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One of the main methods of computational topology and topological data analysis is persistent homology, which combines
geometric and topological information about an object using persistent diagrams and barcodes. The persistent homology
method from computational topology provides a balance between reducing the data dimension and characterizing the inter-
nal structure of an object. Combining machine learning and persistent homology is hampered by topological representations
of data, distance metrics, and representation of data objects. The paper considers mathematical models and functions for
representing persistent landscape objects based on the persistent homology method. The persistent landscape functions
allow you to map persistent diagrams to Hilbert space. The representations of topological functions in various machine
learning models are considered. An example of finding the distance between images based on the construction of persistent
landscape functions is given. Based on the algebra of polynomials in the barcode space, which are used as coordinates, the
distances in the barcode space are determined by comparing intervals from one barcode to another and calculating penalties.
For these purposes, tropical functions are used that take into account the basic structure of the barcode space. Methods
for constructing rational tropical functions are considered. An example of finding the distance between images based on
the construction of tropical functions is given. To increase the variety of parameters (machine learning features), filtering
of object scanning by rows from left to right and scanning by columns from bottom to top are built. This adds spatial
information to topological information. The method of constructing persistent landscapes is compatible with the approach
of constructing tropical rational functions when obtaining persistent homologies.
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PopMupoBaHMe NPU3HAKOB MAIINTHHOTO O0yYeHIsA HA OCHOBE

MOCTPOEHMS TPOMUecKX GyHKIUI
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YK 004.93’1 IMonyuena 5 nions 2022 1.
Hayunas crarbes ITocne mopaborku 24 aBrycra 2022 r.
IlonHBIN TEKCT HA AaHTJIUIICKOM S3bIKE Ilpuusara k myGunkanum 26 asrycra 2022 r.

On@HMM M3 OCHOBHBIX METOJOB BBIUMCIIMTENLHOI TOMOJIOI MY M TOTIOIOTMYECKOT0 aHaJ3a JAHHbIX ABJIAETCA IePCUCTEeHT-
Hasi TOMOJIOTH, 00be IMHAIOIIAs TeOMEeTPIUECKYIO I TOIIOJIOTMUEeCKYI0 MH(pOopMaLuio 06 06beKTe ¢ UCIIOIb30BaHIEM IIep-
CHUICTEHTHBIX MarpaMM y 6apKkogoB. MeToJ IepCUCTeHTHON FOMOJIOI MM M3 BBIUMCIUTENBHON TOIIOJIOTNY 06ecIIednBaeT
GayaHC MeXAy YMeHbILICHMeM PasMepPHOCTH JaHHBIX M XapaKTepPUCTUKOI BHYTPEHHel CTPYKTypsI oobekTa. OO0beau-
HEeHUIO MalllTHHOTO 00Y4eHNU ¥ IIePCUCTEHTHOI TOMOJIOTUY IPENATCTBYIOT TOIIOJIOTMYecKye IIPeACTaBIeHNs JaHHbIX,
METPYKY PACCTOSHIMA I IIPeJICTaBlIeHIie 00BeKTOB JaHHBIX. B paboTe paccMaTpuBaoTCS MaTeMaTUYecKyie MOJENN 1 QyHK-
LA TIPeJICTaBIeHNs 00bEKTOB IIEPCUCTEHTHOTO JaHAIIadTa Ha OCHOBE METOMA IIePCUCTEHTHOI roMostoruy. PyHKumm
IIePCUCTEHTHOTO JaHAImadTa IO03BOJIAIOT OTOOPAKaTh ITEPCUCTEHTHBIE AMArpaMMBbl B TTUIBOEPTOBO IPOCTPAHCTBO. Pac-
CMOTpEHBI IPeCTABIECHN TOOJOTMYeCKIX (yHKINIA B Pa3IMYHBIX MOJEJAX MalIMHHOr0 o0yuenns. IIpusenen npumep
HaXOXXIEHMS PACCTOSHIISI MEKAY M300paskeHMSIMI Ha OCHOBE ITOCTPOeHMsT GYyHKIMIT ITepCUCTeHTHOTO JaHaIadTa.

