the zonotope Z(U). The center
of the face G is an end-point of the vector

cp =
∑

u∈U−Up

bu
〈p, u〉
|〈p, u〉|

u. (5)

The affine hyperplane
Hp = {x ∈ Rn : 〈p, x〉 = 〈p, cp〉} (6)

supports Z(U) at the face G = cp + Z(Up) ⊂ Hp. In particular, if Up = U , then cp = 0
and G = Z(U), and if Up = ∅, then G is a vertex that coincides with cp.

Proof. Using (4), it is easy to see that cp is a point of Z(U). We show that the affine
hyperplane Hp supports Z(U), i.e. 〈p, x〉 ≤ 〈p, cp〉 for all x ∈ Z(U). It is sufficient to
verify these inequalities for vertices. We have 〈p, v〉 =

∑
u∈U bu(±〈p, u〉). Since bu ≥ 0

and 〈p, u〉 ∈ {0,±1}|〈p, u〉| for all u ∈ U , the following inequality holds

〈p, v〉 ≤
∑

u∈U−Up

bu
(〈p, u〉)2

|〈p, u〉|
= 〈p, cp〉.

This inequality implies that the hyperplane Hp supports Z(U), and cp +Z(Up) = G is a
face of Z(U). 2

Lemma 1 implies the following important

Theorem 2. Let U ⊂ Rn be a set of vectors. Let bu ≥ 0 be non-negative weights
for all u ∈ U . Let P be a set of vectors containing all facet vectors p of the zonotope
Z(U) =

∑
u∈U buz(u). Then the zonotope Z(U) has the following description by linear

inequalities
Z(U) = {x ∈ Rn : 〈p, x〉 ≤ αU(p) for all p ∈ P}, (7)
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where
αU(p) =

∑
u∈U−Up

bu
(〈p, u〉)2

|〈p, u〉|
. (8)

Each inequality in (7) supports a face of Z(U). 2

Consider a zonotope Z(U) generated by a unimodular set of vectors U . It is known
(see, for example, [7], [3]) that a zonotope Z(U) is a parallelotope if and only if vectors
u ∈ U are in proportion with vectors of a unimodular set of vectors. According to
description of Z(U) by (4), we can suppose that the set U is itself unimodular. Recall
that a set is unimodular if each its vector has an integral representation in any its basic
subset.

Let F be a facet of Z(U) with its facet vector p which is, recall, orthogonal to F . The
facet F is also a zonotope Z(UF ), where UF = Up. The unimodular set U represents a
regular matroid MU (see any book on Matroid Theory, for example, [2]). The subset UF

represents a copoint of MU . A definition of a copoint implies that the set of equalities
〈p, u〉 = 0 for all u ∈ UF determines uniquely up to a multiple a facet vector p. It is
known, see, for example, [2], [3], that, for any copoint UF of a regular matroid, lengths
of its facet vectors p can be chosen such that they satisfy the following condition

〈p, u〉 ∈ {0,±1} for all u ∈ U. (9)

It is important that fulfillment of this condition for all facet vectors is equivalent to
unimodularity of the set U (see, for example, [2], [3]).

Let a vector p satisfies the condition (9). Then |〈p, u〉| ∈ {0, 1}, and, since 〈p, u〉 = 0
for u ∈ Up, cp can be written as

cp =
∑
u∈U

bu(〈p, u〉)u. (10)

Theorem 3. Let U ⊂ Rn be a unimodular set of vectors. Let bu ≥ 0 be non-negative
weights for all u ∈ U . Let P be a set of all facet vectors p of the zonotope Z(U) =∑

u∈U buz(u). Let facet vectors are chosen such that they satisfy conditions (9). Then the
zonotope Z(U) has the following description by linear inequalities

Z(U) = {x ∈ Rn : 〈p, x〉 ≤ fU(p) for all p ∈ P}, (11)

where
fU(p) =

∑
u∈U

bu(〈p, u〉)2 = 〈p,
∑
u∈U

bu(uuT )p〉, (12)

is a positive semi-definite quadratic form on vectors p ∈ P.

Proof. If p is a facet vector, then it satisfies conditions (9). Hence |〈p, u〉| = 1 for all
u ∈ U − Up and the hyperplane (6) takes the form

Hp(f) = {x ∈ Rn : 〈p, x〉 = fU(p)}. (13)

This implies the assertion of this theorem. 2

By Theorem 1, Theorem 3 shows that the zonotopal parallelotope Z(U) is affinely
equivalent to a Voronoi polytope.
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Любой выпуклый многогранник P = P (α) может быть описан системой линей-
ных неравенств, определяемых векторами p и правыми частями α(p). Для фиксиро-
ванного множества векторов p определяется область типа D(P0) многогранника P0,
и в частности параллелоэдра P0, как такое множество параметров α(p), что много-
гранники P (α) имеют тот же комбинаторный тип, что и P0 для всех α ∈ D(P0). Во
второй части статьи дается фасетное описание зонотопов и зонотопных параллело-
эдров.

Статья публикуется в авторской редакции.
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