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Process mining is a field of computer science that deals with the discovery and analysis of process models based on auto-

matically generated event logs. Currently, many companies are using this technology to optimize and improve their business

processes. However, a discovered process model may be too detailed, sophisticated, and difficult for experts to understand.

In this paper, we consider a problem of discovering the hierarchical business process model from a low-level event log, i. e.,

the problem of the automatic synthesis of more readable and understandable process models based on the data stored in the

event logs of information systems.

The discovery of better-structured and more readable process models is extensively studied in the framework of process

mining research from different perspectives. In this paper, we present an algorithm for discovering hierarchical process

models represented as two-level workflow Petri nets. The algorithm is based on predefined event partitioning so that this

partitioning defines a sub-process corresponding to a high-level transition at the top level of a two-level net. In contrast

to existing solutions, our algorithm does not impose restrictions on the process control flow and allows for concurrency

and iterations.
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Process mining — это область компьютерных наук, которая занимается синтезом и анализоммоделей процессов

на основе автоматически генерируемых журналов событий. В настоящее время многие организации использу-

ют эту технологию для оптимизации и совершенствования бизнес-процессов. Однако синтезированная модель

процесса может быть слишком подробной, сложной и трудной для понимания экспертами. В работе мы рассмат-

риваем задачу синтеза иерархической модели бизнес-процесса из низкоуровневого журнала событий, то есть,

задачу автоматического синтеза более удобочитаемых и понятных моделей процессов на основе данных, храня-

щихся в журналах событий информационных систем.

Построение более структурированных и удобочитаемых моделей процессов широко изучается в рамках ис-

следований в области process mining с разных точек зрения. В этой статье мы представляем алгоритм синтеза

иерархических моделей процессов, представленных в виде двухуровневых сетей потоков работ. Алгоритм осно-

ван на предопределенном разбиении событий на множества, которые определяют подпроцессы, соответствующие

высокоуровневым переходам на верхнем уровне двухуровневой сети потоков работ. В отличие от существующих

решений, представленный алгоритм не накладывает ограничений на поток управления процессом, а также до-

пускает параллелизм и итерации.

Ключевые слова: синтез моделей процессов; сети Петри; сети потоков работ; иерархические модели процессов;

журнал событий
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Introduction
Over the past decade, companies whose processes are supported by various information systems have

become convinced of the need to store as much potentially useful information about the process executions

within a system as possible. This was facilitated by qualitative improvement in the areas related to the extrac-

tion of valuable information from the recorded data, which helps to adjust the operation of companies over

time and thus save and increase their resources. Process mining is a field of computer science that provides

a palette of tools to extract the logic of the system behavior as well as to model and optimize the processes

that occur in a system. In particular, process mining methods allow one to find inconsistencies between

the planned and actual behavior of a system and to track the occurrence of the inefficient or incorrect be-

havior.

Despite the fact that increasing attention is being paid to preserving the optimal amount of the necessary

information about processes, the actual data on process executions is not always available in a convenient

format and with the necessary degree of detail, since system logs are generated for a lot of different purposes.

Process discovery aims at extracting processes from event logs and constructing models of these pro-

cesses. Most of the available process discovery methods produce a model with the same level of detail

provided by the initial event log [1].

Therefore, a promising area of research is the problem of discovering a more readable process model

from a detailed event log, while preserving the important information about the process execution for ex-

perts. Readability of process models can be achieved in various ways. The most commonly used methods

are filtering rare behavior from the original event log, skipping “minor” events (the significance of an event

is assessed according to the chosen methodology); and abstraction, when some events are considered in-

distinguishable from others. We will discuss existing methods in more detail in Section 1. In our study,

we consider the latter approach, when more readable models are the result of model abstraction — they are

more compact and have the optimal level of detail for the work of experts in comparison to the level of model

detail that could be obtained by direct discovery methods. To preserve the important data, we are dealing not

only with abstract (high-level) models, but also with hierarchical models storing the low-level information

in the form of sub-processes.

In this paper, we propose an algorithm for discovering hierarchical process models from event logs. Pro-

cesses are represented using workflow nets [2], a special subclass of Petri nets used for modeling the control

flow of business processes. This study extends our previously achieved results [3] where we proposed an ap-

proach to discovering abstract models for processes without cycles. Here, we provide a more general solution

by overcoming the prohibition of cyclic behavior.

Hierarchical models allow us to have a high-level view of the model by “folding” the behavior of an in-

dividual sub-process into a high-level transition with the ability to unfold it back. Thus, at the top level,

there is a high-level model in which every individual transition corresponds to a sub-process built from low-

level events. The history of detailed behavior of the process is recorded in a low-level event log. Regarding

the number of levels in the hierarchy, we will only use two levels — high and low, but the algorithm can

naturally be extended to any number of levels.