Ha ocHoBe ajre6GpsI MOJIMHOMOB B IIPOCTPaHCTBE 6apKOTOB, KOTOPBIE MCIIOIB3YIOTCA B KaUeCTBe KOOPAMHAT, OIIpe/esi-
JOTCA PACCTOSHYA B IIPOCTPAHCTBe 6apKo/ia COIOCTaBIeHIeM MHTEPBAJIOB OT OJHOTr0 6apKoja K IPYroMy U pacyera IITpa-
¢oB. [l 9TUX LeJIeil MCIONb3YIOTCA TPOIMYeckue QYHKLMM, KOTOPbIe YUNTHIBAIOT 0a30BYI0 CTPYKTYPY IIPOCTPAHCTBA
6apkoga. PaccMOTpeHBI MeTORbI IIOCTPOEHNS PAIIOHAIBHBIX Tponnueckux ¢ynkumit. IlpusefeH npuMep HaXOXACHNS
PacCTOSHNA MeXIy M300pKeHMAMM Ha OCHOBE ITOCTPOEHMS TPOImmdecKux GyHKIuii. g noBbIIeHns pasHooOpas3ns
rapamMerpoB (IIPM3HAKOB MAIMHHOIO O0yUeHMs) ITOCTPOEHB! (IUIBTpALMM CKaHMPOBAaHNSI 00BbEKTa II0 CTPOKaM ClleBa
HAIpaBO ¥ CKAHMPOBAHMSA IO CTOJIOLAM CHU3y BBepX. 9TO J00aBIIAeT IPOCTPAHCTBEHHYI MH(POPMALIMIO K TOIOTIOTIYe-
cxoii mHdopMauu. MeTox MOCTpoeHN IepCUCTEHTHBIX JIaHAIIAQTOB COBMECTIM C ITOJXO0A0M ITIOCTPOEHM TPOIMUECKIX
pauMOHANbHBIX GYHKII IIPH ITOJTYUEHNN IePCUCTEHTHBIX TOMOJIOTMIL.

KirroueBple c1oBa: IIepCcHCTEeHTHBIE TOMOJIOTHY; IEPCUCTEHTHBIN TaHAIIadT; MalnHHoe 00yuenne; RKHS; rmms6eproBo
IIPOCTPAHCTBO; TPOIIIYECKIe (PyHKIII
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Introduction

A central tool in topological data analysis is persistent homology, which summarizes geometric and
topological information in data using persistent diagrams and barcodes [1-6]. The use of persistent homol-
ogy in relation to the traditional methods of algebraic topology [7] provides additional information about
the shape of the object.

Machine learning can then be performed to analyze the topological data [8]. The application of ma-
chine learning methods for complex systems of large dimensions is difficult due to the methods of adequate
representation of functions [9, 10]. The use of standard metrics for persistence charts makes it difficult to
perform computational operations. Simplifying the application of machine learning methods is to map per-
sistent diagrams to Hilbert space; one way is the persistent landscape method [9, 10]. Its advantages are
that it is reversible so it does not lose any information, has persistence properties, has no parameters, and is
non-linear.

Persistent landscapes are compatible with the tropical rational functions approach for obtaining persis-
tent homologies [11], since persistent landscapes can be represented by tropical rational functions.

1. Persistence modules, persistence diagrams and barcodes

The persistent module [9] M is composed of vector space M(a) for every real number a and a < b a linear
mapping M(a < b) : M(a) — M(b) such that for a < b =< ¢: M(b = c)oM(a = b) = M(a = c). Persistence
modules arise in topological data analysis from the homology of a filtered simplicial complex.

