MODELING AND ANALYSIS OF INFORMATION SYSTEMS, VOL. 29, NO. 3, 2022

,7? r journal homepage: www.mais-journal.ru
LR

Sinormation Syems THEORY OF COMPUTING

Towards Neural Routing with Verified Bounds on Performance
L. P. Buzhinsky?, A. A. Shalyto! DOI: 10.18255/1818-1015-2022-3-228-245

'ITMO University, 49 Kronverksky pr., Saint Petersburg 197101, Russia.
2 Aalto University, 8 Maarintie, Espoo 02150, Finland.

MSC2020: 68T07 Received June 16, 2022
Research article After revision August 25, 2022
Full text in English Accepted August 26, 2022

When data-driven algorithms, especially the ones based on deep neural networks (DNNs), replace classical ones, their
superior performance often comes with difficulty in their analysis. On the way to compensate for this drawback, formal
verification techniques, which can provide reliable guarantees on program behavior, were developed for DNNs. These
techniques, however, usually consider DNNs alone, excluding real-world environments in which they operate, and the
applicability of techniques that do account for such environments is often limited. In this work, we consider the problem of
formally verifying a neural controller for the routing problem in a conveyor network. Unlike in known problem statements,
our DNNs are executed in a distributed context, and the performance of the routing algorithm, which we measure as the
mean delivery time, depends on multiple executions of these DNNs. Under several assumptions, we reduce the problem
to a number of DNN output reachability problems, which can be solved with existing tools. Our experiments indicate that
sound-and-complete formal verification in such cases is feasible, although it is notably slower than the gradient-based search
of adversarial examples.

The paper is structured as follows. Section 1 introduces basic concepts. Then, Section 2 introduces the routing problem and
DQN-Routing, the DNN-based algorithm that solves it. Section 3 proposes the contribution of this paper: a novel sound and
complete approach to formally check an upper bound on the mean delivery time of DNN-based routing. This approach is
experimentally evaluated in Section 4. The paper is concluded with some discussion of the results and outline of possible
future work.

Keywords: formal verification; trustworthy Al; deep neural networks; routing problem

INFORMATION ABOUT THE AUTHORS

orcid.org/0000-0003-3713-6051. E-mail: igor.buzhinsky@gmail.com
Postdoctoral reseacher, Doctor of Science (Technology).

Igor Petrovich Buzhinsky
correspondence author

orcid.org/0000-0002-2723-2077. E-mail: anatoly.shalyto@gmail.com
Professor, Doctor of Technical Sciences, Professor.

Anatoly Abramovich Shalyto

Funding: The work was financially supported by the Russian Science Foundation (Project 20-19-00700).

For citation: I P. Buzhinsky and A. A. Shalyto, “Towards Neural Routing with Verified Bounds on Performance”, Modeling and
analysis of information systems, vol. 29, no. 3, pp. 228-245, 2022.

© Buzhinsky I.P., Shalyto A. A., 2022
This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).

228

http://www.mais-journal.ru
https://doi.org/10.18255/1818-1015-2022-3-228-245
https://orcid.org/0000-0003-3713-6051
mailto:igor.buzhinsky@gmail.com
https://orcid.org/0000-0002-2723-2077
mailto:anatoly.shalyto@gmail.com
https://creativecommons.org/licenses/by/4.0/

MOAENINPOBAHUME N AHATN3 MHPOPMALIMOHHBLIX CUCTEM, TOM 29, Ne 3, 2022

/
” r CanT XypHana: www.mais-journal.ru
i1

|
lnormation Sysem: THEORY OF COMPUTING

Ha myTu K HelipoceTeBOII MAPUIPYTU3ALNHA ¢ BepUPUIPOBAHHBIMU

rparnnamu 3 ¢peKTUBHOCTHI
W. 11 Byskuuckuii?, A. A. llanprro! DOL: 10.18255/1818-1015-2022-3-228-245

'Yuusepcurer UTMO, Kpousepkckuii p., 4. 49, r. Cankr-IlerepGypr, 197101 Poccus.
2YHI/IBepCI/n‘eT Aaurro, yn1. MaapuHtne, 1. 8, r. 9cmoo, 02150 dranaanns.

YK 004.8 [Tonyuena 16 urons 2022 r.
Hayunas cratbes ITocne mopa6orku 25 aBrycra 2022 r.
TonHBIT TEKCT HA AHTIMIICKOM A3BIKE Ilpunara k nyOamkanuu 26 arycra 2022 r.

Korpa anropuT™Me! Ha OCHOBe JaHHBIX, 0COOEHHO OCHOBaHHBIE Ha INTyGOKNX HellpoHHBIX ceTsax (THC), saMeHsIOT Kiacciye-
cKue, ux 6oiiee BHICOKAs IPOM3BOLUTEIBHOCTD YACTO COIPSDKEHA C TPYAHOCTAMU IIPH aHanu3e. YToObI KOMIIEHCUPOBATH
aTor HemoctaTok, miag I'HC 6butnm paspaGoTaHsl MeToap! GopMabHON BepudUKaIy, KOTOpble MOTYT IPeIOCTaBUTh
HaJIe)KHbIE TapaHTUM IOBeJeHMs IIPOTpaMMbI. STM MeTOABI, OHAKO, OOBIYHO paccMarpuBaioT Toibko camy I'HC, mc-
KIII0Yas Cpely, B KOTOPOJT OHa paboTaet, ¥ IIPMMEHIMMOCTh METOJ0B, YUMTHIBAIOIIX TaKye CPedbl, HacTo OrpaHnueHa. B
IaHHOII paboTe paccMaTpuBaeTcd 3afava GOpMaNbHON BepUMKAIMM HeIPOCETeBOro KOHTpOJUIepa A 3aauyl MapIi-
pyTU3anuy B KOHBeepHOI ceT. B oTinmunme oT M3BeCTHBIX IIOCTAHOBOK 3afaun, paccmaTpusaeMble THC BeimonHsaoTCS B
pacnpesieIeHHOII cpefie, ¥ IPOM3BOAUTEIbHOCTD aJITOPUTMa MapIIpyTU3aliy, KOTOpad M3MepsaeTcs KaK cpeflHee BpeMsa
JOCTaBKM, 3aBUCUT OT MHOTOKpatHoro BeinonHeHnd 31ux I'HC. IIpu HeKOTOPBIX IpeAIoIoKeHNAx, IIpobieMa Bepudu-
KaIluiy CBORUTCS K Py IPoGiIeM JOCTIKMMOCTH BbIxo0B ITHC, KOTOpBIe MOKHO PEIINTh C IOMOILBIO CYILEeCTBYIOIIMX
IIPOTPAaMMHBIX CPEJCTB. DKCIEPMMEHTHI II0KA3bIBAIOT, UTO B TAKUX CIy4asx BO3MOXKHA CTpOras U IOJNHas dopMasbHas
BepudUKaLM, XOT OHA 3aMETHO MeJJICHHee, UeM I'PaJMeHTHBII IIOMCK COCTA3aTeNIbHBIX IIPIMEPOB.