The paper is structured as follows. Section 1 presents the review of related research. Section 2 gives theo-

retical preliminaries and the definitions used in the text. In Section 3, we discuss the basics of the hierarchical

process discovery algorithm. Section 4 presents the main discovery algorithm and the proof of its correct-

ness in the light of the perfect fitness preservation. Section 5 reports the outcomes from the experimental

evaluation. In Section 6, we conclude the paper and discuss the possible future work directions.

1. Related work
Research connected with our paper can be classified into approaches to abstracting event logs and process

models and approaches to constructing hierarchical process models from event logs.
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One of the recent surveys [4] gives a comprehensive review of approaches and methods that can be

applied for low-level event abstraction. The authors divide the methods according to: the learning strategy

(supervised or unsupervised), the structure of the process models (strictly sequential or with interleaving),

the low-level events grouping approach (deterministic or probabilistic) and the nature of the processed data

(discrete or continuous data).

For example, the method presented in [5] is a supervised method that aligns the model complexity

with the needs of different stakeholders. Another example of a supervised approach to event abstraction

was presented in [6]. This method takes a low-level event log and transforms it to an event log at the desired

level of abstraction, using the following behavioral patterns: sequence, choice, parallel, interleaving and rep-

etition of events. This technique allows one to obtain a reliable mapping from low-level events to activity

patterns automatically and construct a high-level event log using these patterns. Detecting high-level events

based on the patterns of behavior in an event log does not make it possible to refine the accuracy of abstrac-

tion, based on the general knowledge of the system, or provide it only partially. Patterns provide the ability

to change the scale but not to participate in the selection of correct high-level events. This could only be

useful for a superficial analysis. However, there is a risk of combining unrelated low-level events into a sin-

gle high-level event only because they are executed sequentially, but not because they belong to the same

logical component of a system.

Another supervised event abstraction method was discussed in [7]. The nature of this method is as fol-

lows. The authors annotate a low-level event with the correct high-level event using the domain knowledge

from the actual process model by the special attribute in the event log. In addition, this paper assumes that

multiple high-level events are executed in parallel. This allows us to interpret a sequence of identical values

as a single instance of a high-level event.

Unsupervised techniques do not require additional information beyond the input log. For example, in [8],

the authors specify a fully unsupervised framework for partially ordered event data that detects abstraction

classes using event data based on its observed execution context. In [9], the authors offer a framework

for evaluating unsupervised abstraction techniques and evaluate the state-of-the-art methods using 400

event logs. One of the conclusions drawn from these evaluations is that there is typically a trade-off between

high precision and high comprehensibility in the resulting model. The less abstract the model is the higher

its calculated precision will be.

An example of the multi-perspective approach that combines features of the unsupervised and super-

vised methodologies is provided in [10]. After automatic identification of event groups, this method allows

users to select the groups that are relevant and can be used for low-level log abstraction.

A general approach to the representation of multi-level event logs and the corresponding multi-level

hierarchical models was studied in [11]. The authors highlighted the fact that this approach can combine

multiple modeling notation for representing different levels in multi-level process models.

There are many ways of abstracting process models by reducing their size in order to make them more

convenient to work with. Each method may be useful depending on a group of interrelated factors: the ab-

straction purposes, the presence of certain patterns and constructs, and the specifics of modeling notation.

Reducing the size of the model by abstraction can be done as the “convolution” of groups of elements, or im-

plemented by throwing some parts of the model away (insignificant in a particular case) [12]. The importance

of the low-level event log abstraction is emphasized, among others, in [13].

Researchers determine which level of abstraction is appropriate for a particular case in different ways,

but the main criterion is that the model should be readable and understandable. In [14], the abstraction

of a process model occurs through “simplification” automatically: the user determines only the desired de-

gree of detail, but not the actual correctness of identifying high-level events. Conversely, the paper [5]

stressed the importance of the abstraction level dependence on the domain expert knowledge.
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Petri nets [15] can also be extended by adding the hierarchy as, e.g., in Colored Petri nets (CPN) [16].

Hierarchical events allow one to construct more compact, readable and understandable process models.

The hierarchy of CPN models can be used as an abstraction, in the case of two levels: a high-level abstract
model and a low-level refined model. In our paper, the high-level model is a model with abstract transi-

tions. An abstract transition refers to a Petri net sub-process which refines the activity represented by this

high-level transition. A complete low-level, also referred to as classical, process model can be obtained

from a high-level model by substituting sub-processes for high-level transitions. By the classical process

model, we mean a model that is not loaded with information about the hierarchy, which has the same level

of detail as the original event log.