In many cases, a persistent module can be represented entirely by a set of intervals called a barcode.
Another representation of a barcode is a persistence diagram, consisting of pairs (b;, d;),- < b; < d; <
00,i = 1,...,n, which are which are the start and end points of the intervals in the barcode. points of the
intervals in the barcode. To determine the distance between modules, we will use the Wasserstein distance
or the bottleneck distance. These distances induce a topology in the space of persistent diagrams.

If we will consider the sequences of persistence diagrams Dy, ..., D,,, then we can consider this sequence
as a point (Dy, ..., D) in the space of the product of n persistence diagrams with the metric:

d(Di, ..., Dy), (D, ..., D})) = max{dg(Dy, D), ..., ds(Dy, D)}

2. Persistent landscapes

For a given persistence module M, we can define the persistence landscape as a function A : NxR — R,
given by A(k,t) = sup(h = O|rankM(t — h < t + h) = k). For a barcode B = {I]} we can define a
persistent landscape as A(k,t) = sup (h > 0|[t = h,t + h] c I;; for at least k different j)

For a persistent diagram D = {(a;, b;)} , we can define a persistent landscape as follows. For a<b we
define  fo5)(t) = max(0,min(a + ¢,b - t)). Then A(k,t) = kmax {f(ai, bi)(t)};c; » Where kmax denotes the
k-th largest element.

A persistent landscape can also be thought of as a sequence of functions A;,1;,... : R — R, where
Ak is called the k-th function of the persistent landscape. The function Ay is piecewise linear with a slope of
0, 1, or -1. Critical points of Ay are those values of ¢, at which the slope changes. The set of critical points of
the persistent landscape A is the union of the sets of critical points of functions A;. The average persistent

- N o
landscape of landscapes AV, ..., A") is given by the formula: A(k,t) = N1 Y A0O(k, t).
=1
Let M is a persistent module. For a < b the corresponding Betti number for M is determined by the
dimension of the image of the corresponding linear mapping: % = dim(Im(M(a < b))).
The rank function: 1 : R*> — R, is the function given by the expression:

bd if  b=d,
A(b’d>={ﬁo if b>d
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Formation of Machine Learning Features Based on the Construction of Tropical Functions

Let’s change the coordinates so that the resulting function lean on the upper half-plane. Let m =
0,5(b + d), h = 0.5(d - b). Then the rescaled rank function A : R> — R, has the form:

m-h,m+h if hs> 0,
Mm’h)z{ﬁ 0, if h=<o.

The persistent landscape is a function A : N x R — R, where R denotes the extended real numbers
in the interval [-oo, 00]. Alternatively, it can be considered a sequence of functions 4; : R — R, where
A(t) = Ak, t). Let’s define Ag(t) = sup(m = 0| f1~™HM > k).

Let a set be given S. The function F : S — H, where is the Hilbert space, is called the feature mapping.
The kernel on S is such symmetric mapping: K : Sx S — R, that for any nand all x4, ..., x, € S, a1, ..., a, € R

n
: Y aiaiK (x,-, xj) > 0. A Hilbert space with a reproducing kernel (RKHS [12]) on a set S is a Hilbert space
ij=1

of real-valued functions on S such that the point value functional is continuous. For a given mapping of
characteristics, there is an associated kernel defined by the formula: K(x, y) = <F(x), F(y)>n

The kernel K has an associated space RKHS Hy, which is the completion of the range of functions K
S — R, given by the formula: K,(y) = K(x,y),Vx € S, with respect to the scalar product given by the
formula <Kx,Ky> = K(x, y).

A persistent landscape is stable in the following sense. Let D, D’ be persistent diagrams and A, A’ be their
persistent landscapes. Then for all k: |Ai(t) - A.(1)] < dy(D, D’), where db is the bottleneck distance. For
two persistence diagrams D = {(ay, by), ..., (an, by)}, D’ = {(al, b)), an, b;l)} let A, A’ be the associated

persistence landscapes. Then |A - X’| < |(a1, b1, ..., an, bn) - (af, b{, e ap b)) -
Since the persistent landscape is a mapping of characteristics from the set of persistent diagrams to ,

then there is an associated kernel of the persistent landscape, which is determined by the scalar product:
K(D(l), D(Z)) 2)> Z / /121) t)/l(Z) t)dt. (1)
k=1

One of the advantages of a persistent landscape is that its definition does not include parameters. A set
S of persistent diagrams in a vector space is called linear if for two persistent diagrams Dy, Dy: S(D; u D) =
S(Dn) + S(Dy); the persistent landscape is non-linear. There are fast algorithms and software for calculating
the persistent landscape.

