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Each convex polytope P = P(«) can be described by a set of linear inequalities
determined by vectors p and right hand sides a(p). For a fixed set of vectors p,
a type domain D(Fy) of a polytope Py and, in particular, of a parallelotope Py
is defined as a set of parameters «a(p) such that polytopes P(«) have the same
combinatorial type as Py for all a € D(F).

In the second part of the paper, a facet description of zonotopes and zonotopal
parallelotopes are given.

The article is published in the author’s wording.

1. Properties of type domains

A type of a polytope P, in particular, of a parallelotope, is an isomorphism class of the
partial ordered set of all faces of P.

There corresponds a Voronoi polytope Py (f) to each positive semidefinite quadratic
form f. Voronoi defined in his famous paper [1| an L-type domain of a Voronoi polytope
Py (fo) as a set of quadratic forms f such that polytopes Py (f) have the same type as
Py (fo). Voronoi conjectured in [1] that each parallelotope is affinely equivalent to a
Voronoi polytope. Since the Voronoi conjecture is not yet proved, it is useful to define a
type domain of a parallelotope not using quadratic forms.

Call a face of codimension 1 by a facet. Each n-dimensional convex centrally symmetric
polytope P can be described by the following system of inequalities

P=Pla)={xeR": (p,z) <alp), p e P}, (1)

where P C R" is a set of vectors including all facet vectors such that if p € P, then
—p € P. Here (p,z) is scalar product of vectors p,z € R". The function a € Rf is
symmetric and non-negative, i.e. a(—p) = a(p) > 0 for all p € P. Call the function « by
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parameter. Let P(P) C P be a set of all facet vectors of P. Suppose that, for any p € P,
the following hyperplane

H(a,p) ={z € R": (p,z) = a(p)} (2)

supports P at a face G, i.e. H(a,p) N P = G. The face G is a facet if p € P(P).

Actually, I consider a family of polytopes P(«) for distinct «, but for a fixed set of
vectors P. Each of polytopes of the family is obtained from any other by parallel shifts
of supporting hyperplanes H(«, p).

A type domain D(P) of a polytope P is a set of all parameters « such that polytopes
P(«a) have the same type as P for all & € D(P). The domain D(P) is determined by
equalities and inequalities between values a(p) for distinct p.

Let P = P(a) be a polytope described by (1). Let P(G) C P(P) be a set of
facet vectors of all facet containing GG. The following assertion describes some equalities
between parameters a(p).

Proposition 1. Let G be a k-dimensional face of a polytope P. Then
(i) if t € P—"P(Q) is such that the hyperplane H(c,t) supports P at the face G, then

alt) = Y mpap),

peP(G)

where p(p) > 0 are coefficients of the decomposition t = Zpep(g) wi(p)p of the vector t
by the facet vectors p € P(G);
(i1) if |P(G)| > n — k, then

where p(p) are coefficients of a linear dependence 3 cpqy p(p)p = 0 between vectors
p € P(G).

Proof. (i) Since the hyperplane H(«,t) contains the face G, the vector ¢ lies in the
space X (G) that is orthogonal to affine space of the face G. The space X (G) is generated
by facet vectors p € P(G). Moreover the vectors p € P(G) generate a cone, where the
vector ¢ lies. Therefore the following representation ¢ = > p ) p(p)p holds, where
pe(p) > 0 for all p € P(G). Any point x € G satisfies the equality (t,z) = a(t) and
(p,z) = a(p) for all p € P(G). Multiplying the last equalities for p € P(G) by u:(p)
and summing over all p, we obtain the wanted representation of a(t) through parameters
a(p).

(ii) Since the number of vectors p € P(G) is greater than dimension of the space
X(G) generated by p € P(G), there is a linear dependence > p) pu(p)p = 0. As
in the case (i), multiplying this dependence by x € G, we obtain the wanted equality
ZpE’P(G) n(p)a(p) = 0. O

If facets of a polytope are centrally symmetric, then they are organized in k-belts.
Each k-belt of an n-polytope P is uniquely determined by a family of mutually parallel
(n — 2) faces that are intersections of neighboring facets of this k-belt. The following
assertion describes linear inequalities between a(p) related to 6-belts of a polytope.
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Proposition 2. Let pi, p2, p3 be facet vectors of a 6-belt of a polytope P such that ps =
pap1 + pepo, where py, o > 0. Then this 6-belt determines the following inequalities
between the three parameters a(p;), i = 1,2, 3,

pro(pr) 4 poc(pe) > a(ps). (3)