CraTps MOCTpOeHa cIeyIolM oopasoM. Pasmer 1 BBoQUT 0CHOBHBIe MOHATHA. 3aTeM B Pasfere 2 mpepcraBieHa mpobie-
Ma MapmipyTusauuu u anroputM DQN-mapirpytusanun Ha ocHose T'HC, xoTopriii ee pemraer. B Paspmene 3 onuceiBaerca
BKJIQX JAHHOJ CTAaThM: HOBBIM HaJeKHBIN I IIOJIHBIA MOAXOX K (OPMAaJIBHOI IpOBepKe BepXHell IpaHMIbI CpPeTHEro
BpeMeHM J0CTaBKM MapmipyTusanuy Ha ocHose THC. OtoT moaxon skcnepuMeHTanbHO olleHuBaeTcs B Pasmene 4. Cratbs
3aBepIIIaeTcs 00CyKIeHIeM Pe3y IbTaToB U ONMUCAHIEM BO3MOXKHOI Oy ayIeit paGoThL.

KiroueBsle cioBa: popmanbHas Bepudukanys; Hagesxuslit FIU; riry6okme HelipOHHBIE CeTH; 3aaua MapIIpyTI3aIiun

MHPOPMAIIVA OB ABTOPAX

HUrops Ilerposiry by xuucKmit
aBTOP 711 KOPPECIIOHAEHIII

orcid.org/0000-0003-3713-6051. E-mail: igor.buzhinsky@gmail.com
IIOCTHOK, KAHANAAT TEXHIYECKIX HAyK.

orcid.org/0000-0002-2723-2077. E-mail: anatoly.shalyto@gmail.com
mpodeccop, TOKTOp TEXHIUECKUX HayK, Ipodeccop.

Amnarommit A6pamosuu [Ilanbito

PuHaHcupoBaHue: PaGora BbIoIHeHa IIpu prHaHCOBOI mognepsxke Poccuitckoro Hayunoro ®omna (IIpoext 20-19-00700).

s quruposanus: 1. P. Buzhinsky and A. A. Shalyto, “Towards Neural Routing with Verified Bounds on Performance”, Modeling
and analysis of information systems, vol. 29, no. 3, pp. 228-245, 2022.

© Byskmuckmit U 11, Illanerto A. A., 2022
Jra crarks oTKphITOro pocrymna nox jurensueir CC BY license (https://creativecommons.org/licenses/by/4.0/).

229

http://www.mais-journal.ru
https://doi.org/10.18255/1818-1015-2022-3-228-245
https://orcid.org/0000-0003-3713-6051
mailto:igor.buzhinsky@gmail.com
https://orcid.org/0000-0002-2723-2077
mailto:anatoly.shalyto@gmail.com
https://creativecommons.org/licenses/by/4.0/

Buzhinsky I. P., Shalyto A. A.

Introduction

The recent success of deep neural networks (DNNs) has motivated researchers and practitioners to apply
them in many fields. When DNNs are required to interact with the real world, they are usually trained with
reinforcement learning (RL), based on the feedback from the environment. In particular, RL has been applied
to the problem of routing [1, 2], with the work [1] utilizing DNNs.

Unlike traditional controllers that are programmed explicitly [3], data-driven models such as DNNs are
hard to analyze. Especially when the decisions of a DNN-based controller influence the real world, this
leads to difficulties in establishing safety and reliability guarantees of such controllers. These concerns are
exacerbated by the possibility of adversarial attacks [4-6] both in the digital and the physical worlds. The
problem of acquiring guarantees on program behavior is usually referred to as formal verification [7] and is
more computationally expensive compared to testing and simulation. Formal verification approaches were
developed not only for traditional programs, but also for DNNs [8—13]. These approaches usually consider
DNNs in isolation, i.e. the connection of their inputs and outputs to the rest of the world is not modeled.

In this work, we consider the classical routing problem being solved by a distributed family of DNN-
based controllers, focusing on the baggage handling problem [3, 14, 15]. These controllers can be trained as
a single DNN for all nodes of the network or as node-specific DNNs. For such a family of controllers, we are
interested in proving an upper bound on the mean delivery time from the chosen source node to the chosen
destination node. As a concrete routing algorithm, we selected DQN-routing [1] based on deep RL.

The proposed verification approach involves adjusting the routing probabilities generated by DNN agents,
representing the conveyor network as a discrete-time Markov chain, and reducing the verification problem
to a number of problems of verifying a reachability property for a multilayer perceptron in isolation, which is
done using existing software [13]. We assume that the routing DNNs do not change during operation. While
this assumption reduces the applicability of the approach in the context of RL, it also enables verification of
DNN controllers obtained by means other than RL.

1. Preliminaries
1.1. Deep neural networks

A deep neural network (DNN) is a parameterized function trained to predict some outcome from input
data. More formally, we will assume that a DNN A predicts an outcome y € R% from a vector x € R%»,
and it is an MLP:

N = Agofodyofo- oAy, 1)

where k is the number of layers in the network (here, we do not count the input layer), A, ..., Ay are
learnable affine operators A;(x) = A;x + b;, possibly with different input and output dimensions, and f is a
continuous scalar nonlinear activation function that is applied to vectors element-wise. A popular choice of
f, both in learning and verifying DNN, is the rectified linear unit (ReLU): f(x) = max(0, x). In DQN-routing,
k =3 and f is ReLU.

We use the following notation. For matrices Ay, ..., Ag, the block diagonal matrix constructed from them
is denoted diag(Ay, ..., Ag). For column vectors by, ..., by, the column vector produced as their concatenation
is concat(by, ..., by). Block diagonal matrices and vector concatenations produced from m identical matrices
A or vectors b are denoted diag(A, m) and concat(b, m).

1.2. Adversarial examples for DNNs

DNNs with large di, may exhibit intuitively unwanted and unexpected properties: a slight modification
of the input vector often makes the DNN produce a prediction error [6]. This is especially visible on the prob-
lem of image classification, where an eye-imperceptible change of an image can result in a classification error.
Many approaches, such as [16-19], perform gradient-based optimization of such adversarial examples and
measure adversarial robustness, the robustness of DNNs to such examples. For discrete output predictions,

230

Towards Neural Routing with Verified Bounds on Performance

a possible choice is to define adversarial robustness as the norm (often #; or £.) of the minimum change that,
when added to the original input, makes the classifier produce an incorrect outcome. One popular method
for finding adversarial examples is projected gradient descent (PGD) [20], in which the classification error is
maximized w.r.t. the input vector of the DNN. The input vector is restricted to a ball centered at a given
point: if the vector escapes this ball on some step of gradient descent, it is projected back onto this ball.

However, evaluation of adversarial robustness metrics based on gradient-based optimization provides
only upper bounds on these metrics’ values. To accurately determine whether adversarial examples exist in
a given input space region, algorithms based on other principles must be used.

1.3. Formal verification of neural networks

Certified defenses [21-24] and formal verification techniques [8-13] focus on reliable guarantees on
adversarial robustness. Typically, DNN verification approaches check a property on the output of the DNN;
such as reachability of a certain output space region, when the input vector is constrained to a specified
input space region. In particular, by checking that one component of the output vector cannot exceed the
others when the inputs belong to a ball centered at a real data sample, it is possible to check a bound on the
minimum norm of the adversarial perturbation for this sample.

Most commonly, DNN verification targets the case of the DNN being executed only once, on fixed inputs,
and only the input-output dependency is modeled. However, these assumptions are unacceptable when the
DNN implements a controller, e.g. trained with deep RL [25, 26]: the environment (physical or simulated)
where the DNN is executed becomes important. First, the property to verify in this case is usually formulated
in terms of the environment (e.g., check reachability of a certain unsafe environment state region), so its
state needs to be modeled in addition to the DNN execution. Second, the dynamics of the environment may
influence future DNN inputs. Finally, in deep RL, the DNN itself may change based on the feedback obtained
from the environment.

