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When data-driven algorithms, especially the ones based on deep neural networks (DNNs), replace classical ones, their
superior performance o�en comes with di�culty in their analysis. On the way to compensate for this drawback, formal
veri�cation techniques, which can provide reliable guarantees on program behavior, were developed for DNNs. �ese
techniques, however, usually consider DNNs alone, excluding real-world environments in which they operate, and the
applicability of techniques that do account for such environments is o�en limited. In this work, we consider the problem of
formally verifying a neural controller for the routing problem in a conveyor network. Unlike in known problem statements,
our DNNs are executed in a distributed context, and the performance of the routing algorithm, which we measure as the
mean delivery time, depends on multiple executions of these DNNs. Under several assumptions, we reduce the problem
to a number of DNN output reachability problems, which can be solved with existing tools. Our experiments indicate that
sound-and-complete formal veri�cation in such cases is feasible, although it is notably slower than the gradient-based search
of adversarial examples.
�e paper is structured as follows. Section 1 introduces basic concepts. �en, Section 2 introduces the routing problem and
DQN-Routing, the DNN-based algorithm that solves it. Section 3 proposes the contribution of this paper: a novel sound and
complete approach to formally check an upper bound on the mean delivery time of DNN-based routing. �is approach is
experimentally evaluated in Section 4. �e paper is concluded with some discussion of the results and outline of possible
future work.
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Когда алгоритмына основе данных, особенно основанныена глубокихнейронных сетях (ГНС), заменяют классиче-
ские, их более высокая производительность часто сопряжена с трудностями при анализе. Чтобы компенсировать
этот недостаток, для ГНС были разработаны методы формальной верификации, которые могут предоставить
надежные гарантии поведения программы. Эти методы, однако, обычно рассматривают только саму ГНС, ис-
ключая среду, в которой она работает, и применимость методов, учитывающих такие среды, часто ограничена. В
данной работе рассматривается задача формальной верификации нейросетевого контроллера для задачи марш-
рутизации в конвейерной сети. В отличие от известных постановок задачи, рассматриваемые ГНС выполняются в
распределенной среде, и производительность алгоритма маршрутизации, которая измеряется как среднее время
доставки, зависит от многократного выполнения этих ГНС. При некоторых предположениях, проблема верифи-
кации сводится к ряду проблем достижимости выходов ГНС, которые можно решить с помощью существующих
программных средств. Эксперименты показывают, что в таких случаях возможна строгая и полная формальная
верификация, хотя она заметно медленнее, чем градиентный поиск состязательных примеров.
Статья построена следующим образом. Раздел 1 вводит основные понятия. Затем в Разделе 2 представлена пробле-
ма маршрутизации и алгоритм DQN-маршрутизации на основе ГНС, который ее решает. В Разделе 3 описывается
вклад данной статьи: новый надежный и полный подход к формальной проверке верхней границы среднего
времени доставки маршрутизации на основе ГНС. Этот подход экспериментально оценивается в Разделе 4. Статья
завершается обсуждением результатов и описанием возможной будущей работы.
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Introduction
�e recent success of deep neural networks (DNNs) has motivated researchers and practitioners to apply

them in many �elds. When DNNs are required to interact with the real world, they are usually trained with
reinforcement learning (RL), based on the feedback from the environment. In particular, RL has been applied
to the problem of routing [1, 2], with the work [1] utilizing DNNs.

Unlike traditional controllers that are programmed explicitly [3], data-driven models such as DNNs are
hard to analyze. Especially when the decisions of a DNN-based controller in�uence the real world, this
leads to di�culties in establishing safety and reliability guarantees of such controllers. �ese concerns are
exacerbated by the possibility of adversarial a�acks [4–6] both in the digital and the physical worlds. �e
problem of acquiring guarantees on program behavior is usually referred to as formal veri�cation [7] and is
more computationally expensive compared to testing and simulation. Formal veri�cation approaches were
developed not only for traditional programs, but also for DNNs [8–13]. �ese approaches usually consider
DNNs in isolation, i.e. the connection of their inputs and outputs to the rest of the world is not modeled.

In this work, we consider the classical routing problem being solved by a distributed family of DNN-
based controllers, focusing on the baggage handling problem [3, 14, 15]. �ese controllers can be trained as
a single DNN for all nodes of the network or as node-speci�c DNNs. For such a family of controllers, we are
interested in proving an upper bound on the mean delivery time from the chosen source node to the chosen
destination node. As a concrete routing algorithm, we selected DQN-routing [1] based on deep RL.

�e proposed veri�cation approach involves adjusting the routing probabilities generated by DNN agents,
representing the conveyor network as a discrete-time Markov chain, and reducing the veri�cation problem
to a number of problems of verifying a reachability property for a multilayer perceptron in isolation, which is
done using existing so�ware [13]. We assume that the routing DNNs do not change during operation. While
this assumption reduces the applicability of the approach in the context of RL, it also enables veri�cation of
DNN controllers obtained by means other than RL.

1. Preliminaries

1.1. Deep neural networks

A deep neural network (DNN) is a parameterized function trained to predict some outcome from input
data. More formally, we will assume that a DNN  predicts an outcome y ∈ ℝ

dout from a vector x ∈ ℝ
din ,

and it is an MLP:
 = 1◦f ◦2◦f ◦ ⋯ ◦k , (1)

where k is the number of layers in the network (here, we do not count the input layer), 1,… ,k are
learnable a�ne operators i(x) = Aix + bi , possibly with di�erent input and output dimensions, and f is a
continuous scalar nonlinear activation function that is applied to vectors element-wise. A popular choice of
f , both in learning and verifying DNNs, is the recti�ed linear unit (ReLU): f (x) = max(0, x). In DQN-routing,
k = 3 and f is ReLU.