Synthesis of a classical process model is a standard process discovery problem that has been extensively

studied in the literature. A wide range of process discovery algorithms supports the automated classical

process model synthesis [1].

Inductive Miner [17] is one of the most widely used process discovery algorithms that produces well-

structured process models, built recursively from building blocks for standard behavioral patterns. They can

be potentially used for constructing high-level process models. However, this technique does not take the ac-

tual correspondence between low-level events and sub-processes. In [18], the authors also used the recog-

nition of behavioral patterns in a process by a structural partitioning algorithm and then defined a specific

workflow schema for each pattern.

In [19], a two-phase approach to mining hierarchical process models was presented. Process models were

considered as interactive and context-dependent maps based on common execution patterns. In the first

phase, an event log is abstracted to the desired level by detecting relevant execution patterns. An example

of such a pattern is the maximal repeat that captures typical sequences of activities in the log. Every pat-

tern is then estimated by its frequency, significance, or some other metric needed for accurate abstraction.

In the second phase, the Fuzzy Miner discovery algorithm [14], adapted to process map discovery, is applied

to the transformed log.

FlexHMiner [20] is a general algorithm based on process trees implemented in ProM software. The au-

thors stress the flexibility of this approach: to identify the hierarchy of events, the method supports both

supervised methods and methods using the general knowledge of a process. The limitations of this method

include the fact that each of the sub-processes can be executed only once, which means that the method

is not suitable for processes with cycles.

A large volume of literature is devoted to the problem of discovering structured models from event logs.

Researchers offer different techniques to improve the structure of discovered models, e. g., in [21], and to

produce already well-structured process models [22, 23]. Different ways of detecting sub-processes in event

logs, using low-level transition systems, were discussed in [24–26]. However, these works did not consider

mining hierarchical process models from event logs.

One way to use process discovery techniques for abstract model synthesis is log pre-processing. For ex-

ample in [27] the authors divide the initial log into sub-processes using activity instances information.

The limitation of the proposed method is in the activity instance partitioning: as the authors only consider

cases where a subprocess always begins and ends with fixed events.

In [3], the authors presented an algorithm for the discovery of a high-level process model from the event

log for acyclic processes. This method takes the initial data on abstraction in the form of a set of detailed

events grouped into high-level ones, which means that any method of identifying abstract events can po-

tentially be used, including those based on expert knowledge. After pre-processing, this algorithm allows

the use of any existing process discovery approach that is suitable for the synthesis of a classical process

model. The possibility of using existing approaches as components makes the proposed algorithm flexible.

This paper extends the conditions of applicability of the algorithm from [3] since it works only for acyclic

models. For the algorithm to find and process potential cycles in the event log, we will reuse the method
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for detecting the repetitive behavior in a event log proposed and tested in [28, 29], which partially covers

the general solution of the cycle detection problem.

2. Preliminaries
By N we denote the set of non-negative integers.

Let 𝑋 be a set. A multiset𝑚 over the set 𝑋 is a mapping: 𝑚 : 𝑋 → N, i. e., a multiset may contain several

copies of the same element. For an element 𝑥 ∈ 𝑋 , we write 𝑥 ∈𝑚 , if𝑚(𝑥) > 0. For two multisets𝑚,𝑚′
over

𝑋 we write𝑚 ⊆ 𝑚′
iff∀𝑥 ∈ 𝑋 : 𝑚(𝑥) ≤ 𝑚′(𝑥) (the inclusion relation). The sum, the union and the subtraction

of two multisets 𝑚 and 𝑚′
are defined as usual: ∀𝑥 ∈ 𝑋 : (𝑚 +𝑚′) (𝑥) = 𝑚(𝑥) +𝑚′(𝑥), (𝑚 ∪𝑚′) (𝑥) =

𝑚𝑎𝑥 (𝑚(𝑥),𝑚′(𝑥)), (𝑚 −𝑚′) (𝑥) =𝑚(𝑥) −𝑚′(𝑥), if𝑚(𝑥) −𝑚′(𝑥) ≥ 0, otherwise (𝑚 −𝑚′) (𝑥) = 0. By M(𝑋 )
we denote the set of all multisets over 𝑋 .

For a set𝑋 , by𝑋 ∗
with elements of the form ⟨𝑥1, . . . , 𝑥𝑘⟩ we denote the set of all finite sequences (words)

over 𝑋 , ⟨⟩ denotes the empty word, i. e., the word of zero length. The concatenation of two words𝑤1 and𝑤2

is denoted by 𝑤1 ·𝑤2.