1.4. Related work: Verification of neural network controllers

Existing approaches that verify DNN controllers [27-33] are model-based: the environment is modeled
explicitly and analyzed together with the DNN. A popular choice used in [27, 28, 32] for the model of the en-
vironment is a Markov decision process (MDP), which is used to formalize RL. Reasoning about such models
is possible with probabilistic [34] and hybrid model checking [29, 30, 33]. The source of distortions to which
the controller must be robust could be the initial state of the environment [33], its stochastic behavior [27],
possibility of an adversarial change in transition probabilities of the environment [32], variability of the
system’s inputs [29, 30], or possible failures in the controlled plant [27].

Our approach does not account for environment randomness: decision probabilities depend only on
the DNN controller. Thus, our environment model reduces to a discrete Markov chain whose transition
probabilities are decided by the DNN. This allows reducing our verification problem to a family of reachability
problems for an isolated DNN.

2. Distributed routing with a neural controller

In this work, we focus on verifying a particular deep RL method [1] that learns DNNs to deliver packages
in a network. Hereinafter, we limit the routing problem to delivering material objects in a conveyor network,
using the airport baggage delivery problem [3, 14, 15] as an example.

2.1. Conveyor networks and graphs

We describe the delivery problem starting from conveyor networks. Examples of conveyor networks used
in this paper are shown on the left in Fig. 1 and Fig. 2: both are synthetic examples from the literature [1, 15].
A conveyor network is composed of conveyors that transport packages (e.g., bags), it has a physical layout,
which defines conveyor lengths, checkpoints, and positions of the checkpoints on the conveyors. There may
be several types of checkpoints.

231

Buzhinsky I. P., Shalyto A. A.

10 [cl 10 [c2
fel] diverter 0 | | diverter 2 |<,_[L/]-| source 1

10 [c3] /10 [c2] \JO [c8]

w I 5 : <« 10 [c1] | diverter 3 junction 4
—
14
v 10 [e7]
¢ 13 4 junction 3

10 [c1] 10 [c2]

diverter 1 diverter 4

junction 0 diverter 5

10 [c6]

10 [c1] [diverter7 | | junction 2 | 3 [c23]

10 [c6] 10 [c5]

3[c9]| diverter 6 |—| diverter 8 |

10 [¢5] /3 [c20] 3 [c21] &
B I sink 0 I I sink 1 I I sink 2 I_ I sink 3 I

Fig. 1. Left: conveyor network from [1], with the focus on real-world conveyor layout.
Sources are shown in blue and sinks are shown in green. Right: corresponding conveyor graph

A source is a point of package arrival. If a conveyor is linked to a source, then this source must be located
at the beginning of the conveyor. A sink is a point of package removal from the network. If a conveyor is
linked to a sink, this sink must be located at the end of the conveyor. Each package that enters the conveyor
network is assumed to have a fixed destination sink.

A junctionis a connection point of two conveyors ¢; and c¢;, such that ¢; ends in the junction, and packages
are redirected to a specified non-terminal location of ¢;. Junctions redirecting packages to the same location
of ¢, are not allowed.

A diverter is a manipulator that connects two conveyors c¢; and c,: a package reaching the position of the
diverter at ¢; may be redirected to the beginning of c;. For each package, the decision whether to redirect it
to ¢, is controlled.

A conveyor graph (V,E) is a weighted digraph with nodes corresponding to the checkpoints (V = I'u
Ou J u D, where the disjoint components correspond to sources I, sinks S, junctions J, and diverters D), and
arcs connecting the checkpoints that are directly linked by conveyor sections. The arcs are weighted by the
lengths of corresponding conveyor sections. Due to the assumptions above, the indegree and outdegree of
each node is at most two and is always determined by its type, except for junctions, which may only have
an indegree of two (normal junction) or one (a new conveyor begins at the end of another one).

Fig. 1 and Fig. 2 show conveyor graphs (on the right) produced from networks shown on the left: they
will be used as examples to evaluate the proposed verification approach. Each node is annotated with its
type and index, with a separate numbering for the nodes of each type. The arcs are labeled with the lengths
of the corresponding conveyor sections in meters and with the index of the conveyor in square brackets. The
example from [1] (Fig. 1) was taken as is, the one from [15] (Fig. 2) was adapted to match our assumptions:
some nodes were split into two. For example, hybrid junction/diverter nodes were split into separate junction
and diverter nodes that are separated with a short (5 m) conveyor section. The example in Fig. 2 is more
interesting for verification due to the presence of cycles, which may potentially lead to unbounded delivery
times.

Suppose that all conveyor network components are operational and working properly. Then the deliv-
ery problem is, by controlling the routing decisions of diverters, to ensure that all arriving packages are

232

Towards Neural Routing with Verified Bounds on Performance

| source 2 | | source 3 | | source 0 | | source 1 |
50 [c3] /50 [c4] 50 [c1] 0 [c2]
junction 1 junction 0
5 [c4] 5 [c1]

diverter 1 diverter 0

295 [c4]

5[c7] [R95[cl]

L Lg Ls Lia
50m 50n 0m 50m

[junction 2] [junction 64|

51 1400 [c4] 5 [c7]

300m

Sq

Fig. 2. Left: conveyor network from [15]. Arks correspond to conveyor sections and are labeled by their lengths.
Sources are labeled as Ly, ..., Ly and sinks are labeled as U,, U,. Right: corresponding conveyor graph

delivered to their target sinks so that the delivery time and, optionally, some other metrics (e.g., energy
consumption [1]) are minimized. In this work, we will focus solely on delivery time.

2.2. Routing algorithm

Assume that the routing decisions in the conveyor network are made by a DNN N'. In DQN-routing, N
is trained with RL. Although it is possible to learn either one DNN or custom DNNs for each node, w.lo.g.
we assume that an instance of the same DNN N is located at each non-sink node (this choice will not
have a notable effect on the verification approach). We use an architecture based on [1], with the following
enhancements in node representation to support the possibility of dynamic changes in the conveyor network:

Each node is represented by its embedding, a real vector trained based on the conveyor graph. Em-
beddings are computed using a variant of the Laplacian Eigenmaps [35] algorithm. Routing outcomes are
obtained by executing N’ on embeddings of various nodes.

The output of N depends on the embeddings of three nodes: e., embedding of the current node ¢ (where
a package waits for a routing decision), e;, embedding of the destination node d (sink), and e,,, embedding of
the candidate neighbor n to which the package can be routed. As input, N receives concat(e;-e., e,-€.). N
is trained as a deep Q network [36] with two hidden layers and predicts the Q value (expected cumulative
future reward) of the routing decision. The rewards are based on package delivery time of the conveyor

233

Buzhinsky I. P., Shalyto A. A.

network, so the predicted Q value is the negation of the expected remaining delivery time of the current
package.