We use the following notation. For matrices A1,… ,Ak , the block diagonal matrix constructed from them
is denoted diag(A1,… ,Ak). For column vectors b1,… , bk , the column vector produced as their concatenation
is concat(b1,… , bk). Block diagonal matrices and vector concatenations produced from m identical matrices
A or vectors b are denoted diag(A, m) and concat(b, m).

1.2. Adversarial examples for DNNs

DNNs with large din may exhibit intuitively unwanted and unexpected properties: a slight modi�cation
of the input vector o�en makes the DNN produce a prediction error [6]. �is is especially visible on the prob-
lem of image classi�cation, where an eye-imperceptible change of an image can result in a classi�cation error.
Many approaches, such as [16–19], perform gradient-based optimization of such adversarial examples and
measure adversarial robustness, the robustness of DNNs to such examples. For discrete output predictions,
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a possible choice is to de�ne adversarial robustness as the norm (o�en �2 or �∞) of the minimum change that,
when added to the original input, makes the classi�er produce an incorrect outcome. One popular method
for �nding adversarial examples is projected gradient descent (PGD) [20], in which the classi�cation error is
maximized w.r.t. the input vector of the DNN. �e input vector is restricted to a ball centered at a given
point: if the vector escapes this ball on some step of gradient descent, it is projected back onto this ball.

However, evaluation of adversarial robustness metrics based on gradient-based optimization provides
only upper bounds on these metrics’ values. To accurately determine whether adversarial examples exist in
a given input space region, algorithms based on other principles must be used.

1.3. Formal veri�cation of neural networks

Certi�ed defenses [21–24] and formal veri�cation techniques [8–13] focus on reliable guarantees on
adversarial robustness. Typically, DNN veri�cation approaches check a property on the output of the DNN,
such as reachability of a certain output space region, when the input vector is constrained to a speci�ed
input space region. In particular, by checking that one component of the output vector cannot exceed the
others when the inputs belong to a ball centered at a real data sample, it is possible to check a bound on the
minimum norm of the adversarial perturbation for this sample.

Most commonly, DNN veri�cation targets the case of the DNN being executed only once, on �xed inputs,
and only the input-output dependency is modeled. However, these assumptions are unacceptable when the
DNN implements a controller, e.g. trained with deep RL [25, 26]: the environment (physical or simulated)
where the DNN is executed becomes important. First, the property to verify in this case is usually formulated
in terms of the environment (e.g., check reachability of a certain unsafe environment state region), so its
state needs to be modeled in addition to the DNN execution. Second, the dynamics of the environment may
in�uence future DNN inputs. Finally, in deep RL, the DNN itself may change based on the feedback obtained
from the environment.

1.4. Related work: Veri�cation of neural network controllers

Existing approaches that verify DNN controllers [27–33] are model-based: the environment is modeled
explicitly and analyzed together with the DNN. A popular choice used in [27, 28, 32] for the model of the en-
vironment is a Markov decision process (MDP), which is used to formalize RL. Reasoning about such models
is possible with probabilistic [34] and hybrid model checking [29, 30, 33]. �e source of distortions to which
the controller must be robust could be the initial state of the environment [33], its stochastic behavior [27],
possibility of an adversarial change in transition probabilities of the environment [32], variability of the
system’s inputs [29, 30], or possible failures in the controlled plant [27].

Our approach does not account for environment randomness: decision probabilities depend only on
the DNN controller. �us, our environment model reduces to a discrete Markov chain whose transition
probabilities are decided by the DNN. �is allows reducing our veri�cation problem to a family of reachability
problems for an isolated DNN.

2. Distributed routing with a neural controller
In this work, we focus on verifying a particular deep RL method [1] that learns DNNs to deliver packages

in a network. Hereina�er, we limit the routing problem to delivering material objects in a conveyor network,
using the airport baggage delivery problem [3, 14, 15] as an example.

2.1. Conveyor networks and graphs

We describe the delivery problem starting from conveyor networks. Examples of conveyor networks used
in this paper are shown on the le� in Fig. 1 and Fig. 2: both are synthetic examples from the literature [1, 15].
A conveyor network is composed of conveyors that transport packages (e.g., bags), it has a physical layout,
which de�nes conveyor lengths, checkpoints, and positions of the checkpoints on the conveyors. �ere may
be several types of checkpoints.
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Fig. 1. Left: conveyor network from [1], with the focus on real-world conveyor layout.
Sources are shown in blue and sinks are shown in green. Right: corresponding conveyor graph

A source is a point of package arrival. If a conveyor is linked to a source, then this source must be located
at the beginning of the conveyor. A sink is a point of package removal from the network. If a conveyor is
linked to a sink, this sink must be located at the end of the conveyor. Each package that enters the conveyor
network is assumed to have a �xed destination sink.

A junction is a connection point of two conveyors c1 and c2, such that c1 ends in the junction, and packages
are redirected to a speci�ed non-terminal location of c2. Junctions redirecting packages to the same location
of c2 are not allowed.

A diverter is a manipulator that connects two conveyors c1 and c2: a package reaching the position of the
diverter at c1 may be redirected to the beginning of c2. For each package, the decision whether to redirect it
to c2 is controlled.