Let 𝑄 ⊆ 𝑋 be a subset of 𝑋 . The projection ↾𝑄 : 𝑋 ∗ → 𝑄∗
is defined recursively as follows: ⟨⟩↾𝑄 = ⟨⟩,

and for 𝜎 ∈ 𝑋 ∗
and 𝑥 ∈ 𝑋 :

(𝜎 · ⟨𝑥⟩)↾𝑄 =

{
𝜎↾𝑄 if 𝑥 ∉ 𝑄

𝜎↾𝑄 · ⟨𝑥⟩ if 𝑥 ∈ 𝑄

We say that 𝑋 = 𝑋1 ∪ 𝑋2 ∪ · · · ∪ 𝑋𝑛 is a partition of the set 𝑋 if for all 1≤𝑖, 𝑗≤𝑛 such that 𝑖 ≠ 𝑗 we have

𝑋𝑖 ∩ 𝑋 𝑗 = ∅.

2.1. Petri nets

Let 𝑃 and𝑇 be two finite disjoint sets of places and transitions, respectively, and 𝐹 : (𝑃×𝑇 )∪(𝑇 ×𝑃) → N
be an arc-weight function. Let also 𝐴 be a finite set of event names (or activities) representing observable

actions or events, 𝜏 — a special label for silent or invisible action, 𝜆 : 𝑇 → 𝐴 ∪ {𝜏} is a transition labeling

function. Then 𝑁 = (𝑃,𝑇 , 𝐹, 𝜆) is a labeled Petri net.
Graphically, a Petri net is designated as a bipartite graph, where places are represented by circles, tran-

sitions by boxes, and the flow relation 𝐹 by directed arcs.

A marking in a Petri net 𝑁 = (𝑃,𝑇 , 𝐹, 𝜆) is a function 𝑚 : 𝑃 → N mapping each place to some number

of tokens (possibly zero). Hence, a marking in a Petri net may be considered as a multiset over its set

of places. Tokens are graphically designated by black circles. A current marking𝑚 is represented by putting

𝑚(𝑝) tokens into each place 𝑝 ∈ 𝑃 . A marked Petri net (𝑁,𝑚0) is a Petri net 𝑁 together with its initial

marking𝑚0.

For transition 𝑡 ∈ 𝑇 , its preset (denoted
•𝑡 ) and its postset (denoted 𝑡•) are defined as sets of its input

and output places respectively, i. e.,
•𝑡 = {𝑝 | 𝐹 (𝑝, 𝑡) ≠ 0} and 𝑡• = {𝑝 | 𝐹 (𝑡, 𝑝) ≠ 0}.

A transition 𝑡 ∈ 𝑇 is enabled in a marking 𝑚, if for all 𝑝 ∈ •𝑡 , 𝑚(𝑝) ≥ 𝐹 (𝑝, 𝑡). An enabled transition

𝑡 may fire yielding a new marking 𝑚′
, such that 𝑚′(𝑝) = 𝑚(𝑝) − 𝐹 (𝑝, 𝑡) + 𝐹 (𝑡, 𝑝) for each 𝑝 ∈ 𝑃 (denoted

𝑚
𝜆 (𝑡 )
→ 𝑚′

, or just𝑚 →𝑚′
). A marking𝑚′

is reachable from a marking𝑚, if there exists a sequence of firings

𝑚 = 𝑚0 → 𝑚1 → . . .𝑚𝑘 = 𝑚′
. By R(𝑁,𝑚) we denote the set of all markings reachable from marking

𝑚 in a net 𝑁 . A transition 𝑡 ∈ 𝑇 is called dead for a marked net (𝑁,𝑚0), if for each reachable marking

𝑚 ∈ R(𝑁,𝑚0), 𝑡 is not enabled in𝑚.

Let (𝑁,𝑚0) be a marked Petri net with transitions labeled with activities from 𝐴 ∪ {𝜏}, and let

𝑚0

𝑎1→𝑚1

𝑎2→ . . . be a finite or infinite sequence of firings in 𝑁 , which starts from the initial marking 𝑚0

and cannot be extended. Then a sequence of observable activities 𝜌 , such that 𝜌 = ⟨𝑎1, 𝑎2, . . . ⟩↾𝐴, is called

a run. For a finite run 𝜌 , which corresponds to a sequence of firings 𝑚0

𝑎1→ . . .
𝑎𝑘→𝑚𝑘 , we call 𝑚0 and 𝑚𝑘 its

initial and final markings respectively.
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Fig. 1. A workflow net for handling compensation requests

In our study, we consider workflow nets — a special subclass of Petri nets [2] for workflow modeling.

A workflow net is a (labeled) Petri net with two special places: 𝑖 and 𝑓 . These places mark the beginning

and the ending of a workflow process.