At diverters, routing decisions are made according to a decision distribution, which converts the predicted
Qvalues q; = N (concat(eg—e., en,—€.)) (1 < i < 2) to the probabilities p; and p, = 1-p; of routing the package
to n; and ny, respectively. Below, we assume that n; is always the next checkpoint on the current conveyor
and ny is a checkpoint on a different conveyor. The decision distribution is a Boltzmann distribution:

(p1,1 - p1) = softmax((q1, g2)/ T), (2)

where T > 0 (“temperature”) is a hyperparameter. Thus,

p1=0((q - q)/T), 3)

where ¢ is the sigmoid (logistic) function. The probabilistic routing rule is not used when the destination
is unreachable from one of the neighbors (reachability is computed before routing): in this case the pack-
age is routed to the other neighbor. Assuming that package destinations are always reachable from the
corresponding sources, this rule implies that there is always at least one neighbor suitable for routing. Al-
though Q values are also predicted at sources and junctions, routing decisions are not made there as the next
checkpoint is unique.

Keeping in mind the rules of making routing decisions, we see that the delivery depends only on the
decisions at a subset of diverters. For a source v; and sink v, these are only diverters v3 such that (1) vs is
reachable from v; and (2) v, is reachable from both successors of v;. For a fixed source/sink pair, we will
call such deverters nontrivial.

3. Proposed verification approach
3.1. Verification problem

Hereinafter, we are interested in the delivery time of a package between a chosen source and sink. Due
to the stochasticity of DNN routing decisions, it is not meaningful to verify the maximum possible delivery
time as it is only determined by the conveyor graph: e.g., it will be infinite if the conveyor graph has cycles
reachable from the source and from which the sink is reachable. Verifying bounds on the delivery time
statistics (means or medians) is more comprehensible.

We define the cost C, 4, 4, of delivering a package x from source v; € I to sink v, € O as the total
time spent on the delivery. For fixed v; and v,, the embeddings of conveyor graph nodes e;, ..., €|, and the
maximum allowed £, discrepancy of these embeddings €, we aim to verify that the expectation of Cyr 4, o,
taken over the stochastic routing decisions of DNN agents, does not exceed the given bound cy:

v
Ve, ..., ey, </\ lef —ei|l. < €= ECroo < c0> : (4)
i=1

Intuitively, this means that routing decisions cannot deteriorate if the input of N changes slightly (). The
input change may result from altering the conveyor graph, e.g., due to conveyor break. The choice of the £,
norm as the input metric is based on the restrictions of DNN verification tools, and the choice of delivery
cost expectation (and not, e.g., its median) is justified by the possibility to compute this value analytically
for an arbitrary conveyor graph as explained below.

3.2. Expected delivery cost

If the speeds of all conveyors are known constants, C, , », can be computed based on the lengths of
traversed conveyor sections. For simplicity, we assume that the speeds of all conveyors are 1 m/s, and the

234

Towards Neural Routing with Verified Bounds on Performance

lengths of conveyors are measured in meters. This makes the numerical values of conveyor lengths and their
traversal times equal, allowing us to substitute the latter with the former.

Let us compute the expectation of C y, +,, assuming that N is fixed during the delivery of . This
assumption may be justified by the possibility to temporarily stop the training of N when its parameters
have converged and the distribution of incoming packages is fixed. For fixed NV, package deliveries become
independent (under the assumption that packages do not collide), and the delivery of each package can be
described as a discrete-time Markov chain C:

« the states of C correspond to conveyor graph nodes;

« the initial state of C corresponds to vy;

« the transition probabilities of C are determined by the decision distribution (2) of N, and transitions

have weights equal to conveyor section lengths.

As Cy 4, v, only depends on v; and v, from now on we omit 7 in Cy 4, 4, E Cy, 0, is the expected time
of reaching v, starting from v;. Since the routing algorithm never routes packages to nodes without a path
to the destination and this path can always be selected with a non-zero probability, E C,, , is finite. Since
E Cy, «, is similar to the expected hitting time in a Markov chain (unlike the hitting time, it accounts for
transition weights), it can be found [37] by solving a system of |V| linear equations. This system can be
simplified by excluding the nodes that do not belong to any path from v; to ;.

Next, suppose that routing action probabilities are not fixed. Then, for each nontrivial diverter 1 < i < t,
suppose that p; and 1 - p; are the probabilities of routing the package to the checkpoint on the current
conveyor and on the adjacent conveyor, respectively, and p = (py, ..., p;). Here, the components of p do not
need to sum up to one.

Suppose that each component p; of p cannot have extreme values: p € (0, 1)". This is true if the decision
distribution is adjusted as explained in the next subsection. Suppose also that the following holds: if p €
(0,1)!, then the aforementioned equation system has a unique solution. This implication was validated for
the two example conveyor graphs considered in this paper, but checking it for arbitrary graphs is retained
for future work. Now;, if both assumptions hold, the solution is unique and can be found symbolically, giving
the expected delivery time of a package between chosen source and sink 7(p) : = E Cy, o, = fi(p)/f2(p), where
f1 and f, are some polynomials. In this representation, we can take f,(p) to be the (non-zero) determinant of
the system.

3.3. Probability smoothing

If NV is very confident in routing decisions, the distribution (2) generates probabilities very close to zero
or one, and they may be processed as zeros and ones due to machine rounding, possibly making package
delivery impossible. What is more, if we would like to maximize r(p) w.r.t. its argument with gradient-based
approaches, probabilities with extreme values may cause vanishing gradients.

To resolve these issues, we modify (2) to separate the probabilities from zero and one by introducing
probability smoothing by analogy with label smoothing [38] in classifier training:

smooth(p) = (1 - p)p + p/2, (5)

where p € (0,1) is a hyperparameter. This rule is applied right after (2) and is used when N is already
trained. If training is done with RL, probability smoothing would encourage the agents to explore more, but
a small y would not alter decisions significantly and at the same time would ensure that the probabilities
belong to the interval [p/2,1 - p/2], i.e., are separated from the extreme values.

3.4. Simultaneous computation of routing probabilities

We would like to reduce our verification problem to verifying a single DNN. Unfortunately, a DNN that
encodes 7(p) does not fit into the layered structure (1), making existing DNN verification tools inapplicable.
As aremedy, we can model the computation of p. To do this, we find all the Q values used in its computation

235

Buzhinsky I. P., Shalyto A. A.

11 p 1
o d,] 1 o %
P,
d
1 1-p,

Fig. 3. Conveyor graph example; arcs are labeled with routing probabilities, the length of each section equals one

Embedding of

source io DID

Embedding of
diverter d,

smooth(a(: / T))

P,

1(p)=(2+p, +
2p,=2p.p,)/
Py *+ P, = PiP,)

Embedding of
diverter d,[TTT]
Embedding of

junction j; [TTT1

Embedding of
\sink o,

smooth(o(- / T))

Modeled as a single
/ DNN execution

DNN(d, — j,) P,

DNN(d, — d,)

Fig. 4. Computation of z(p) for the example in Fig. 3

by expressing them as a result of a single forward pass of a larger DNN M, which we will construct below.
The number of such Q values is 2¢, thus all executions of N can be modeled by repeating A; and b; for all
layers i as diag(A;, 2t) and concat(b;, 2t). The idea of modeling several DNN executions as a single one is
illustrated in Fig. 4 for a tiny conveyor graph shown in Fig. 3.