A conveyor graph (V , E) is a weighted digraph with nodes corresponding to the checkpoints (V = I ⊔

O ⊔ J ⊔ D, where the disjoint components correspond to sources I , sinks S, junctions J , and diverters D), and
arcs connecting the checkpoints that are directly linked by conveyor sections. �e arcs are weighted by the
lengths of corresponding conveyor sections. Due to the assumptions above, the indegree and outdegree of
each node is at most two and is always determined by its type, except for junctions, which may only have
an indegree of two (normal junction) or one (a new conveyor begins at the end of another one).

Fig. 1 and Fig. 2 show conveyor graphs (on the right) produced from networks shown on the le�: they
will be used as examples to evaluate the proposed veri�cation approach. Each node is annotated with its
type and index, with a separate numbering for the nodes of each type. �e arcs are labeled with the lengths
of the corresponding conveyor sections in meters and with the index of the conveyor in square brackets. �e
example from [1] (Fig. 1) was taken as is, the one from [15] (Fig. 2) was adapted to match our assumptions:
some nodes were split into two. For example, hybrid junction/diverter nodes were split into separate junction
and diverter nodes that are separated with a short (5 m) conveyor section. �e example in Fig. 2 is more
interesting for veri�cation due to the presence of cycles, which may potentially lead to unbounded delivery
times.

Suppose that all conveyor network components are operational and working properly. �en the deliv-
ery problem is, by controlling the routing decisions of diverters, to ensure that all arriving packages are
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Fig. 2. Left: conveyor network from [15]. Arks correspond to conveyor sections and are labeled by their lengths.
Sources are labeled as L1, . . . , L4 and sinks are labeled as U1, U2. Right: corresponding conveyor graph

delivered to their target sinks so that the delivery time and, optionally, some other metrics (e.g., energy
consumption [1]) are minimized. In this work, we will focus solely on delivery time.

2.2. Routing algorithm

Assume that the routing decisions in the conveyor network are made by a DNN  . In DQN-routing, 
is trained with RL. Although it is possible to learn either one DNN or custom DNNs for each node, w.l.o.g.
we assume that an instance of the same DNN  is located at each non-sink node (this choice will not
have a notable e�ect on the veri�cation approach). We use an architecture based on [1], with the following
enhancements in node representation to support the possibility of dynamic changes in the conveyor network:

Each node is represented by its embedding, a real vector trained based on the conveyor graph. Em-
beddings are computed using a variant of the Laplacian Eigenmaps [35] algorithm. Routing outcomes are
obtained by executing  on embeddings of various nodes.

�e output of  depends on the embeddings of three nodes: ec , embedding of the current node c (where
a package waits for a routing decision), ed , embedding of the destination node d (sink), and en, embedding of
the candidate neighbor n to which the package can be routed. As input,  receives concat(ed −ec , en−ec). 
is trained as a deep Q network [36] with two hidden layers and predicts the Q value (expected cumulative
future reward) of the routing decision. �e rewards are based on package delivery time of the conveyor
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network, so the predicted Q value is the negation of the expected remaining delivery time of the current
package.

At diverters, routing decisions are made according to a decision distribution, which converts the predicted
Q values qi =  (concat(ed−ec , eni−ec)) (1 ≤ i ≤ 2) to the probabilities p1 and p2 = 1−p1 of routing the package
to n1 and n2, respectively. Below, we assume that n1 is always the next checkpoint on the current conveyor
and n2 is a checkpoint on a di�erent conveyor. �e decision distribution is a Boltzmann distribution:

(p1, 1 − p1) = so�max((q1, q2)/T ), (2)

where T > 0 (“temperature”) is a hyperparameter. �us,

p1 = � ((q1 − q2)/T ), (3)

where � is the sigmoid (logistic) function. �e probabilistic routing rule is not used when the destination
is unreachable from one of the neighbors (reachability is computed before routing): in this case the pack-
age is routed to the other neighbor. Assuming that package destinations are always reachable from the
corresponding sources, this rule implies that there is always at least one neighbor suitable for routing. Al-
though Q values are also predicted at sources and junctions, routing decisions are not made there as the next
checkpoint is unique.

Keeping in mind the rules of making routing decisions, we see that the delivery depends only on the
decisions at a subset of diverters. For a source v1 and sink v2, these are only diverters v3 such that (1) v3 is
reachable from v1 and (2) v2 is reachable from both successors of v3. For a �xed source/sink pair, we will
call such deverters nontrivial.

3. Proposed veri�cation approach

3.1. Veri�cation problem

Hereina�er, we are interested in the delivery time of a package between a chosen source and sink. Due
to the stochasticity of DNN routing decisions, it is not meaningful to verify the maximum possible delivery
time as it is only determined by the conveyor graph: e.g., it will be in�nite if the conveyor graph has cycles
reachable from the source and from which the sink is reachable. Verifying bounds on the delivery time
statistics (means or medians) is more comprehensible.

We de�ne the cost C�,v1,v2 of delivering a package � from source v1 ∈ I to sink v2 ∈ O as the total
time spent on the delivery. For �xed v1 and v2, the embeddings of conveyor graph nodes e1,… , e|V |, and the
maximum allowed �∞ discrepancy of these embeddings �, we aim to verify that the expectation of C�,v1,v2
taken over the stochastic routing decisions of DNN agents, does not exceed the given bound c0:

∀� ∀e
′

1
,… , e

′

|V |

(

|V |

⋀

i=1

‖
‖
e
′

i
− ei

‖
‖∞

≤ � ⇒ EC�,v1,v2
≤ c0

)

. (4)

Intuitively, this means that routing decisions cannot deteriorate if the input of  changes slightly (�). �e
input change may result from altering the conveyor graph, e.g., due to conveyor break. �e choice of the �∞
norm as the input metric is based on the restrictions of DNN veri�cation tools, and the choice of delivery
cost expectation (and not, e.g., its median) is justi�ed by the possibility to compute this value analytically
for an arbitrary conveyor graph as explained below.