A (labeled) marked Petri net 𝑁 = (𝑃,𝑇 , 𝐹, 𝜆,𝑚0) is called a workflow net (WF-net) if the following

conditions hold:

1. There is one source place 𝑖 ∈ 𝑃 and one sink place 𝑓 ∈ 𝑃 , such that
•𝑖 = 𝑓 • = ∅.

2. Every node from 𝑃 ∪𝑇 is on a path from 𝑖 to 𝑓 .

3. The initial marking𝑚0 in 𝑁 contains the only token in its source place.

Given a WF-net, by [𝑖𝑛] we denote its initial marking with the only token in place 𝑖 , and by [𝑓𝑖𝑛] — its

final marking with the only token in place 𝑓 .

The example of a workflow net that simulates a simple process of handling ticket refund requests,

is shown in Fig. 1 [30].

Soundness [2] is the main correctness property for workflow nets. A WF-net 𝑁 = (𝑃,𝑇 , 𝐹, 𝜆, [𝑖𝑛])
is called sound, if

1. For any marking𝑚 ∈ 𝑅(𝑁, [𝑖𝑛]), [𝑓𝑖𝑛] ∈ R(𝑁,𝑚);
2. If for some𝑚 ∈ 𝑅(𝑁, [𝑖𝑛]), [𝑓𝑖𝑛] ⊆ 𝑚, then𝑚 = [𝑓𝑖𝑛];
3. There are no dead transitions in 𝑁 .

2.2. Event logs

Most information systems record the history of their process execution into event logs. An event record
usually contains case ID, an activity name, a time step, and some information about resources, data, etc.

In the light of our research, we use case IDs for splitting an event log into traces, timestamps — for ordering

events within each trace, and abstract from all event attributes except event names (activities).

Let A be a finite set of activities. A trace 𝜎 is a finite sequence of activities from 𝐴, i. e., 𝜎 ∈ 𝐴∗
. By #𝑎(𝜎)

we denote the number of occurrences of activity 𝑎 in trace 𝜎 .

An event log 𝐿 is a finite multi-set of traces, i. e., 𝐿 ∈ M(𝐴∗). Let 𝑋 ⊆ 𝐴. We extend projection ↾𝑋
to event logs, i. e., for an event log 𝐿 ∈ 𝑀 (𝐴∗), its projection is the event log 𝐿↾𝑋 , defined as the multiset

of projections of all traces in 𝐿. In other words, 𝐿↾𝑋 (𝜎↾𝑋 ) = 𝐿(𝜎) for all 𝜎 ∈ 𝐿.

An important question is whether the event log matches the behavior of the process model and vice

versa. There are several metrics to measure conformance between a WF-net and an event log. Specifically,

fitness defines to what extend the log can be replayed by the model.

Let 𝑁 be a WF-net with transition labels from 𝐴, an initial marking [𝑖𝑛], and a final marking [𝑓𝑖𝑛]. Let

𝜎 be a trace over 𝐴. We say that trace 𝜎 = ⟨𝑎1, . . . , 𝑎𝑘⟩ perfectly fits 𝑁 , if 𝜎 is a run in 𝑁 with initial marking

[𝑖𝑛] and final marking [𝑓𝑖𝑛]. An event log 𝐿 perfectly fits 𝑁 , if every trace from 𝐿 perfectly fits 𝑁 .
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3. Discovering hierarchical WF-nets

3.1. Hierarchical WF-nets

Here, we define hierarchical workflow (HWF) nets with two levels of representing the process behavior.

Transitions in a high-level WF-net are labeled by activities from 𝐴̃, while transitions in a set of low-level

WF-nets are labeled by the corresponding low-level activities from 𝐴.

An HWF-net is a tuple N = (𝑁̃ , 𝑁1, 𝑁2, . . . , 𝑁𝑘 , ℓ), where:

1. 𝑁̃ = (𝑃,𝑇 , 𝐹, ˜𝜆, ˜[𝑖𝑛]) is a WF-net, called a high-level WF-net, where
˜𝜆 : 𝑇 → 𝐴̃ is a transition labeling

function;

2. 𝑁𝑖 = (𝑃𝑖 ,𝑇𝑖 , 𝐹𝑖 , 𝜆𝑖 , [𝑖𝑛]𝑖) is a WF-net, called a low-level WF-net for 𝑖 = 1, 2, . . . , 𝑘 with a transition

labeling function 𝜆𝑖 : 𝑇𝑖 → 𝐴𝑖 , where 𝐴𝑖 ⊆ 𝐴 is a subset of low-level activities for 𝑁𝑖 , such that

𝐴1, 𝐴2, . . . , 𝐴𝑘 — is a partitioning of 𝐴;

3. ℓ : 𝐴̃ → {𝑁1, 𝑁2, . . . , 𝑁𝑘 } is a partial injective function mapping certain activities in 𝐴̃ to low-level

WF-nets.