However, if the inputs of N are also duplicated, solving the problem (4) would be impossible as the
same embedding vectors would be allowed to take different values. To resolve this, all different embeddings
€], .es e|’V‘ must be given to M only once, as their concatenation. We also need to subtract the embeddings
of current nodes from other embeddings. Both duplication and subtraction can be done with a single linear
transformation B = {B, s} with a block structure, where B, ; (1 = r < 2t,1 < s < |V|) are square matrices with
the side equal to the dimension of an embedding, and are either zero, identity, or negated identity matrices:

€d; ~ €q
€d;, ~— € Bl,l B1,|V‘ e{
o ©6)
€4, — € Boi . Bayw] ey
edt,z ~ €

Thus, the actual first-layer matrix of M is diag(A4, 2t) - B.

Note that the embeddings of some nodes are not needed to compute z(p): it is sufficient to use em-
beddings for all nontrivial diverters, their successors in the graph, and v,. Formula (6) implies that other
embeddings are always multiplied by zero blocks. To reduce the computational complexity, we filter out
unused embeddings from e, .., €y, prior to constructing M.

In addition, several of the decisions above depend on the considered routing algorithm, DQN-routing.
Yet, encoding multiple outputs of DNNs that operate differently is also possible. First, N could accept the
embeddings of both neighbors and produce the score (e.g., logit) used to compute the current component of
p right away, without Q values. In this case, it would suffice to repeat N only ¢ times instead of 2¢. Second,
having different DNNs N1, ..., N'" with weight matrices A},...,A! and bias vectors b},...,b! of the same
shape in different nodes instead of the single DNN N can be handled by composing their parameters as
diag(diag(A},2), ..., diag(A!, 2)) and concat(concat(b}, 2), ..., concat(b’, 2)).

236

Towards Neural Routing with Verified Bounds on Performance

3.5. Proposed verification algorithm

The ability to capture the Q values computed by all nodes allows us to bound their differences and thus,
by calling a DNN verification tool, compute the reachability of a certain hyperrectangle R of probability
vectors. The concrete bounds needed to check the reachability of R can be found by reverse application
of (3) and (5). In turn, the transition from the probability region to the verification outcome can be handled
by a satisfiability modulo theories (SMT) solver [39].

The proposed verification algorithm is given in Alg. 1 and is based on a dichotomic procedure parame-
terized by the probability region R. The regions to be processed are placed in a queue U, i.e., the space of
probability vectors is processed in the breadth-first search (BFS) order. Initially, the problem needs to be
solved for all possible probability vectors R = [p/2,1 - p/2]", which is the initial region in the queue (line 2).
Mapping between probability vectors and outputs of M is done with a component-wise function g (line 3),
which is monotonic and trivial to inverse. Each region R (line 5) is analyzed, resulting in proving the bound,
finding a counterexample, or splitting the problem.

1. If 7(p) = ¢o (line 6) for all probability vectors in R, then the cost bound is proven for R and we proceed to
the next unprocessed region (line 7). Since 7(p) is expressed symbolically, this check can be performed
by an SMT solver.

2. Alternatively, the algorithm checks whether R is reachable for some embeddings €], ...,e|’V| within
the robustness assumption. This can be done by requesting a DNN verification tool to check the
reachability of g"!(R), which, like R, is an intersection of hyperplanes and can be specified with linear
constraints. If it is unreachable, we have a proof for R. In this case, the condition on line 8 fails and
we proceed to the next unprocessed region.

3. Alternatively, if R is reachable and the bound is violated for the counterexample returned by the ver-
ification tool (lines 8-10), the algorithm has found a true counterexample and returns it immediately
(line 11).

4. Otherwise, no conclusion can be made, and the algorithm attempts to find a proof or refutation by
splitting R into two regions (line 12) and scheduling them to be processed later (line 13). We divide R
into two equal rectangular halves by splitting the longest dimension.

Finally, if all regions have been processed without reporting a counterexample, this means that all parts of
the initial probability region were verified (line 15). The idea behind the algorithm is illustrated in Fig. 5.

Alg. 1 is sound and complete unless it is run for the real maximum of r, but its worst-case execution time
is unbounded (see Technical Appendix for proofs). In practice, the performance of the algorithm deteriorates
when ¢ approaches the approximately computed real maximum of .

/ Combined DNN /p T((,D1, pz)) \

computation 1 2
Verified g
<c?
N 1(p) < ¢,
1?7 —
Node) P, Verification
embeddings 0 Routng 1 outcome

K probabilities / /

Check reachability with a
DNN verification tool

Check reachability with an
SMT solver

Fig. 5. The idea behind Alg. 1. In this example, t = 2. The algorithm works with a region
of the probability space and uses third-party tools that can connect it to node embeddings
and mean delivery cost whose bound must be checked.

237

Buzhinsky I. P., Shalyto A. A.

Data: neural network M as defined above, number of nontrivial diverters t, temperature T,
smoothing parameter py, cost bound ¢y, cost function 7, default embeddings
e = concat (el, ...,eM)
Result: Verified or Counterexample(e’, p; c)
1 U «— FIFOQueue()
2 enqueue(U, (p/2,1 - ,u/2]t)
3 g < smooth(o(-/T))
4 while U is not empty do
5 R <« dequeue(U)
6 if vp € R 7(p) =< ¢y then
7 L continue

8 if 3¢’ = concat (e{, s e"Vl) : e’ -e|, = eaM(e’) € g'(R) then

9 p — g(M(e)

10 if 7(p) > ¢y then

11 L return Counterexample(e’, p, 7(p))
12 (R1, Ry) «— split(R)

13 | enqueue(U, Ry, Ry)

14 return Verified

Algorithm 1. Checking robustness of the expected package delivery time w.r.t. node embeddings.

4. Experiments
4.1. Experimental setup

The proposed formal verification approach was implemented in Python!. As software tools to verify
DNNs, solve SMT, and perform symbolic computations, we used Marabou [13], Z3 [40], and SymPy [41],
respectively. We also implemented gradient-based search of adversarial examples with PGD, using PyTorch?.
All experiments were run on an Intel Core i7-9750H 2.6 GHz CPU, using one core.

The approach was evaluated on conveyor graphs from Fig. 1-2, later referred to as graph 1 and graph 2.
For both graphs, a DNN with two hidden layers of size 64 was trained according to [1]. Hyperparameter
values were chosen heuristically to make mean delivery time plots of DQN-routing comparable with other
routing algorithms considered in [1]. In particular, we chose 10 and 8 as embedding dimensions, and T = 1.5
and T = 10 as temperatures. As a smoothing parameter, we used p = 0.01, which is small enough not to
change the behavior of DQN-routing significantly.

4.2. Symbolic computation of expected delivery time

As a preliminary step, our approach computes the expected delivery time 7(p) by symbolically solving
a linear system of up to |V| equations. In our experiments, the number of equations in this system after
excluding irrelevant nodes was between 12 and 16, and 7(p) was computed instantly.

Some examples of the computed expressions for 7(p) are given below (the components of p correspond
to nontrivial diverters v.). Below, we denote the k-th source, sink, junction, and diverter as i, o, ji, and dg,
respectively. The indices of all the nodes are given in Fig. 1-2. Let P(v,|v,, vy) be the probability of routing
the package to node v, given that now it is at node v, and its destination is vy.