3.2. Expected delivery cost

If the speeds of all conveyors are known constants, C�,v1,v2 can be computed based on the lengths of
traversed conveyor sections. For simplicity, we assume that the speeds of all conveyors are 1 m/s, and the
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lengths of conveyors are measured in meters. �is makes the numerical values of conveyor lengths and their
traversal times equal, allowing us to substitute the la�er with the former.

Let us compute the expectation of C�,v1,v2 , assuming that  is �xed during the delivery of � . �is
assumption may be justi�ed by the possibility to temporarily stop the training of  when its parameters
have converged and the distribution of incoming packages is �xed. For �xed  , package deliveries become
independent (under the assumption that packages do not collide), and the delivery of each package can be
described as a discrete-time Markov chain :

• the states of  correspond to conveyor graph nodes;
• the initial state of  corresponds to v1;
• the transition probabilities of  are determined by the decision distribution (2) of  , and transitions

have weights equal to conveyor section lengths.
As C�,v1,v2 only depends on v1 and v2, from now on we omit � in C�,v1,v2

. ECv1,v2 is the expected time
of reaching v2 starting from v1. Since the routing algorithm never routes packages to nodes without a path
to the destination and this path can always be selected with a non-zero probability, ECv1,v2 is �nite. Since
ECv1,v2

is similar to the expected hi�ing time in a Markov chain (unlike the hi�ing time, it accounts for
transition weights), it can be found [37] by solving a system of |V | linear equations. �is system can be
simpli�ed by excluding the nodes that do not belong to any path from v1 to v2.

Next, suppose that routing action probabilities are not �xed. �en, for each nontrivial diverter 1 ≤ i ≤ t ,
suppose that pi and 1 − pi are the probabilities of routing the package to the checkpoint on the current
conveyor and on the adjacent conveyor, respectively, and p = (p1,… , pt ). Here, the components of p do not
need to sum up to one.

Suppose that each component pi of p cannot have extreme values: p ∈ (0, 1)
t . �is is true if the decision

distribution is adjusted as explained in the next subsection. Suppose also that the following holds: if p ∈

(0, 1)
t , then the aforementioned equation system has a unique solution. �is implication was validated for

the two example conveyor graphs considered in this paper, but checking it for arbitrary graphs is retained
for future work. Now, if both assumptions hold, the solution is unique and can be found symbolically, giving
the expected delivery time of a package between chosen source and sink � (p) ∶= ECv1,v2

= f1(p)/f2(p), where
f1 and f2 are some polynomials. In this representation, we can take f2(p) to be the (non-zero) determinant of
the system.

3.3. Probability smoothing

If  is very con�dent in routing decisions, the distribution (2) generates probabilities very close to zero
or one, and they may be processed as zeros and ones due to machine rounding, possibly making package
delivery impossible. What is more, if we would like to maximize � (p) w.r.t. its argument with gradient-based
approaches, probabilities with extreme values may cause vanishing gradients.

To resolve these issues, we modify (2) to separate the probabilities from zero and one by introducing
probability smoothing by analogy with label smoothing [38] in classi�er training:

smooth(p) = (1 − �)p + �/2, (5)

where � ∈ (0, 1) is a hyperparameter. �is rule is applied right a�er (2) and is used when  is already
trained. If training is done with RL, probability smoothing would encourage the agents to explore more, but
a small � would not alter decisions signi�cantly and at the same time would ensure that the probabilities
belong to the interval [�/2, 1 − �/2], i.e., are separated from the extreme values.

3.4. Simultaneous computation of routing probabilities

We would like to reduce our veri�cation problem to verifying a single DNN. Unfortunately, a DNN that
encodes � (p) does not �t into the layered structure (1), making existing DNN veri�cation tools inapplicable.
As a remedy, we can model the computation of p. To do this, we �nd all the Q values used in its computation
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i0 d0 j0

d1

p1

p2
1 − p1

1 − p2

1
o0

1

Fig. 3. Conveyor graph example; arcs are labeled with routing probabilities, the length of each section equals one
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smooth(σ(· / T))

smooth(σ(· / T))

τ(p) = (2 + p1 + 
2p2 − 2p1p2) / 
(p1 + p2 − p1p2)

p1

p2

−

−

Modeled as a single 
DNN execution

Embedding of 
sink o0

Fig. 4. Computation of � (p) for the example in Fig. 3

by expressing them as a result of a single forward pass of a larger DNN , which we will construct below.
�e number of such Q values is 2t , thus all executions of  can be modeled by repeating Ai and bi for all
layers i as diag(Ai , 2t) and concat(bi , 2t). �e idea of modeling several DNN executions as a single one is
illustrated in Fig. 4 for a tiny conveyor graph shown in Fig. 3.

However, if the inputs of  are also duplicated, solving the problem (4) would be impossible as the
same embedding vectors would be allowed to take di�erent values. To resolve this, all di�erent embeddings
e
′

1
,… , e

′

|V |
must be given to  only once, as their concatenation. We also need to subtract the embeddings

of current nodes from other embeddings. Both duplication and subtraction can be done with a single linear
transformation B = {Br ,s} with a block structure, where Br ,s (1 ≤ r ≤ 2t , 1 ≤ s ≤ |V |) are square matrices with
the side equal to the dimension of an embedding, and are either zero, identity, or negated identity matrices:

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ed1,1
− ec1

ed1,2
− ec1

…

edt,1
− ect

edt,2
− ect

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

B1,1 … B1,|V |

… … …

B2t,1 … B2t,|V |

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

e
′

1

…

e
′

|V |

⎤

⎥

⎥

⎦

. (6)

�us, the actual �rst-layer matrix of  is diag(A1, 2t) ⋅ B.
Note that the embeddings of some nodes are not needed to compute � (p): it is su�cient to use em-

beddings for all nontrivial diverters, their successors in the graph, and v2. Formula (6) implies that other
embeddings are always multiplied by zero blocks. To reduce the computational complexity, we �lter out
unused embeddings from e

′

1
,… , e

′

|V |
prior to constructing .

