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We present a new class of random packing, called an “areal random packing”,
in the plane. After performing computer simulations, we obtain the areal pack-
ing density through statistical analysis. One-dimensional version of areal random
packing is also presented. Remarks about the connection to the random disk pack-
ing and to other processes are given.

The article is published in the author’s wording.

1. Introduction

Random packing of objects is often seen in our daily life. Car parking problem in the
street is a typical example of such random packings, but in this case, one can assume
the problem is in one-dimensional space. In two-dimensional space, the random packing
problem by identical disks will be a natural extension of the car parking problem into
two-dimensions. Figure 1 shows a sample of this problem.

One can also consider the random packing of any objects, such as ellipses, line seg-
ments, and so on. These problems have many applications to material science, to medical
science, and to other sciences.

We point out the above random packings are all consisted of the non-overlapping
objects. It means that the process of random packing of objects is done by randomly
putting a test object, by checking if this object overlaps existing objects, and by settling
it if it does not overlap others.

In this paper, however, we present a new class of random packing problem.

2. Areal Random Packing

We suppose the critical size of area, instead of the non-overlapping object, which is the
least accepted size of area for each generating point.

IThis paper is dedicated to the upcoming 70-th birthday of Prof. Nikolay Dolbilin.
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Pattern of Voronoi Division
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Random Packing by Disks: L = 10, N = 64; density = 0.50265

Figure 1. Sample pattern of a random packing by disks and its Voronoi division

Pattern of Voronoi Division
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Areal Random Packing: L = 10, N = 81; density = 0.81

Figure 2. Sample pattern of an areal random packing

Example of the new packing process is given in Fig.2. We call this packing an ‘areal
random packing’. Let the whole region of the packing be a square A = L x L, where L
is the edge length of A, and let N be the number of points. We assume the critical value
of the area allocated to each point be a,.

A rough sketch of the procedure of our random packing is as follows:

1. Put N < 3, and generate N points uniformly at random inside A.

2. Compute Voronoi division of the point pattern. If the size of any Voronoi
cell is below a., go to Step 1, else go to Step 3.

3. Generate a test particle x; uniformly at random in A, and compute the
Voronoi cell V(x;) of the point x;. If the area of V(x;) and the areas of
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Voronoi cells contiguous to V' (x;) are all bigger than a.., then go to Step
4, else go to Step 3.

4. N <+ N + 1. If a specified Stopping Rule is satisfied, then Stop, else
go to Step 3.

In the above procedure, a convenient Stopping Rule will be to specify the total
number of test particles n,: if a bigger n, is used, the final value of N will become larger.
It is obvious, however, how big a value is specified to n;, the final N is limited below the
value A/a.. Then a suitable big value of n, is needed to avoid the waste of computational
effort. In our case of Fig.2 (A =10 x 10; L = 10 : a. = 1.0), n, = 10000 is specified and
the final value of N was 81.

2.1. Estimation of Packing Density

It is generally an interesting theme to estimate to what extent the whole area will
be packed by the random packing process. The usual way of describing this estimate
is to compute “packing density”. In our case, the packing density p, is defined as
pa =N xa./A. (In Fig.2, pa = 0.81 was obtained.)

From the above discussions, it is obvious that our random packing is a stochastic
process and that p, is a random variable. Many people are often interested in the mean
value of py, E(ps), the mean packing density in the limit A — oo.

In order to estimate E(ps ), we performed computer simulation of the areal random
packing for several values of L with a number of independent trials n, for each L. The
value a. = 1 is chosen throughout. The following table is a summary of our computer
simulations.

L g N prxr, W t=L"14+ L1
5 10* 1000 0.8343 0.40000
7 2 x 10* 1000 0.8355 0.28571
10 2 x10* 500 0.8332 0.20000
15 5x10* 500 0.8354 0.13333
20 10> 500 0.8366 0.10000
30 1.5x10> 500 0.8347 0.06667
40 2x10° 200 0.8331 0.05000
50 3x10° 200 0.8324 0.04000
70 2.5 x10° 100 0.8247 0.02857
100 4 x 10° 50 0.8222 0.02000
200 2 x 108 5 0.8246 0.01000

Table 1. Summary of computer simulation for the areal random packing.