Proof. The facet vectors py, po, p3 of a 6-belt of P lie in a 2-plane II, that is orthogonal
to mutually parallel (n — 2)-faces of this belt. Therefore these three vectors are Inearly
dependent. Let this dependence be p3 = pi1p1 + pops, where py, us > 0. Any point
x € H(a,p1) N H(a, py) of the intersection of supporting hyperplanes of facets F'(p;) and
F(ps) is cut off from P(«) by the hyperplane H(a,p3) that supports the facet F(ps).
Hence, for this xz, we have (p3,z) > a(ps). Since p3 = pip1 + pops, this equality takes
the form py(p1, ) + pa(pa, ) > «a(ps). Obviously, the equalities (p;,z) = a(p;) and
(p2, ) = a(py) hold. These two equalities and the above inequality give the triangle
inequality (3). O

Since the 3 facet vectors p; for ¢ = 1, 2, 3 are equivalent, each 6-belt gives 3 inequalities
of type (3). If at least one of these inequalities, say (3), holds as equality, then the 6-belt
is transformed into a 4-belt (p1,p2). In this case ps is not a facet vector, i.e. p3 & P(P).

2. Parallelotopes

Proposition 1 gives nothing for a primitive parallelotope. If P(«) is a primitive or
zonotopal parallelotope, then one can choose length of facet vectors p such that a(p) =
(p, Dp) for all p € P, where D is a positive definite matrix, and the type domain D(P)
is determined by matrices D (see [1| and [6]).

If P(«) is a parallelotope, then each facet of it is centrally symmetric. Facets are
special cases of standard faces of a parallelotope. Standard faces were defined by Dolbilin
in [5]. Each standard face F is centrally symmetric. It is useful consider parallelotopes
described by (1), where hyperplanes H(a,p) for all p € P support standard faces of
P(a). Vectors p of these hyperplanes may be find using item (i) of Proposition 1.

Let ¢, be the center of a standard face F'(p) determined by a vector p € P. Then the
parallelotope P(«) can be described by the inequalities (1) with a(p) = (p, ¢p).

Theorem 1. A parallelotope P(«) is affinely equivalent to a Voronoi polytope if and
only if there are lengths of facet vectors p such that a(p) = (p, Dp) for some positive
definite matrix D.

Proof. Let P(«) be a parallelotope that is affinely equivalent to a Voronoi polytope.
It is proved in [4] that then one can choose lengths of facet vectors p such that ¢, = Dp,
where D is a positive semi-definite matrix.

Conversely, if a(p) = (p, Dp), then ¢, = Dp. By [4], this means that P(«) is affinely
equivalent to a Voronoi polytope. O

If P = P(«) is not primitive, then P has k-faces G such that |P(G)| > n — k. In this
case, the type domain D(P) is a face of the type domain of a primitive parallelotope.

Call a parallelotope P rigid if its type domain D(P) is one-dimensional. For a rigid
parallelotope P, Proposition 1 allows to prove its rigidity, since a rigid parallelotope has
sufficiently many k-faces G with |P(G)| > n — k. In particular, one can show by this
method that the Voronoi polytopes Py (Dy), Py (E,), Py(E}) for n = 6,7, are rigid.



132 Modeauposanue u anarusd ungopmayuonnvir cucmem T.20, Ne6 (2013)

3. Zonotopes

In this section I give explicit expressions of «(p) for zonotopes and zonotopal parallelotopes.
Recall that a zonotope Z(U) = >, ., buz(u) generated by a set of vectors U C R" is
the Minkowski sum of weighted segments

z(u)={rxeR":x = u:—-1< A1}

Hence
Z(U):{xE]R":x:Z)\uu: — by, <Ay < by, ueU}. (4)
uelU
Here b, > 0 are non-negative weights for all u € U. Below, Z(U) denotes always the
above sum. This is in a sense a "vertex description"of the zonotope Z(U). Each vertex v
of Z(U) has a description v = ), b,(£u), where from two signs £ only one is taken.
But we need a facet description of Z(U).
Let p € R™ be a vector. Define a subset U, C U as follows.

U,={uelU: (pu =0}
The following Lemma 1 helps to find a facet description of Z(U).

Lemma 1. A shift of the zonotope Z(U,) is a face G of the zonotope Z(U). The center
of the face G is an end-point of the vector

_ p.w)
D= D b ©)

ucU—-U,

The affine hyperplane

Hy,={z eR": ({p,z) = (p, )} (6)
supports Z(U) at the face G = ¢, + Z(U,) C H,. In particular, if U, = U, then ¢, =0
and G = Z(U), and if U, = 0, then G is a vertex that coincides with c,.