'https://github.com/ctlab/dgnroute
Zhttps://github.com/pytorch/pytorch

238

https://github.com/ctlab/dqnroute
https://github.com/pytorch/pytorch

Towards Neural Routing with Verified Bounds on Performance

For graph 1, assuming delivery from i; to os, 7(p) = —-20p;p, + 40p; + 43, where p; = P(ds|d,, 03) and
p2 = P(jo|ds, 03). Note that this expression does not depend on the routing probabilities given the package
is at dp since this diverter is unreachable from i;, on similar probabilities assuming that the package is at ds
or dy since the sink o; is unreachable from these diverters, and on similar probabilities at d;, dy, d7 and d
since only one arc from each of these nodes makes o5 reachable and thus routing decisions are deterministic
at these diverters. Also, even if probability smoothing is disabled, 7(p) is bounded, which complies with the
acyclicity of the graph, and cannot exceed 83.

For graph 2, assuming delivery from iy to oy, 7(p) = (=155p1papspaps + 55pipap3ps — 55p1papaps +
2451 pspaps — 145p1psps — 2451 paps + 110p1ps + 1550, p3paps — 55papsps + 55papaps + 450pspaps + 310p3ps
- 550p3p5 - 310p3 - 450p4p5 - 3101)4 - 110p5)/(p5(pgp4 - p3 - p4)), where P = P(j4|d(), 01), P2 = P(j5|d2, 01),
ps = P(jslds, 01), pa = P(j2|ds, 01), ps = P(01|ds, 01). Note that, if probability smoothing is disabled, this value
is unbounded (it approaches infinity when ps — 0), which complies with the cyclicity of the graph. This
value also does not depend on routing probabilities at d; since this diverter is unreachable from iy, and at ds
since this diverter cannot route the package to oy, and thus its decision is deterministic.

In the experiments below, we consider two source/sink pairs per graph: the examples above and two
more, from i to oz in graph 1, and from i; to oy in graph 2. These pairs correspond to verification problems
with ¢t = 2 for graph 1 and t = 5 for graph 2. These dimensions are further reduced to 2 and 5 respectively
since each 7(p) does not depend on one of the components of p (in the examples above, these are components
po and p; respectively). These are the maximum dimensions of the probability space that are possible for
these graphs.

4.3. Gradient-based search of adversarial examples

Prior to formal verification, it is useful to study the considered verification problems by running impre-
cise, but faster methods: e.g., searching for adversarial examples with PGD provides approximate values on
the actual maxima of the expected delivery cost 7. Found values are used to determine the thresholds for
formal verification. We investigate various f,-norm embedding discrepancies ¢ from 0 to 6.4. Note that
€ = 0 gives unique embeddings that DQN-routing computes with the Laplacian Eigenmaps algorithm: in
this case the verification problem is essentially reduced to testing.

When running PGD, we performed ten restarts with 100 optimization steps of magnitude 0.02¢ in each.
Each run used a different starting point. The overall running time of PGD for a fixed value of € was 4-5 s
for graph 1 and 7-9 s for graph 2. The found maxima of 7 are shown in Table 1: the expected delivery cost
is robust to moderate embedding discrepancies, but under large discrepancies it can be made significantly
larger.

Table 1. Expected delivery cost maxima found with PGD

. Graph 1 Graph 2

i —o03 i1—0 dp—01 0
0.00 43.10 53.03 818.62 818.43
0.01 43.10 53.04 818.63 818.44
0.10 43.10 53.09 818.76 818.48
0.20 43.11 53.10 818.98 818.53
0.40 52.27 54.11 819.79 818.73
0.80 80.82 72.79 824.99 819.72
1.60 82.70 72.80 919.36 831.37
3.20 82.70 72.80 3727.38 963.18
6.40 82.70 72.80 11786.13 11721.99

239

Buzhinsky I. P., Shalyto A. A.

4.4. Formal verification

We ran DNN verification for each value of € used in the PGD experiments. The approximate expected
delivery cost maxima found with PGD were used to select the upper bounds ¢ to be verified. These bounds
were chosen to expect both positive and negative verification outcomes for different e: e.g., to consider hard
instances of the verification problem, we selected some ¢, values to be close to the approximate maxima.
Each run was limited to 2 hours and 12 GB of RAM.

Verification results are shown in Table 2. With the increase of €, verification becomes more computation-
ally demanding and in most cases eventually violates either the time or the memory limit. As the resource
consumption of the verification approach is dominated by Marabou, with SMT solver executions times be-
ing negligible, a possible explanation for this is that Marabou might have been optimized for small input
discrepancies more typical in adversarial example search. As for verification outcomes, they are consistent
with PGD results. However, verification time increases when approaching the approximate maxima, espe-
cially from above. In this case, not only the running time of Marabou increases (from a couple of seconds to
almost two hours), but also the required number of calls to this tool.

Table 2. Results of formal verification. Verification outcomes are denoted as “+" (verified),
-" (counterexample found) and “?” (unknown). For a completed verlflcatlon run,
its execution time in seconds is shown in parentheses. For an unknown outcome,
the parentheses instead show its reason: reaching the time limit (TL) or the memory limit (ML)

Graph 1, delivery from i; to o3

(o) e=0 €=0.01 €=0.1 €=0.2 €e=04 €=08 €=16 €=32 €=64
81.00 +(3) +(4) +(4) +(4) ?(TL) ?(TL) ?ML) ?(ML) ?(ML)
44.00 +(7) +(12) +(20) +(716) ?(TL) ?(TL) -(969) -(1423) - (343)
4350 +(8) +(13) +(21) +(3298) ?(TL) ?(TL) -(970) -(1379) - (347)
4312 +(13) +(23) +(37) ? (TL) ?(TL) ?(TL) -(965) -(1324) - (346)
4310 - (3) -(3) - (4) - (4) -6) -7 -(263) -(567) -(369)

Graph 1, delivery from i; to o,
7280 +(3) +(4) +(7) +(7) ?(TL) ?(TL) ?ML) ?(ML) ?(ML)
54.12 +(5) +(12) +(100) ?(TL) ?(TL) -(362) ?(ML) ?(ML) -(412)
5311 +(9) +(77) +(2597) ?(TL) ?(TL) -(382) ?(ML) ?(ML) - (411)
53.10 +(11) +(87) +(4160) ?(TL) ?(TL) -(385) ?(ML) ?(ML) -(412)
53.00 - (4) -(3) -(3) - (5) -(10) -(46) -(397) ?(ML) - (412)
Graph 2, delivery from iy to o;
825.0 +(90) +(165) +(222) +(434) +(619) ?(ML) ?(ML) ?(ML) ? (ML)
820.0 +(123) +(233) +(492) +(727) ?(TL) ?(ML) ?(ML) ?(ML) *?(ML)
819.0 +(147) +(370) +(2006) ?(TL) ?(TL) ?(ML) ?ML) ?(ML) ?(ML)
818.6 -(4) -(6) -(7) -(32) -(17) -8 -(8) ?(ML) ?(ML)
818.0 - (4) - () - () -(10) -(10) -9 -(18) ?(ML) ?(ML)
Graph 2, delivery from i, to o
830.0 +(81) +(161) +(215) +(561) +(477) 2(TL) ?(ML) ?(ML) ? (ML)
820.0 +(118) +(224) +(394) +(862) +(997) ?(TL) ?(ML) ?(ML) ?(ML)
819.0 +(136) +(282) +(527) +(1275) +(3277) ?(TL) ?(ML) ?(ML) ? (ML)
8184 -(4) -(7) -7 - (10) -(14) -(10) -(21) ?ML) ?(ML)
818.0 -(4) -(6) -(7) -(9) - (15) -(10) -(200 ?ML) ?(ML)

240

Towards Neural Routing with Verified Bounds on Performance

As for the routing algorithm under verification, we conclude that the delivery time performance of DQN-
routing is robust w.r.t. the node representations. This can be explained by relatively small input dimensions
of constructed DNNs M (60 and 96 for graphs 1 and 2 respectively).