In the table, pry; indicates a sample mean of pry; and v™! = X1 + Y~ is the

value of the axis used for the linear regression in order to estimate p,, = lim pxxy in
X,Y >0

the form
PXxY = Poo T au"t + O(U_l).
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Areal Random Packing Density: Summary
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Figure 3. Summary plot of simulation and the linear regression analysis

We then performed a (weighted) linear regression of areal random packing density.
Figure 3 shows the summary of our simulation and a plot of the regression.

The dots in Fig.3 indicate all of simulated value of density and the solid line in Fig.3
is an estimated regression line. From the regression analysis, we obtained for the limiting
packing density p. = 0.8335 and for the coefficient a = 0.0040.

Our results indicate that the areal random packing shows a packing density of about
83 percent of the area of whole region. We point out that this packing density is rather
high compared with the packing density of the random packing by disks (we have ob-
tained the value 0.5473/(m/+/12) = 0.6035 2 for the case of disks [2]). We can consider
the high packing density of areal random packing compared with the above value of
identical disks might be due to the flexibility of the shape of packed objects. This fact
is surmised by a comparison of Fig.1 and Fig.2, namely, the shape of Voronoi cells for
disk packing is rather rotund, but the Voronoi cells for the areal packing are often flat,
on the other.

2.2. Areal Random Packing for 1-D

It will be natural to extend the idea of areal random packing to one-dimensional space.
Extension of the procedure given above to this space is rather direct and can be described
as follows. Let the region of packing be a line segment A whose length is L, and let the
critical value of accepted length be a.

1. Put N < 2, and generate N points uniformly at random inside A.

2. Compute Voronoi division of the point pattern. If the size of any Voronoi
segment is below a., go to Step 1, else go to Step 3.

2Here, our packing density is considered to be a ‘number’ density (the ratio of total number of packed
points against the number of maximally packed points for the whole region), while the value 0.5473 is the
‘volume’ density defined as the ratio of total ‘volume’ of packed disks against the ‘volume’ of the whole
region. Therefore, 0.5473 is divided by 7/ V12 (maximal ‘volume’ density) to get ‘number’ density.
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3. Generate a test particle x; uniformly at random in A, and compute the
Voronoi segment V' (x;) of the point x;. If the length of V(x;) and the
lengths of contiguous Voronoi segments are all bigger than a., then go
to Step 4, else go to Step 3.

4. N < N + 1. If a specified Stopping Rule is satisfied, then Stop, else
go to Step 3.

Areal Random Packing in 1-D

L=20:trial=1,2,3,4

Figure 4. Sample patterns of 1-D areal random packing

Samples of the areal random packing for 1-D are given in Fig.4. In the figure, results
of four independent trials are shown (L = 20). Vertical lines between points indicate
the position of boundaries of respective Voronoi segments. From the figure, it is seen
that sometimes the contiguous pair of points locate very near with each other although
corresponding Voronoi segments are bigger than a,.

As in 2-D case, in order to estimate the packing density p,, in the limit L — oo, we
performed computer simulation of 1-D areal random packing for several values of L by
applying the same Stopping Rule as in 2-D case (n;: total number of test particles).
The results are summarized in Table 2, where similar symbols are used as in Table 1
(a. = 1is used). Namely, p;, indicates the sample mean of p;, and v~ = L~ is the value
of axis used for the linear regression

PL = Poo +au"t +o(u™h).

We performed a weighted linear regression analysis, and obtained for the packing
density po, = 0.7697 and for the regression coefficient a = —0.0241.

Now, it is interesting to compare our result with the density of ‘car parking problem’
[1]. The problem concerns the random sequential packing of cars on the street, and a
theoretical packing density is known as ¢ = 0.74759---. By comparing this value with
our result for 1-D areal random packing, we see that the density of 1-D areal random

packing is larger than ¢ but that the difference is not large in comparison with the 2-D
case.
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L e Ng PL Lt
20 5x 10° 1000 0.7685 0.05000
50 101 1000 0.7698 0.02000

100 5x10% 1000 0.7681 0.01000
200 2 x10* 1000 0.7700 0.00500
500 5 x10* 500 0.7699 0.00200
1000 10° 200 0.7700 0.00100
2000 2.5 x10° 100 0.7702 0.00050
5000 5 x 10° 50 0.7700 0.00020

Table 2. Summary of simulation for 1-D areal random packing.