For real-valued functions on IN x R we define the p-norm (1 < p = oo); for persistent landscapes at
l

L= p<oco:|i, = Z [f (A(B)Pde] s at p = oo: |2 = sup Ak(2).

k=1 -0

Weighted versions of these norms and internal Works can be used; for any non-negative function w :
N xR — R: K,,(DY, D@) = ( Jw - 2D, Jw - 1@,

Let M, M’ be the persistent modules and A, A’ their corresponding persistent landscapes be. For 1 < p <
oo, we define p-landscape distance between M, M’ :

ApM, M) = | = X (2)
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Table 1. Barcodes of Image House

barcode | dim | birth peak death
barl,2 0 | (0,00 | (0.707,0.707) | (1.41,0)
bar3,4 0 | (0,0) (1,1) (2,0)
bar5 1 | (20) | (2414,0.414) | (2.828,0)

Example 1. Let’s consider the image House from five points [ -1,0; 1,0; 1,2; -1,2; 0,3 ].
Let’s find barcodes of dimension 0: 2[ 0 1.4142 ), 2[ 0 2 ),[ 0 oo ); dimensions 1: [ 2 2.82825 ); see
table 1.

For dimension 0: A70%¢(1,t) = ¢ - st(t,(0...1]) + (2 = t) - st(t, (1...2]),

AHouse(2 1) =t st(t,(0...0.707]) + (1.414 — t) - st(t, (0.707 ... 1.414]),

where st(t, (a... b]) is the step function:

1 ifte(a...b],

st(t,(a---b])z{ 0 ift#(a..b].

Consider now the image Housel of five points [ -1,0; 1,0; 1,2; -1,2; 0,4 ].
Let’s define barcodes of dimension 0: 3[0, 2.0), [0, 2.233) , [0, o) ; dimensions 1: [2.0, 2.828); see table 2.

Table 2. Barcodes of Image House1

barcode | dim | birth peak death
bar1,23 | 0 | (0,0) | (1.0, 1.0) (2.0,0)
bar4 0 | (0,0) | (1.116, 1.116) | (2.233,0)
bar5 1 | (2,0) | (2.414,1.298) | (2.828.0)

For dimension 0:

AHousel(1 ) = ¢ . st(t,(0...1.116]) + (2.233 — 1) - st(¢, (1.116 ... 2.233]),
AHousel( 1) = ¢ st(£,(0...1]) + (2 = t) - st(¢, (1...2]).

Let us define the norm L? : |Afouse — JHousel|, — (5457

3. Tropical features

The term “Tropical mathematics” was introduced by Academician Viktor Pavlovich Maslov [13]. In
Mathematical Subject Classification (MSC-2020) there is a rubric “14Txx Tropical geometry”. V.P. Maslov
began to use such expressions as “tropical picture”, “tropical relations” in the early 1980s in connection
with the economic situation in Russia in the early years of perestroika and the liberalization of political and
economic restrictions in the USSR, by analogy with the slave trade in Tropical Africa.

Tropical algebra is based on the study of the tropical semiring (R u {0}, @, ©). In this semiring, addition
and multiplication are defined as follows: a ® b := max(a,b) andaoe b :=a+ b.

Both are commutative and associative. An operator o takes a priority, when @ and @ occur in the same
expression. There is a distributive law: ao (b@ ¢) = a o b ® a o c. The following identity holds in tropical
arithmetic: (a ® b)" = a" @ b",Vn.