We refer to 𝑁̃ , 𝑁1, 𝑁2, . . . , 𝑁𝑘 as the components of N . A marking for N is defined by the mark-

ings of its components. A marking in N is a set M = {𝑀,𝑚1,𝑚2, . . . ,𝑚𝑘 }, where 𝑀 is a marking in 𝑁̃

and𝑚1,𝑚2, . . . ,𝑚𝑘 are markings in 𝑁1, 𝑁2, . . . , 𝑁𝑘 respectively.

The initial marking M0 for HWF-net 𝑁̃ contains exactly one token in the source place of 𝑁̃ .

Let 𝑑𝑜𝑚(ℓ) denote the domain of ℓ . We call the activities in 𝑑𝑜𝑚(ℓ) — high-level activities. We also

call low-level WF-nets sub-processes. Accordingly, every transition in a high-level WF-net N is assigned

the corresponding low-level WF-net modeling the behavior of a sub-process.

Transition 𝑡 ∈ 𝑇 ∪ 𝑇1 ∪ . . .𝑇𝑘 is enabled if it is enabled in its component by the ordinary firing rule,

described in the previous section, for Petri nets.

There are the three following alternatives of transition firing in HWF-nets:

1. Let 𝑡 ∈ (𝑇 \ 𝑑𝑜𝑚(ℓ)) ∪ 𝑇1 ∪ . . .𝑇𝑘 be a transition enabled in M. Then, the firing step M
𝜆 (𝑡 )
→ M′

is completed according to the standard rules, i. e., it only changes the marking in the low-level WF-net

containing 𝑡 .

2. Let 𝑡 ∈ 𝑑𝑜𝑚(ℓ) be a transition enabled in M. Then, a silent firing step M 𝜏→ M′
may be done,

where M′ = {𝑀 ′,𝑚′
1
,𝑚′

2
, . . . ,𝑚′

𝑘
}, such that 𝑀 ′(𝑝) = 𝑀 (𝑝) − 𝐹 (𝑝, 𝑡) for all 𝑝 ∈ 𝑃 , 𝑚𝑖

′ = 𝑚𝑖 + [𝑖𝑛]𝑖 ,
where [𝑖𝑛]𝑖 — is an initial marking for the sub-process 𝑁𝑖 corresponding to the enabled transition

𝑡 , 𝑚 𝑗
′ = 𝑚 𝑗 ,∀𝑗 ≠ 𝑖 , and 𝜏 — is the invisible action, that takes all tokens from the input places for 𝑡

and add the initial marking to the low-level WF-net 𝑁𝑖 .

3. Let 𝑚𝑖 be a marking in the low-level WF-net 𝑁𝑖 that contains a token in its final place 𝑓 . Then,

a silent firing step M 𝜏→ M′
may be done, where M′ = {𝑀 ′,𝑚′

1
,𝑚′

2
, . . . ,𝑚′

𝑘
}, such that 𝑀 ′(𝑝) =

𝑀 (𝑝) + 𝐹 (𝑡, 𝑝) for all 𝑝 ∈ 𝑃 , where 𝑡 is the transition in the high-level WF-net 𝑁̃ corresponding to 𝑁𝑖 ,

and𝑚𝑖
′ =𝑚𝑖

′ − [𝑓𝑖𝑛]𝑖 , where [𝑓𝑖𝑛]𝑖 – is a final marking for 𝑁𝑖 ,𝑚 𝑗
′ =𝑚 𝑗 ,∀𝑗 ≠ 𝑖 .

The example of an HWF-net is provided in Fig. 2. We do not impose specific restrictions on the number

of input and output places a transition in a high-level WF-net can have. In Fig. 2, we only show the refine-

ment of two transitions 𝑡1 and 𝑡2 in the high-level WF-net 𝑁̃ with two low-level WF-nets 𝑁1 and 𝑁2. They

represent the low-level behavior of two sub-processes 𝛼1 and 𝛼2, respectively. Note that, if a low-level WF-

net corresponding to a high-level activity contains the single transition, we still represent such a sub-process

with an individual WF-net.