Discussion and conclusion

In this paper, we have considered the problem of verifying the performance of a DNN-based routing
algorithm, where routing is done by a family of DNN agents located in the nodes of the routing network,
and the performance indicator is the mean delivery time of a package between two chosen nodes of the
network. To our best knowledge, this is the first application of sound and complete formal verification
to a distributed system of DNNs (or multiple instances of the same DNN) operating together to achieve a
common goal. The importance of this problem is justified by considering a distributed system of DNNs (or
multiple instances of the same DNN) that operate together to achieve a common goal, which, to the best of
our knowledge, has not yet been approached with sound and complete formal verification.

To solve this problem, we proposed a verification approach that can prove or refute the given upper
bound on the mean delivery time. We focused on a particular class of routing problems, baggage handling,
and a particular routing algorithm, DQN-routing, as the source of DNNs to be verified. The verification
approach does not depend on the way the DNNs are trained, and we believe that it can be adapted to other
routing problems. To make the problem solvable, we accepted several simplifying assumptions. We regarded
the DNN agents to be fixed during the delivery, and focused on the stability of the expected delivery time
w.rt. network node representation (embeddings). We also assumed that packages cannot collide and the
network is static and fault-free. Removal of the these assumptions is part of future work.

The proposed verification approach was evaluated on two conveyor networks with 20-22 nodes. The
approach is fast when the allowed discrepancies of node embeddings approach zero, i.e., the verification
problem approaches the one of testing. When these discrepancies are large, or, more importantly, we want
to check a delivery time bound which is close to an approximation of the actual maximum of the mean
delivery time, the approach becomes more computationally expensive. On the other hand, this performance
decrease is relevant largely for the case of verifying satisfied bounds only since the violations of bounds can
usually be found with PGD if it is run prior to formal verification.

As for the verified routing algorithm, DQN-routing, on the considered examples, we concluded that it
learns DNNs that are relatively robust to the changes in node embeddings. While we focused on the support
of this particular algorithm based on DNNs, the proposed verification approach may be adapted to others.
In particular, the origins of node embeddings as well as the DNNs to be verified are not significant. Yet,
our approach requires each node to have at most two successors. While this is a reasonable assumption
for conveyor networks, it is not so for computer networks. Extending the proposed approach to handle
routing in computer networks will require support of arbitrary node degrees. The RL approach that we
verify, DQN-Routing, is applicable not only for conveyor delivery, but also for package routing in computer
networks.

In addition to broadening the supported class of routing problems, we envisage several ways of improv-
ing the proposed approach. First, though the trade-off between completeness of analysis and computational
complexity is unsurprising, there might be room for efficiency improvement.

Second, we assumed that the routing agents are static during delivery. When the DNN's under verification
are trained with RL (as in DQN-routing), this limits the applicability of the proposed approach, though it is
possible to use it after training, or periodically between RL iterations. Verifying DNNs in an RL framework
is subject of future work.

Third, our approach assumes that the conveyor network is fixed. Violation of this assumption is partially
covered by allowing node embedding discrepancies. As the most adverse topology change is a malfunction,
future work may address simultaneous verification for multiple conveyor graphs obtained from the original
one by removing one or more arcs.

241

Buzhinsky I. P., Shalyto A. A.

A. Appendix: proofs of correctness

In this appendix, we prove several properties of Alg. 1. Below, we assume that the checks on lines 6 and 8
of Alg. 1 are performed with third-party tools that implement sound and complete algorithms, meaning that
these checks always terminate and return correct results.

Let ¢, be the maximum of 7 on the set S = {e” : |/ - e| < €} of allowed node embeddings. Let R be the
set of probability vectors reachable from S. Then, c¢. = 7(p.) for some p. € R. Recall that p is continuous as a
function of node embeddings (it is computed by applying continuous functions to the outputs of the DNN
M, which is assumed to use a continuous activation function), and r is continuous as a function of p (it is
an arithmetic expression with non-zero denominator).

Theorem 1. If Alg. 1 terminates, then its verification result is correct.

Proof. First, suppose that Alg. 1 is run for ¢y > c., which means that the bound is satisfied. In this case,
Alg. 1 will never return a counterexample since it is impossible to satisfy the conditions on lines 8 and 10
simultaneously. The only remaining way for the algorithm to terminate is to return a positive verification
outcome on line 15.

Then, suppose that Alg. 1 is run for ¢y < ¢, which means that the bound is violated. In this case, p.
belongs to some hyperrectangle R. such that Vp € R. 7(p) > ¢y and R. n R # @ (both sets contain p.). For any
hyperrectangle containing R., the algorithm will be unable to report a positive verification result (condition
on line 6 will fail and condition on line 8 will pass). Moreover, the condition on line 10 will be satisfied and
a counterexample will be reported. O

Theorem 2. If Alg. 1 is requested to check the bound cy # c., it will always terminate.

Proof. Suppose that a call of Alg. 1 never terminates. First, suppose that Alg. 1 is run for ¢ > ¢.. Then there is
a sequence of nested hyperrectangles R; such that R;,; is one of the parts of R; produced on lines 12-14. The
algorithm splits the regions using the longest dimension, and thus there is a point q such that ni2;R; = {q}.
There is a sequence of points p; that certify that the conditions on line 6 are violated, i.e., 7(p;) > ¢y. This
sequence converges to q, and since 7 is continuous, 7(q) = ¢. With ¢ > c., this is only possible ifq¢ R
There is also a sequence p’ of points assigned on line 9, which also converges to q. However, p; all belong to
R, which is compact as a continuous image of a compact set S. But then q € R as a limit of points in a closed
set. Contradiction.

Then, suppose that Alg. 1 is run for ¢y < c.. Recall the region R, from the proof of the previous theorem
for this case. If the algorithm never terminates, given the BFS order of the traversal of the set of proba-
bility vectors, it will necessarily consider a region that belongs to R.. However, it must have reported a
counterexample for this region. Contradiction. O]

Theorem 3. There is a family of verification problems parameterized only by ¢y such that the execution time
of Alg. 1 is unbounded on it, and this family does not need to include the case ¢y = c.

Proof. We will show that for each integer n, it is possible to select an instance of the verification problem
such that Alg. 1 processes more than n probability regions. First, we take t = 1, 7(p) = 1 + p;. This situation
corresponds to a tiny conveyor graph with one diverter that decides whether the package follows the path
with the length of 1 or the path with the length of 2. Then, we can select the DNN such that c¢. = 3/2 and
request the algorithm to check the bound ¢y = 3/2+ y. In this case, the actual verification outcome is positive,
but by making y sufficiently small, we can cause the algorithm to reach line 12 for as many intervals as we
wish: these are the intervals that approach p; = 1/2 from above. t

242

Towards Neural Routing with Verified Bounds on Performance

References

[1]

[2]

[10]

[11]

[12]

[13]

D. Mukhutdinov, A. Filchenkov, A. Shalyto, and V. Vyatkin, “Multi-agent deep learning for
simultaneous optimization for time and energy in distributed routing system”, Future Generation
Computer Systems, vol. 94, pp. 587-600, 2019.