In addition, several of the decisions above depend on the considered routing algorithm, DQN-routing.
Yet, encoding multiple outputs of DNNs that operate di�erently is also possible. First,  could accept the
embeddings of both neighbors and produce the score (e.g., logit) used to compute the current component of
p right away, without Q values. In this case, it would su�ce to repeat  only t times instead of 2t . Second,
having di�erent DNNs  1

,… , t with weight matrices A
1

i
,… ,A

t

i
and bias vectors b

1

i
,… , b

t

i
of the same

shape in di�erent nodes instead of the single DNN  can be handled by composing their parameters as
diag(diag(A1

i
, 2),… , diag(At

i
, 2)) and concat(concat(b1

i
, 2),… , concat(bt

i
, 2)).
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3.5. Proposed veri�cation algorithm

�e ability to capture the Q values computed by all nodes allows us to bound their di�erences and thus,
by calling a DNN veri�cation tool, compute the reachability of a certain hyperrectangle R of probability
vectors. �e concrete bounds needed to check the reachability of R can be found by reverse application
of (3) and (5). In turn, the transition from the probability region to the veri�cation outcome can be handled
by a satis�ability modulo theories (SMT) solver [39].

�e proposed veri�cation algorithm is given in Alg. 1 and is based on a dichotomic procedure parame-
terized by the probability region R. �e regions to be processed are placed in a queue U , i.e., the space of
probability vectors is processed in the breadth-�rst search (BFS) order. Initially, the problem needs to be
solved for all possible probability vectors R = [�/2, 1 − �/2]

t , which is the initial region in the queue (line 2).
Mapping between probability vectors and outputs of  is done with a component-wise function g (line 3),
which is monotonic and trivial to inverse. Each region R (line 5) is analyzed, resulting in proving the bound,
�nding a counterexample, or spli�ing the problem.

1. If � (p) ≤ c0 (line 6) for all probability vectors in R, then the cost bound is proven for R and we proceed to
the next unprocessed region (line 7). Since � (p) is expressed symbolically, this check can be performed
by an SMT solver.

2. Alternatively, the algorithm checks whether R is reachable for some embeddings e
′

1
,… , e

′

|V |
within

the robustness assumption. �is can be done by requesting a DNN veri�cation tool to check the
reachability of g−1(R), which, like R, is an intersection of hyperplanes and can be speci�ed with linear
constraints. If it is unreachable, we have a proof for R. In this case, the condition on line 8 fails and
we proceed to the next unprocessed region.

3. Alternatively, if R is reachable and the bound is violated for the counterexample returned by the ver-
i�cation tool (lines 8–10), the algorithm has found a true counterexample and returns it immediately
(line 11).

4. Otherwise, no conclusion can be made, and the algorithm a�empts to �nd a proof or refutation by
spli�ing R into two regions (line 12) and scheduling them to be processed later (line 13). We divide R
into two equal rectangular halves by spli�ing the longest dimension.

Finally, if all regions have been processed without reporting a counterexample, this means that all parts of
the initial probability region were veri�ed (line 15). �e idea behind the algorithm is illustrated in Fig. 5.

Alg. 1 is sound and complete unless it is run for the real maximum of � , but its worst-case execution time
is unbounded (see Technical Appendix for proofs). In practice, the performance of the algorithm deteriorates
when c0 approaches the approximately computed real maximum of � .

τ(p) ≤ c0?
Verified

? p1

p2

Node 
embeddings

Routing
probabilities

Verification 
outcome

Combined DNN 
computation

Check reachability with a 
DNN verification tool

τ((p1, p2))

Check reachability with an 
SMT solver

1

0 1

?

Fig. 5. The idea behind Alg. 1. In this example, t = 2. The algorithm works with a region
of the probability space and uses third-party tools that can connect it to node embeddings

and mean delivery cost whose bound must be checked.
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Data: neural network  as de�ned above, number of nontrivial diverters t , temperature T ,
smoothing parameter �, cost bound c0, cost function � , default embeddings
e = concat (e1,… , e|V |)

Result: Verified or Counterexample(e′, p, c)
1 U ← FIFOQueue()

2 enqueue(U , [�/2, 1 − �/2]
t

)

3 g ← smooth(� (⋅/T ))
4 while U is not empty do
5 R ← dequeue(U )

6 if ∀p ∈ R � (p) ≤ c0 then
7 continue

8 if ∃e′ = concat (e′1,… , e
′

|V |)
∶
‖
‖
e
′
− e

‖
‖∞

≤ � ∧(e
′
) ∈ g

−1
(R) then

9 p ← g((e
′
))

10 if � (p) > c0 then
11 return Counterexample(e

′
, p, � (p))

12 (R1, R2) ← split(R)

13 enqueue(U , R1, R2)

14 return Verified

Algorithm 1. Checking robustness of the expected package delivery time w.r.t. node embeddings.