We next consider the operational semantics of an HWF-net by defining its run. For what follows, let

N = (𝑁̃ , 𝑁1, 𝑁2, . . . , 𝑁𝑘 , ℓ) be an HWF-net , where 𝑁̃ — is a high-level net and 𝑁1, 𝑁2, . . . , 𝑁𝑘 — are nets

for its sub-processes.
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Fig. 2. An HWF-net with two refined transitions

Intuitively, a set of transitions enabled in in a high-level WF-net determines the set of sub-processes

for which we can start to fire their low-level transitions. Transition firing, as described above, corresponds

to starting, executing and terminating sub-processes, which can be run concurrently.

Let 𝑡 ′ be a transition enabled in the current marking M of an HWF-net. The following options of
˜M

𝜆 (𝑡 ′ )
→

˜M′
are possible.

If there are high-level transitions, enabled at 𝑚̃ in a high-level WF-net, sharing common places, then

there is a conflict. We can choose, which sub-process to start, while the other sub-processes corresponding

to conflicting transitions in a high-level WF-net will not be able to be executed. For example, high-level

transitions 𝑡1 and 𝑡2, once enabled, will be in conflict, and we can start only one of the corresponding sub-

processes, 𝑁1 or 𝑁2. Firing a transition in a high-level WF-net is complete if the corresponding low-level

WF-net reaches its final marking.

For instance, let us again consider the HWF-net shown in Fig. 2. After firing high-level transition 𝑡3
and executing a corresponding sub-process 𝛼3 (not provided in Fig. 2), two high-level transitions 𝑡1 and 𝑡2
become enabled. They share a common place, i. e., high-level transitions 𝑡1 and 𝑡2 are in conflict. Thus,

we can execute exactly one of the corresponding sub-processes 𝛼1 (low-level WF-net 𝑁1) and 𝛼2 (low-level

WF-net 𝑁2). We can, for instance, obtain a sequence 𝜌 = ⟨𝛼3, 𝑒5, 𝑒6, 𝛼4⟩ which will represent a possible run

of the HWF-net from Fig. 2. Note that high-level activities 𝛼3 and 𝛼4 should also be replaced with corre-

sponding sub-process runs.

Lastly, we give a straightforward approach to transforming an HWF-net N = (𝑁̃ , 𝑁1, 𝑁2, . . . , 𝑁𝑘 , ℓ)
to the corresponding equivalent classic WF-net denoted by eq(N) = (𝑃,𝑇 , 𝐹, 𝜆, [𝑖𝑛]). We need to replace

transitions in a high-level WF-net with their sub-process implementation given by low-level WF-net corre-

sponding by ℓ . In addition, we need to remove tokens from the input places of low-level WF-nets. When

a transition 𝑡 in a high-level WF-net 𝑁̃ is replaced by a low-level WF-net 𝑁𝑖 , we need to fuse a source place

in 𝑁𝑖 with all input places of 𝑡 and to fuse a sink place in 𝑁𝑖 with all output places of 𝑡 . By construction,

eq(N) is a WF-net.

For instance, the WF-net eq(N) equivalent the HWF-net N , shown in Fig. 2, is provided in Fig. 3. We re-

placed transition 𝑡1 with 𝑁1 and transition 𝑡2 with 𝑁2 as determined by the labels of low-level WF-nets. This

figure also shows the double-line contours of corresponding high-level transitions.

Proposition 1 gives the main connection between an HWF-net and its classical representation.
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Fig. 3. The WF-net equivalent to the HWF-net in Fig. 2

Proposition 1. Let N = (𝑁̃ , 𝑁1, 𝑁2, . . . , 𝑁𝑘 , ℓ) be an HWF-net, and eq(N) be the corresponding equivalent
WF-net. A sequence 𝜌 of activities is a run in N if and only if 𝜌 is a run in eq(N).

In other words, a run in HWF-net N is also a run in the corresponding classical WF-net 𝑁 and vice versa.

Proof of this proposition directly follows from the construction of the classical WF-net and from the way

we define the sequential semantics of a hierarchical WF-net and from semantic definition.

To sum up, for each HWF-net we can effectively build a classical WF-net having exactly the same be-

havior.

3.2. Events partitioning

We suppose that partitioning the set of low-level activities 𝐴 into subsets 𝐴1, . . . 𝐴𝑘 is made either

by an expert, or automatically based on some information contained in extended action records, such as re-

sources or data. In Section 5, we give two examples of partitioning activities for a real log. Then we suppose

that a sub-process is defined by its set of activities, and we suppose that sets of activities for two sub-

processes do not intersect. If it is not the case and two sub-processes include some common activities like

“close the file”, one can easily distinguish them by appending the resource or file name to the activity iden-

tifier.

Let 𝐿 be a log over a set 𝐴 of activities, and let 𝐴 = 𝐴1 ∪ 𝐴2 ∪ · · · ∪ 𝐴𝑘 be a partition of 𝐴. Let also

𝐴̃ = {𝛼1, 𝛼2, . . . 𝛼𝑘 } be a set of high-level activities (sub-process names).