Let xy, ..., x, be variables representing elements in the Max-plus semiring. Max-plus monomial expres-
sion is any product of these variables where repetition is allowed. Max-plus polynomial expression is a finite
linear combination of Max-plus expressions of monomials:

1 1 2 2 m m
(x Xp) = G O X . Xy @Ay @K, . Xy B ® Ay O XL ... X"
(X155 Xp 1 1 - Xn 2 1 - Xn m 1 - Xn
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here the coefficients ay, ..., an are real numbers and a}, 1=j=n1 = i=< mare non-negative integers. The
total power of the Max-plus expression p(xi, ..., x,) is deg(p) = %Pig)é(ai +...+a)).

Considered as a function p : R" — R has the following f)r_operties: p is continuous; p is piecewise
linear; p is convex.

Max-plus polynomials is a semiring of equivalence classes for expressions of Max-plus polynomials. In
the case of n variables, we denote the semiring by MaxPlus[x, ..., x,].

Tropical rational expression is quotient:

-1

Pty e s Xn) = P(X1y ooy %) © Q(315 ey X)) = P(X1, ee s Xn) — (X1, e, X)), (3)

where p, g are Max-plus polynomial expressions.

The semiring of equivalence classes of tropical rational expressions with respect to a functional equiva-
lence relation RTrop[x, ..., x,] is called the semiring of rational tropical functions.

Any function can be represented by an expression of the form p © q!, where p, q are tropical polyno-
mial expressions. The calculation algorithm for p, q is the usual algorithm for adding fractions by finding a
common denominator, but performed in tropical arithmetic [7].

The functions contained in MaxPlus[x, ..., x,,] or RTrop[x, ..., x,] are called tropical functions [Kalis-
nik].

A tropical function f is symmetric if f(xi, ..., Xn) = f(Xz(1), .- » Xz(n)) for each permutation 7 € S,.

For given wvariables xj,...,x,, we define elementary symmetric Max-plus polynomials
01, ..., 0y € MaxPlus[xy, ..., x,] by the formulas:

01 =X19...0 Xy,

O = ;T?S,, Xr(1) ©..0 Xr(k)> (4)

On=X10...0 Xy.

Let us show that the persistent landscape is a tropical rational function.
Let D = {(a;, b))}, , - < a; < b; < o, is a persistence diagram. k-th landscape persistence function is given
by Ax(t) = kmax fa, b)(t), Where f,p)(t) = max(0, min(a + t, b - t)).

1<isn

Let’s rewrite f(, ) as a tropical rational expression with one variable ¢ :

f(a, b)(?) = max(0, - max(—(a + ), t - b)) =
max(0,-max((ao t) L,tob ) =0e[(act) e (teob )]

The right term can be simplified using the usual rules for adding fractions:
fap () =0e(a+b)oto(beaoi?) .
Consider polynomials Max-plus in n variables, xi,..,X,. The elementary symmetric polynomials
Max-plus, o1,..,0,, are given by the formula: ox(xy,...,x,) = eas Xr(1) © *** © Xn(k), Where the sum is
TTES,

taken over the elements 7 of the symmetric group S,. oy is the sum of the k-th largest monomials x, ..., x;.
Consequently, kmaX Xi = 0k(%1, ooy Xn) = Op_1 (X1, ooy Xp).

<I<nhn
Thus A(t) = ok (fi(t))- ok-1(fi(£)) ™, where oy (x;) is written for oy(xq, ..., x,) and fi(t) for fi,, 1, (t). Therefore,
for a fixed persistent diagram D, we have as a tropical rational function Ay of one variable ¢.
However, t should be considered as a fixed value and the persistence chart as a variable. Consider
fila,b)=0etoaobo(be2toea)’ atropical rational function of variables a, b. Further,

O-k(ft(ah by), ... ’ft(an, bn)) = €B7!6.9,1](}(‘17:(1)’ bﬂ(l))’ 3ff(a7l(n)’ bﬂ'(n));
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is a symmetric Max-plus tropical rational function of the variables ay, by, ..., a,, b,, and
Mei(ar, by, ..., an, by) = ox(fi(ar, br), ..., fi(an, by)) © ok-1(fe(as, by), ..., fi(an, b)),
is also a symmetric tropical rational function of the variables ay, by, ..., ay, by.