4. Experiments

4.1. Experimental setup

�e proposed formal veri�cation approach was implemented in Python1. As so�ware tools to verify
DNNs, solve SMT, and perform symbolic computations, we used Marabou [13], Z3 [40], and SymPy [41],
respectively. We also implemented gradient-based search of adversarial examples with PGD, using PyTorch2.
All experiments were run on an Intel Core i7-9750H 2.6 GHz CPU, using one core.

�e approach was evaluated on conveyor graphs from Fig. 1–2, later referred to as graph 1 and graph 2.
For both graphs, a DNN with two hidden layers of size 64 was trained according to [1]. Hyperparameter
values were chosen heuristically to make mean delivery time plots of DQN-routing comparable with other
routing algorithms considered in [1]. In particular, we chose 10 and 8 as embedding dimensions, and T = 1.5

and T = 10 as temperatures. As a smoothing parameter, we used � = 0.01, which is small enough not to
change the behavior of DQN-routing signi�cantly.

4.2. Symbolic computation of expected delivery time

As a preliminary step, our approach computes the expected delivery time � (p) by symbolically solving
a linear system of up to |V | equations. In our experiments, the number of equations in this system a�er
excluding irrelevant nodes was between 12 and 16, and � (p) was computed instantly.

Some examples of the computed expressions for � (p) are given below (the components of p correspond
to nontrivial diverters vc). Below, we denote the k-th source, sink, junction, and diverter as ik , ok , jk , and dk ,
respectively. �e indices of all the nodes are given in Fig. 1–2. Let P(vn |vc , vd ) be the probability of routing
the package to node vn given that now it is at node vc and its destination is vd .

1h�ps://github.com/ctlab/dqnroute
2h�ps://github.com/pytorch/pytorch
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For graph 1, assuming delivery from i1 to o3, � (p) = −20p1p2 + 40p1 + 43, where p1 = P(d3|d2, o3) and
p2 = P(j0|d3, o3). Note that this expression does not depend on the routing probabilities given the package
is at d0 since this diverter is unreachable from i1, on similar probabilities assuming that the package is at d5
or d6 since the sink o3 is unreachable from these diverters, and on similar probabilities at d1, d4, d7 and d8

since only one arc from each of these nodes makes o3 reachable and thus routing decisions are deterministic
at these diverters. Also, even if probability smoothing is disabled, � (p) is bounded, which complies with the
acyclicity of the graph, and cannot exceed 83.

For graph 2, assuming delivery from i0 to o1, � (p) = (−155p1p2p3p4p5 + 55p1p2p3p5 − 55p1p2p4p5 +

245p1p3p4p5 − 145p1p3p5 − 245p1p4p5 + 110p1p5 + 155p2p3p4p5 − 55p2p3p5 + 55p2p4p5 + 450p3p4p5 + 310p3p4

− 550p3p5 − 310p3 − 450p4p5 − 310p4 − 110p5)/(p5(p3p4 − p3 − p4)), where p1 = P(j4|d0, o1), p2 = P(j5|d2, o1),
p3 = P(j4|d3, o1), p4 = P(j2|d4, o1), p5 = P(o1|d6, o1). Note that, if probability smoothing is disabled, this value
is unbounded (it approaches in�nity when p5 → 0), which complies with the cyclicity of the graph. �is
value also does not depend on routing probabilities at d1 since this diverter is unreachable from i0, and at d5
since this diverter cannot route the package to o0, and thus its decision is deterministic.

In the experiments below, we consider two source/sink pairs per graph: the examples above and two
more, from i1 to o2 in graph 1, and from i2 to o0 in graph 2. �ese pairs correspond to veri�cation problems
with t = 2 for graph 1 and t = 5 for graph 2. �ese dimensions are further reduced to 2 and 5 respectively
since each � (p) does not depend on one of the components of p (in the examples above, these are components
p0 and p1 respectively). �ese are the maximum dimensions of the probability space that are possible for
these graphs.

4.3. Gradient-based search of adversarial examples

Prior to formal veri�cation, it is useful to study the considered veri�cation problems by running impre-
cise, but faster methods: e.g., searching for adversarial examples with PGD provides approximate values on
the actual maxima of the expected delivery cost � . Found values are used to determine the thresholds for
formal veri�cation. We investigate various �∞-norm embedding discrepancies � from 0 to 6.4. Note that
� = 0 gives unique embeddings that DQN-routing computes with the Laplacian Eigenmaps algorithm: in
this case the veri�cation problem is essentially reduced to testing.

When running PGD, we performed ten restarts with 100 optimization steps of magnitude 0.02� in each.
Each run used a di�erent starting point. �e overall running time of PGD for a �xed value of � was 4–5 s
for graph 1 and 7–9 s for graph 2. �e found maxima of � are shown in Table 1: the expected delivery cost
is robust to moderate embedding discrepancies, but under large discrepancies it can be made signi�cantly
larger.

Table 1. Expected delivery cost maxima found with PGD

�
Graph 1 Graph 2

i1 → o3 i1 → o2 i0 → o1 i2 → o0

0.00 43.10 53.03 818.62 818.43
0.01 43.10 53.04 818.63 818.44
0.10 43.10 53.09 818.76 818.48
0.20 43.11 53.10 818.98 818.53
0.40 52.27 54.11 819.79 818.73
0.80 80.82 72.79 824.99 819.72
1.60 82.70 72.80 919.36 831.37
3.20 82.70 72.80 3727.38 963.18
6.40 82.70 72.80 11786.13 11721.99
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4.4. Formal veri�cation

We ran DNN veri�cation for each value of � used in the PGD experiments. �e approximate expected
delivery cost maxima found with PGD were used to select the upper bounds c0 to be veri�ed. �ese bounds
were chosen to expect both positive and negative veri�cation outcomes for di�erent �: e.g., to consider hard
instances of the veri�cation problem, we selected some c0 values to be close to the approximate maxima.
Each run was limited to 2 hours and 12 GB of RAM.