J. A. Boyan and M. L. Littman, “Packet routing in dynamically changing networks: A reinforcement
learning approach”, in Proceedings of the 6th International Conference on Neural Information Processing
Systems, 1993, pp. 671-678.

G. Black and V. Vyatkin, “Intelligent component-based automation of baggage handling systems with
IEC 61499”, IEEE Transactions on Automation Science and Engineering, vol. 7, no. 2, pp. 337-351, 2009.

A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, “Synthesizing robust adversarial examples”, in
Proceedings of the 35th International Conference on Machine Learning, 2018, pp. 284-293.

K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno, and D. Song,
“Robust physical-world attacks on deep learning visual classification”, in IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2018, pp. 1625-1634.

C. Szegedy, W. Zaremba, L. Sutskever, J. B. Estrach, D. Erhan, I. Goodfellow, and R. Fergus, “Intriguing
properties of neural networks”, in International Conference on Learning Representations, 2014.

R. Drechsler, Ed., Advanced formal verification. 2004, vol. 122.

G. Anderson, S. Pailoor, L. Dillig, and S. Chaudhuri, “Optimization and abstraction: A synergistic
approach for analyzing neural network robustness”, in Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation, 2019, pp. 731-744.

S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari, “Output Range Analysis for Deep Feedforward
Neural Networks”, in NASA Formal Methods, A. Dutle, C. Munoz, and A. Narkawicz, Eds., Cham:
Springer International Publishing, 2018, pp. 121-138.

Y. Y. Elboher, J. Gottschlich, and G. Katz, “An abstraction-based framework for neural network
verification”, in Computer Aided Verification, 2020, pp. 43—65.

X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification of deep neural networks”, in
Computer Aided Verification, 2017, pp. 3-29.

G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “Reluplex: An efficient SMT solver for
verifying deep neural networks”, in Computer Aided Verification, 2017, pp. 97-117.

G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah, S. Thakoor, H. Wu, A. Zeljic,
et al., “The Marabou framework for verification and analysis of deep neural networks”, in Computer
Aided Verification, 2019, pp. 443-452.

M. Johnstone, D. Creighton, and S. Nahavandi, “Status-based routing in baggage handling systems:
Searching verses learning”, IEEE Transactions on Systems, Man, and Cybernetics, Part C, vol. 40, no. 2,
pp. 189-200, 2009.

A. N. Tarau, B. De Schutter, and H. Hellendoorn, “Model-based control for route choice in automated
baggage handling systems”, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 40, no. 3, pp. 341-351, 2010.

O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and A. Criminisi, “Measuring
neural net robustness with constraints”, in Proceedings of the 30th International Conference on Neural
Information Processing Systems, 2016, pp. 2613-2621.

243

Buzhinsky I. P., Shalyto A. A.

[20]

[21]

[22]

A. Fawzi, H. Fawzi, and O. Fawzi, “Adversarial vulnerability for any classifier”, in Proceedings of the
32nd International Conference on Neural Information Processing Systems, 2018, pp. 1178-1187.

A. Fawzi, O. Fawzi, and P. Frossard, “Analysis of classifiers’ robustness to adversarial perturbations”,
Machner Learning, vol. 107, no. 3, pp. 481-508, 2018.

S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: a simple and accurate method to
fool deep neural networks”, in IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 2574-2582.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models resistant
to adversarial attacks”, in International Conference on Learning Representations, 2017.

A. Boopathy, T.-W. Weng, P.-Y. Chen, S. Liu, and L. Daniel, “CNN-Cert: An efficient framework
for certifying robustness of convolutional neural networks”, in Proceedings of the Thirty-Third AAAI
Conference on Artificial Intelligence, vol. 33, 2019, pp. 3240-3247.

P.-y. Chiang, R. Ni, A. Abdelkader, C. Zhu, C. Studor, and T. Goldstein, “Certified defenses for
adversarial patches”, in International Conference on Learning Representations, 2020.

M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana, “Certified robustness to adversarial
examples with differential privacy”, in IEEE S & P, 2019, pp. 656—672.

A. Raghunathan, J. Steinhardt, and P. Liang, “Certified Defenses against Adversarial Examples”, in
International Conference on Learning Representations, 2018.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, . Antonoglou, D. Wierstra, and M. Riedmiller, “Playing
Atari with deep reinforcement learning”, in NIPS Deep Learning Workshop, 2013.

R.S. Sutton, A. G. Barto, et al., Introduction to reinforcement learning. MIT press, 1998, vol. 135.

E. Bacci and D. Parker, “Probabilistic Guarantees for Safe Deep Reinforcement Learning”, in Formal
Modeling and Analysis of Timed Systems, N. Bertrand and N. Jansen, Eds., Cham: Springer International
Publishing, 2020, pp. 231-248.

O. Bastani, Y. Pu, and A. Solar-Lezama, “Verifiable reinforcement learning via policy extraction”,
in Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018,
pp. 2494-2504.

R. Ivanov, T. J. Carpenter, J. Weimer, R. Alur, G. J. Pappas, and L. Lee, “Case study: verifying the safety
of an autonomous racing car with a neural network controller”, in Proceedings of the 23rd International
Conference on Hybrid Systems: Computation and Control, 2020, pp. 1-7.

R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and 1. Lee, “Verisig: verifying safety properties of hybrid
systems with neural network controllers”, in Proceedings of the 22nd International Conference on Hybrid
Systems: Computation and Control, 2019, pp. 169-178.

Y. Kazak, C. Barrett, G. Katz, and M. Schapira, “Verifying deep-RL-driven systems”, in Proceedings of
the 2019 Workshop on Network Meets AI & ML, 2019, pp. 83-89.

L. Oakley, A. Oprea, and S. Tripakis, “Adversarial Robustness of Al Agents Acting in Probabilistic
Environments”, in Workshop on Foundations of Computer Security, 2020.

H.-D. Tran, F. Cai, M. L. Diego, P. Musau, T. T. Johnson, and X. Koutsoukos, “Safety verification
of cyber-physical systems with reinforcement learning control”, ACM Transactions on Embedded
Computer Systems, vol. 18, no. 5s, pp. 1-22, 2019.

A. Bianco and L. De Alfaro, “Model checking of probabilistic and nondeterministic systems”, in
Foundations of Software Technology and Theoretical Computer Science, 1995, pp. 499-513.

244

Towards Neural Routing with Verified Bounds on Performance

[40]

[41]

M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for embedding and clustering”,
in Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural
and Synthetic, 2002, pp. 585-591.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep reinforcement learning”,
Nature, vol. 518, no. 7540, pp. 529-533, 2015.

J. R. Norris, Markov chains. Cambridge University Press, 1998.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception architecture for
computer vision”, in IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2818—2826.

C. Barrett and C. Tinelli, “Satisfiability Modulo Theories”, in Handbook of Model Checking, E. M.
Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Eds. Cham: Springer International Publishing, 2018,
pp. 305-343.

L. De Moura and N. Bjerner, “Z3: An efficient SMT solver”, in Tools and Algorithms for the Construction
and Analysis of Systems, 2008, pp. 337-340.

A. Meurer, C. P. Smith, M. Paprocki, O. Certik, S. B. Kirpichev, M. Rocklin, A. Kumar, S. Ivanov, J. K.
Moore, S. Singh, et al., “SymPy: symbolic computing in Python”, Peer] Computer Science, vol. 3, €103,
2017.

245