Proof. Using (4), it is easy to see that ¢, is a point of Z(U). We show that the affine
hyperplane H,, supports Z(U), i.e. (p,z) < (p,¢c,) for all x € Z(U). It is sufficient to
verify these inequalities for vertices. We have (p,v) = >, ; bu(£(p,u)). Since b, > 0
and (p,u) € {0, £1}|(p, w)| for all u € U, the following inequality holds

po)y< > lau<<p’u>)2 = (P, p)-

=, ]

This inequality implies that the hyperplane H,, supports Z(U), and ¢, + Z(U,) = G is a
face of Z(U). O

Lemma 1 implies the following important

Theorem 2. Let U C R" be a set of vectors. Let b, > 0 be non-negative weights
for all w € U. Let P be a set of vectors containing all facet vectors p of the zonotope
Z(U) = > evbuz(w). Then the zonotope Z(U) has the following description by linear
inequalities

Z(U)={z € R": {p,z) < ay(p) for all p € P}, (7)
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where (p.u))?
p,u
ay(p) = by~ (8)
2 T
FEach inequality in (7) supports a face of Z(U). 0

Consider a zonotope Z(U) generated by a unimodular set of vectors U. It is known
(see, for example, [7], [3]) that a zonotope Z(U) is a parallelotope if and only if vectors
u € U are in proportion with vectors of a unimodular set of vectors. According to
description of Z(U) by (4), we can suppose that the set U is itself unimodular. Recall
that a set is unimodular if each its vector has an integral representation in any its basic
subset.

Let F be a facet of Z(U) with its facet vector p which is, recall, orthogonal to F'. The
facet F' is also a zonotope Z(Up), where Up = U,. The unimodular set U represents a
regular matroid My (see any book on Matroid Theory, for example, [2]). The subset Ur
represents a copoint of My. A definition of a copoint implies that the set of equalities
(p,u) = 0 for all u € Up determines uniquely up to a multiple a facet vector p. It is
known, see, for example, [2|, [3], that, for any copoint Up of a regular matroid, lengths
of its facet vectors p can be chosen such that they satisfy the following condition

(p,u) € {0, £1} for all u € U. (9)

It is important that fulfillment of this condition for all facet vectors is equivalent to
unimodularity of the set U (see, for example, [2], [3]).

Let a vector p satisfies the condition (9). Then |(p,u)| € {0, 1}, and, since (p,u) =0
for uw € Up, ¢, can be written as

cp =Y bu((pu))u. (10)

uelU

Theorem 3. Let U C R" be a unimodular set of vectors. Let b, > 0 be non-negative
weights for all w € U. Let P be a set of all facet vectors p of the zonotope Z(U) =
Y wer buz(u). Let facet vectors are chosen such that they satisfy conditions (9). Then the
zonotope Z(U) has the following description by linear inequalities

Z(U) = {x € R": (p,) < fu(p) for all p € P}, (11)

where

o) = bul(pw)* = (p, Y bu(uu")p), (12)

uelU uelU

s a positive semi-definite quadratic form on vectors p € P.

Proof. If p is a facet vector, then it satisfies conditions (9). Hence |(p,u)| = 1 for all
u € U — U, and the hyperplane (6) takes the form

Hy(f) ={z e R": (p,x) = fu(p)}. (13)

This implies the assertion of this theorem. O
By Theorem 1, Theorem 3 shows that the zonotopal parallelotope Z(U) is affinely
equivalent to a Voronoi polytope.
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Onpe,ueﬂeHI/Ie obJjiacTu THUIIA IIapaJjujiejiodapa

[Mpumyxun B.I1.

Hernmpaarvhoiti axonoMmuKo-mamemamudeckuts unemumym PAH
117418 Poccua, . Mocksa, Haxumoscxuii npocn., 47

KiroueBnbie cioBa: ITapaJijieJI031p, 00/1aCTh THIIa, S0OHOTOII

JIro6oit BBIyKJIbIH MHOrOrpaHHUK P = P(«r) MOXKeT OBITh ONUCAH CHCTEMON JIMHET-
HBIX HEPABEHCTB, OIPEJIeIsIeMbIX BEKTOPAMU p U npaBbiMu dactsivu «(p). s dukcnpo-
BAHHOI'O MHOKECTBA BEKTOPOB p Ompe/iesisiercst obsacts tuma D(Fy) MHOrorpantuka Py,
U B YaCTHOCTH NapaJsuiesiodipa [, Kak Takoe MHOYKECTBO ITapaMeTpPOB «(p), ITO MHOIO-
rpanHuKd P() uMeroT ToT ke KOMOUHATOPHBIH Tuil, uro u Py s Becex o € D(Fy). Bo
BTOPOIl YaCTH CTaTbU JaeTcs (haceTHOe ONNCAHUE 30HOTOIIOB M 30HOTOIHBIX IIapaJlie/Io-

3/IPOB.
CraTbs myO/IMKyeTcst B aBTOPCKON PEJIAKITNN.

Csenenust 06 aBTOpE:
I'pumnyxun BsvecnaB IlerpoBuy,
HenTpanbublit SKOHOMIKO-MaTemaTndeckuit mactutyT PAH
JI-p pu3.-MaT. HAYK