3. Remarks

As an application of the areal random packing, we can consider the habitat of plants.
It is natural to assume that an individual of plant occupies a critical size of area which
is neccesary for its existence through the competition for sun light and for water or
nutrition. Then, as a result of competitions among individuals, the final pattern of the
plant ‘territory’ might look like those of the areal random packing for the asynchronous
(sequential) settlement of plants. As a similar model for animal territories, we have once
applied the random disk packing for the asynchronous settlement [4].

Regarding the Stopping Rule discussed in Section 2, we can devise a different
rule in order to approach a random ‘complete’ packing. Here, a ‘complete’ packing
is meant by the state where no further generating point can be added. In the case of
random packing by disks, we have presented an algorithm called CPA (Complete Packing
Algorithm) [2], which substantially uses the Voronoi vertices for the search of residual
spaces for additional disks. In our case, in order to build the algorithm corresponding to
CPA, we inspected several samples which are assumed to be near the complete packing.
As a result we arrived at the following statements by which we are able to attain CPA.
Let us assume the current packing state under consideration is approaching a complete
packing in 2-D areal random packing. Then

e If there is a point x; whose Voronoi cell area |V (x;)| satisfies |V (x;)| >
2a., then an acceptable point x lies near x;.

e If there is a contiguous pair of points x; and x; satisfying |V (x;)| +
|V (x,)| > 3a., then an acceptable point x lies near the common edge
e(i,j) = V(xi) N V(x;).

e If there is a contiguous triplet of points x;, x; and x;, satisfying |V (x;)|+
|V (x;)|+|V (xx)| > 4a., then an acceptable point x lies near the common
vertex v(7,7) = V(x;) NV (x;) NV (xy).

By taking into consideration these statements for the algorithm, we will be able to
devise a CPA as a next step of the present study, and we will get a complete packing
efficiently without generating much test particles. Then the density of areal random
‘complete’ packing will become slightly bigger than the present result. One-dimensional
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version of CPA for the areal random ‘complete’ packing will also be devised by suitably
reforming the above statements.

We finally remark on the shape of Voronoi cells of our areal random packing. As
mentioned above, we noted a qualitative difference of the Voronoi cell shapes between
the areal and the disk random packings. Then, it will be an interesting problem to quan-
titatively compare the Voronoi cell shapes among different random processes. Regarding
this, we have done an analysis of large scale computer simulation of Poisson Voronoi cells
[3] and presented several formula for statistical distribution of the Voronoi cell shapes.
These formula will be useful for our present problem.
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O permoHaJIbHBIX CJOYYalHBIX yITaKOBKax

Macaxapy Tanemypa

Huemumym cmamucmureckoti Mamemamuku,
10-8 Mudopu-wo, Tawuxasa, Toxuo, 190-8562, Hnonus

KiroueBbie cjioBa: permoHajibHbIE YIIAKOBKU, ITpobJIieMa TapKOBKH, IJIOTHOCTD
YHAKOBKNA

MpbI BBOJIMM HOBBIi KJIACC CJAYYaWHBIX YITAKOBOK, KOTOPBIN HA3BIBAETCH ‘PErMOHA b
Hble ciryvaiiable ynakoBKu . [lociie KOMIIBIOTEPHBIX CUMYJISAINIL, C TOMOIIBIO CTATACTHYIE-
CKOT'0 aHaJIN3a HaMU MOJIyYeHa IVIOTHOCTh PErMOHAJIbHBIX CIYYallHbIX YIIAKOBOK. Takike
MBI UCCJIeIyeM OJIHOMEPHBIN CJIydail permOHaIbHBIX CJIyYallHbIX yHaKOBOK. [IpuBemgenbr
HEKOTOPbIE 3aMeYaHUs O CBA3M CJIyYailHbIX YIAKOBOK JIMCKOB C JIDYTHMU IIPOIIECCAMMU.

Crarbs myOJIMKYyeTCs B aBTOPCKON peIaKInn.
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