Veri�cation results are shown in Table 2. With the increase of �, veri�cation becomes more computation-
ally demanding and in most cases eventually violates either the time or the memory limit. As the resource
consumption of the veri�cation approach is dominated by Marabou, with SMT solver executions times be-
ing negligible, a possible explanation for this is that Marabou might have been optimized for small input
discrepancies more typical in adversarial example search. As for veri�cation outcomes, they are consistent
with PGD results. However, veri�cation time increases when approaching the approximate maxima, espe-
cially from above. In this case, not only the running time of Marabou increases (from a couple of seconds to
almost two hours), but also the required number of calls to this tool.

Table 2. Results of formal verification. Verification outcomes are denoted as “+” (verified),
“−” (counterexample found) and “?” (unknown). For a completed verification run,

its execution time in seconds is shown in parentheses. For an unknown outcome,
the parentheses instead show its reason: reaching the time limit (TL) or the memory limit (ML)

Graph 1, delivery from i1 to o3
c0 � = 0 � = 0.01 � = 0.1 � = 0.2 � = 0.4 � = 0.8 � = 1.6 � = 3.2 � = 6.4

81.00 + (3) + (4) + (4) + (4) ? (TL) ? (TL) ? (ML) ? (ML) ? (ML)
44.00 + (7) + (12) + (20) + (716) ? (TL) ? (TL) − (969) − (1423) − (343)
43.50 + (8) + (13) + (21) + (3298) ? (TL) ? (TL) − (970) − (1379) − (347)
43.12 + (13) + (23) + (37) ? (TL) ? (TL) ? (TL) − (965) − (1324) − (346)
43.10 − (3) − (3) − (4) − (4) − (6) − (17) − (263) − (567) − (369)

Graph 1, delivery from i1 to o2
72.80 + (3) + (4) + (7) + (7) ? (TL) ? (TL) ? (ML) ? (ML) ? (ML)
54.12 + (5) + (12) + (100) ? (TL) ? (TL) − (362) ? (ML) ? (ML) − (412)
53.11 + (9) + (77) + (2597) ? (TL) ? (TL) − (382) ? (ML) ? (ML) − (411)
53.10 + (11) + (87) + (4160) ? (TL) ? (TL) − (385) ? (ML) ? (ML) − (412)
53.00 − (4) − (3) − (3) − (5) − (10) − (46) − (397) ? (ML) − (412)

Graph 2, delivery from i0 to o1
825.0 + (90) + (165) + (222) + (434) + (619) ? (ML) ? (ML) ? (ML) ? (ML)
820.0 + (123) + (233) + (492) + (1727) ? (TL) ? (ML) ? (ML) ? (ML) ? (ML)
819.0 + (147) + (370) + (2006) ? (TL) ? (TL) ? (ML) ? (ML) ? (ML) ? (ML)
818.6 − (4) − (6) − (7) − (32) − (17) − (8) − (85) ? (ML) ? (ML)
818.0 − (4) − (7) − (7) − (10) − (10) − (9) − (18) ? (ML) ? (ML)

Graph 2, delivery from i2 to o0
830.0 + (81) + (161) + (215) + (561) + (477) ? (TL) ? (ML) ? (ML) ? (ML)
820.0 + (118) + (224) + (394) + (862) + (997) ? (TL) ? (ML) ? (ML) ? (ML)
819.0 + (136) + (282) + (527) + (1275) + (3277) ? (TL) ? (ML) ? (ML) ? (ML)
818.4 − (4) − (7) − (7) − (10) − (14) − (10) − (21) ? (ML) ? (ML)
818.0 − (4) − (6) − (7) − (9) − (15) − (10) − (20) ? (ML) ? (ML)
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As for the routing algorithm under veri�cation, we conclude that the delivery time performance of DQN-
routing is robust w.r.t. the node representations. �is can be explained by relatively small input dimensions
of constructed DNNs  (60 and 96 for graphs 1 and 2 respectively).

Discussion and conclusion
In this paper, we have considered the problem of verifying the performance of a DNN-based routing

algorithm, where routing is done by a family of DNN agents located in the nodes of the routing network,
and the performance indicator is the mean delivery time of a package between two chosen nodes of the
network. To our best knowledge, this is the �rst application of sound and complete formal veri�cation
to a distributed system of DNNs (or multiple instances of the same DNN) operating together to achieve a
common goal. �e importance of this problem is justi�ed by considering a distributed system of DNNs (or
multiple instances of the same DNN) that operate together to achieve a common goal, which, to the best of
our knowledge, has not yet been approached with sound and complete formal veri�cation.

To solve this problem, we proposed a veri�cation approach that can prove or refute the given upper
bound on the mean delivery time. We focused on a particular class of routing problems, baggage handling,
and a particular routing algorithm, DQN-routing, as the source of DNNs to be veri�ed. �e veri�cation
approach does not depend on the way the DNNs are trained, and we believe that it can be adapted to other
routing problems. To make the problem solvable, we accepted several simplifying assumptions. We regarded
the DNN agents to be �xed during the delivery, and focused on the stability of the expected delivery time
w.r.t. network node representation (embeddings). We also assumed that packages cannot collide and the
network is static and fault-free. Removal of the these assumptions is part of future work.