Since the mapping of persistence diagrams to persistent landscapes is reversible [9], the persistent land-
scape gives us a set of tropical rational functions Ay ;, from which persistent diagrams can be reconstructed.

4. Construction of a feature vector in the space of barcodes

Aadcock A. et al. [14] defined an algebra of polynomials in barcode space that can be used as coordi-
nates. Distances in barcode space are determined by matching intervals from one barcode to another and
calculating penalties that involve taking maximums. For this reason, the tropical functions and are suitable,
given the basic structure of the barcode space. We will represent the barcode with n intervals as a vector
(x1, d1, X2, da, ..., X, dy), Wwhere x; = 0, Vi denotes the left end of the i-th interval and d; is its length.

Let’s build two filtrations: scanning by rows from left to right and by columns from bottom to top. This
adds spatial information to topological information. Information from Betti 0 and Betti 1 is used.

We will use six parameters — tropical features of the Max-plus type [11]:

P ed;

peo:og(diod):;

Py i<;2k (dl- odjo dk) ; -
ps 1 Od;

ps 1 OX;

n o t((an) )

When applied to two sweeps, each with a 0-dimensional and a 1-dimensional barcode, yields a feature
vector with a common size 2 x 2 x 6 = 24.

Example 2 Since the image of the number 6 can be obtained from the image of the number 9 with the Eu-
clidean transformation (rotation relative to the center of the image by 7 rad), the topological characteristics
of these images are indistinguishable.

Let us find the topological characteristics of these images using tropical functions. Let’s determine the
image coordinates of the number 9:
alongthex-axisiq9y=[1 1 2 3 4 4 4 4 4 4 4 3 2 1 1 1 1 2 3 4];
alongthey-axisiq9y=[2 1 1 1 1 2 3 45 6 7 7 77 65 4 4 4 4].

Values of the left ends of the barcodes when scanning from left to right with fy = 1, 8, = 0 : x;* = 1, x,7 =

0.
Values of the left ends of barcodes when scanning from bottom to top with fy = 1, f; = 0 : x; = 1;x,7 =
0.
Values of the left ends of the barcodes when scanning from left to right with f, =0, f; = 1 : x5 ht .
Values of the left ends of barcodes when scanning from bottom to top with fy = 0, f; = 1 : x;,7 = 4.
Values of barcode lengths when scanning from left to right with §y = 1, ; = 0 : d gt _ 3, d, Bt _ g
Values of barcode lengths when scanning from bottom to top with fy = 1, f; = 0 : d; = 7;d,* = 0.
Values of barcode lengths when scanning from left to right at with fp =0, f; =1 : d; ht _ g,
Values of barcode lengths when scanning from bottom to top at with fy = 0, f; = 1 : d;” = 4.
Let’s find the values of tropical parameters pi, ps, ps, ps for the barcodes of the image of the number
9, when scanning from left to right with §, = 1,6, = 0: p{ight’ﬁo = G?d,- = 4; pzright’ﬁo = iefj (di © dj) =7

right,fy _ _ . rightfy _
P —c;?di-7,p5 —c?xi—z.
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Parameter values py, ps, ps, ps, when scanning from bottom to top at fy = 1, = 0: p;** - g di =7,

pgp’ﬁo—ee(d Od)—7 pupﬁo—cad—7 pupﬁ"—Qx,-=1.

Parameter values py, p2, ps, ps, when scanning from left to right with , = 0,8, = 1: p”‘ghtﬂ ! od =4
1
prtghtﬁ1 _ EB(d ° d) 4 prlghtﬁl prlghtﬁl —ox =1
1

Parameter values py, ps, pa, ps, When scanning from bottom to top at ) = 0,4, = 1: p/** h_ e di = 4;
pipho o (diod)) =4 pipho ©d; = 4 pepho °ox; = 4.
Let’s (]:letermine the image Coordmates of the number 6:
alongthex-axis;g6y=[4 4 3 2 1 1 1 1 1 1 1 2 3 4 4 4 43 2 1];
along they-axis: g6, =[ 6 7 7 7 7 6 5 4 3 2 1 1 1 1 2 3 4 4 4 4].
Values of the left ends of the barcodes when scanning from left to right with with fy = 1, ; = 0 : x| 'ght
158 g,
Values of the left ends of barcodes when scanning from bottom to top at with fy =1, f; =0 : x,”
l;xup =0.
Values of the left ends of the barcodes when scanning from left to right with f; =0, f; =1 : ”ght =4
Values of the left ends of barcodes when scanning from bottom to top with iy = 0, f; = 1 : x;7 = 4.
Values of barcode lengths when scanning from left to right at with fy = 1, f; =0 : d, right _ 4, d, Bt _
Values of barcode lengths when scanning from bottom to top at with fy = 1, f; = 0 : d,* = 7;d,* = 0.
Values of barcode lengths when scanning from left to right with f, =0, f; = 1 : d”ght 5.
Values of barcode lengths when scanning from bottom to top with f = 0, f; = 1 : d;* = 8.
Let’s find the values of tropical parameters py, ps, ps, ps for the barcodes of the image of the number
6 , when scanning from left to right at fy = 1,5 = 0: p”ghtﬁ(’ =9 di = 4; p”ghtﬁo = ii)j (dl- © dj) =4

p;lghtﬁo @ d - 4- prlghtﬁg —ox =1
1

Parameter values py, ps, ps, p5, when scanning from bottom to top at fy = 1,5, = 0: up bo ﬂl_ad,- =7
pipho ® (d odj) =7 prpho =od; =17, pipho =ox =1

Parameter values pi, ps, p4, p5s, when scanning from left to right with §, = 0,5, = 1: p”ghtﬂ '=ed; =5
prlghtﬁl _ @(d ° d) -5, prlghtﬁl o d prlghtﬁl —ox =4 i

1 1
Parameter values py, p2, P4, ps, when scanning from bottom to top at f = 0, = “p ho _ g d; = 8;

pup'g"— ea(d ®d)—8p”pﬁ°—®d = 8; pupﬁ"—@xi:4.

Euchdean distance between the images of the number ”6” and the number ”9”:

D(« 63, 9 »)? Z wi - (pIE P (« 6 ) - pIE P (« 9 )%+
Z w; - Pﬁ‘) (« 6>) - .pﬁ°(<< 9 »))%+
Z W - p,”gtﬁl(« 6 ) - prE P (« 9 »))%+

ZWL (PrPP (« 6 ) - p*PP(« 9 3))2,

D (K 6 »,« 9 ») = 8.89, with weight values: w; = 1,Vi. [
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Conclusion

The paper considers mathematical models and functions for representing persistent landscape objects
based on the persistent homology method. The persistent landscape functions allow you to map persistent
diagrams to Hilbert space. The representations of topological functions in various machine learning models
are considered. An example of finding the distance between images based on the construction of persistent
landscape functions is given.

Based on the algebra of polynomials in the barcode space, the distances in the barcode space are deter-
mined by comparing the intervals from one barcode to another and calculating penalties. For these purposes,
tropical functions are used that take into account the basic structure of the barcode space. Methods for con-
structing rational tropical functions are considered. An example of finding the distance between images
based on the construction of tropical functions is given. To increase the variety of parameters, filtering of
object scanning by rows from left to right and scanning by columns from bottom to top are constructed.
This adds spatial information to topological information. The method of constructing persistent landscapes
is compatible with the approach of constructing tropical rational functions when obtaining persistent ho-
mologies.
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