�e proposed veri�cation approach was evaluated on two conveyor networks with 20–22 nodes. �e
approach is fast when the allowed discrepancies of node embeddings approach zero, i.e., the veri�cation
problem approaches the one of testing. When these discrepancies are large, or, more importantly, we want
to check a delivery time bound which is close to an approximation of the actual maximum of the mean
delivery time, the approach becomes more computationally expensive. On the other hand, this performance
decrease is relevant largely for the case of verifying satis�ed bounds only since the violations of bounds can
usually be found with PGD if it is run prior to formal veri�cation.

As for the veri�ed routing algorithm, DQN-routing, on the considered examples, we concluded that it
learns DNNs that are relatively robust to the changes in node embeddings. While we focused on the support
of this particular algorithm based on DNNs, the proposed veri�cation approach may be adapted to others.
In particular, the origins of node embeddings as well as the DNNs to be veri�ed are not signi�cant. Yet,
our approach requires each node to have at most two successors. While this is a reasonable assumption
for conveyor networks, it is not so for computer networks. Extending the proposed approach to handle
routing in computer networks will require support of arbitrary node degrees. �e RL approach that we
verify, DQN-Routing, is applicable not only for conveyor delivery, but also for package routing in computer
networks.

In addition to broadening the supported class of routing problems, we envisage several ways of improv-
ing the proposed approach. First, though the trade-o� between completeness of analysis and computational
complexity is unsurprising, there might be room for e�ciency improvement.

Second, we assumed that the routing agents are static during delivery. When the DNNs under veri�cation
are trained with RL (as in DQN-routing), this limits the applicability of the proposed approach, though it is
possible to use it a�er training, or periodically between RL iterations. Verifying DNNs in an RL framework
is subject of future work.

�ird, our approach assumes that the conveyor network is �xed. Violation of this assumption is partially
covered by allowing node embedding discrepancies. As the most adverse topology change is a malfunction,
future work may address simultaneous veri�cation for multiple conveyor graphs obtained from the original
one by removing one or more arcs.
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A. Appendix: proofs of correctness
In this appendix, we prove several properties of Alg. 1. Below, we assume that the checks on lines 6 and 8

of Alg. 1 are performed with third-party tools that implement sound and complete algorithms, meaning that
these checks always terminate and return correct results.

Let c∗ be the maximum of � on the set S = {e
′
∶
‖
‖
e
′
− e

‖
‖∞

≤ �} of allowed node embeddings. Let R̂ be the
set of probability vectors reachable from S. �en, c∗ = � (p∗) for some p∗ ∈ R̂. Recall that p is continuous as a
function of node embeddings (it is computed by applying continuous functions to the outputs of the DNN
, which is assumed to use a continuous activation function), and � is continuous as a function of p (it is
an arithmetic expression with non-zero denominator).

�eorem 1. If Alg. 1 terminates, then its veri�cation result is correct.

Proof. First, suppose that Alg. 1 is run for c0 ≥ c∗, which means that the bound is satis�ed. In this case,
Alg. 1 will never return a counterexample since it is impossible to satisfy the conditions on lines 8 and 10
simultaneously. �e only remaining way for the algorithm to terminate is to return a positive veri�cation
outcome on line 15.

�en, suppose that Alg. 1 is run for c0 < c∗, which means that the bound is violated. In this case, p∗
belongs to some hyperrectangle R∗ such that ∀p ∈ R∗ � (p) > c0 and R∗ ∩ R̂ ≠ ∅ (both sets contain p∗). For any
hyperrectangle containing R∗, the algorithm will be unable to report a positive veri�cation result (condition
on line 6 will fail and condition on line 8 will pass). Moreover, the condition on line 10 will be satis�ed and
a counterexample will be reported.

�eorem 2. If Alg. 1 is requested to check the bound c0 ≠ c∗, it will always terminate.

Proof. Suppose that a call of Alg. 1 never terminates. First, suppose that Alg. 1 is run for c0 > c∗. �en there is
a sequence of nested hyperrectangles Ri such that Ri+1 is one of the parts of Ri produced on lines 12–14. �e
algorithm splits the regions using the longest dimension, and thus there is a point q such that ∩∞

i=1
Ri = {q}.

�ere is a sequence of points pi that certify that the conditions on line 6 are violated, i.e., � (pi) > c0. �is
sequence converges to q, and since � is continuous, � (q) ≥ c0. With c0 > c∗, this is only possible if q ∉ R̂.
�ere is also a sequence p′

i
of points assigned on line 9, which also converges to q. However, p′

i
all belong to

R̂, which is compact as a continuous image of a compact set S. But then q ∈ R̂ as a limit of points in a closed
set. Contradiction.

�en, suppose that Alg. 1 is run for c0 < c∗. Recall the region R∗ from the proof of the previous theorem
for this case. If the algorithm never terminates, given the BFS order of the traversal of the set of proba-
bility vectors, it will necessarily consider a region that belongs to R∗. However, it must have reported a
counterexample for this region. Contradiction.

�eorem 3. �ere is a family of veri�cation problems parameterized only by c0 such that the execution time
of Alg. 1 is unbounded on it, and this family does not need to include the case c0 = c∗

Proof. We will show that for each integer n, it is possible to select an instance of the veri�cation problem
such that Alg. 1 processes more than n probability regions. First, we take t = 1, � (p) = 1 + p1. �is situation
corresponds to a tiny conveyor graph with one diverter that decides whether the package follows the path
with the length of 1 or the path with the length of 2. �en, we can select the DNN such that c∗ = 3/2 and
request the algorithm to check the bound c0 = 3/2+
 . In this case, the actual veri�cation outcome is positive,
but by making 
 su�ciently small, we can cause the algorithm to reach line 12 for as many intervals as we
wish: these are the intervals that approach p1 = 1/2 from above.
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