The problem is to construct an HWF-net N = (𝑁̃ , 𝑁1, 𝑁2, . . . , 𝑁𝑘 , 𝑙), where for each 𝑖 ∈ [1, 𝑘], 𝑁𝑖 is a sub-

process (WF-net), labeled by 𝛼𝑖 , with transitions labeled by low-level activities from𝐴𝑖 . The runs ofN should

conform to traces from 𝐿.

Another important remark concerning partitioning activities: we suppose that it does not violate the log

control flow. Specifically, if there are iterations in the process, then for a set of iterated activities 𝐵

and for each sub-process activities set 𝐴𝑖 , we assume that either 𝐵 ∩ 𝐴𝑖 = ∅, or 𝐵 ⊆ 𝐴𝑖 , or 𝐴𝑖 ⊆ 𝐵. Note

that this is a reasonable constraint, taking into account the concept of a sub-process. If it is still not the case,

i. e., , only a part of 𝐴𝑖 activities are iterated, then the partition can be refined, such that 𝐴𝑖 is split into two

subsets: a subset of iterated activities and the remainder.

For example, consider a low-level WF-net discovered from an event log shown in Fig. 4. Suppose that

the set 𝐵 of the iterated activities includes {𝑎3, 𝑎4, 𝑏3, 𝑏4} and that the low-level events are partitioned into two

subsets 𝐴1 = {𝑎1, 𝑎2, 𝑎3, 𝑎4} and 𝐴2 = {𝑏1, 𝑏2, 𝑏3, 𝑏4}.
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Fig. 4. The example cycle and high-level activity inconsistency

Using the proposed events partitioning, we cannot represent this model as a high-level WF-net, since

the iterated activities belong to different high-level events. In addition, in the set of iterated activities 𝐵,

low-level events 𝑎3 and 𝑎4 are always executed before 𝑏3, 𝑏4. Thus, one needs to revise this partitioning

of low-level events in such a way that either 𝐵 is fully included into a high-level activity 𝐴𝑖 , or a high-level

activity 𝐴𝑖 is a part of a cycle.

3.3. The proposed solution

Here, we describe the main ideas and the structure of the algorithm to discover the hierarchical WF-net

from an event log.

Let 𝐿 be a log with activities from 𝐴, and let 𝐴 = 𝐴1 ∪ 𝐴2 ∪ · · · ∪ 𝐴𝑘 be a partition of 𝐴. Let 𝐴̃ =

{𝛼1, 𝛼2, . . . 𝛼𝑘 } be a set of high-level activities (sub-process names).

A hierarchical WF-net N (HWF-net) consists of a high-level WF-net 𝑁̃ with activities 𝐴̃ = {𝛼1, . . . , 𝛼𝑘 },
and 𝑘 sub-process WF-nets 𝑁1, 𝑁2, . . . , 𝑁𝑘 , where for each 𝑁𝑖 , all its activities belong to 𝐴𝑖 .

Sub-process WF-nets 𝑁1, 𝑁2, . . . , 𝑁𝑘 can be discovered directly. To discover 𝑁𝑖 , we filter log 𝐿 to 𝐿𝑖 =

𝐿↾𝐴𝑖
. Then we apply one of popular algorithms (e. g., Inductive Miner) to discover a WF-net from event log

𝐿𝑖 . The fitness and precision of the obtained model depend solely on the choice of the discovery algorithm.

Example 1. Consider an event log 𝐿 of a business process over the set of low-level activities𝐴 = {𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6,
𝑡7, 𝑡8, 𝑡9, 𝑡10, 𝑡11, 𝑡12}. Let 𝐿 be an event log, such that 𝐿 = {𝜎1, 𝜎2, 𝜎3, 𝜎4, 𝜎5, 𝜎6}, where𝜎1 = 𝑡1𝑡2𝑡5𝑡3𝑡4𝑡3𝑡6𝑡12𝑡7𝑡3𝑡11,
𝜎2 = 𝑡1 𝑡5 𝑡6 𝑡2 𝑡3 𝑡7 𝑡8 𝑡9 𝑡10 𝑡5 𝑡6 𝑡11, 𝜎3 = 𝑡1 𝑡2 𝑡3 𝑡5 𝑡6 𝑡11, 𝜎4 = 𝑡1 𝑡2 𝑡5 𝑡3 𝑡12 𝑡6 𝑡3 𝑡11, 𝜎5 = 𝑡1 𝑡2 𝑡5 𝑡3 𝑡4 𝑡6 𝑡7 𝑡3 𝑡12 𝑡8
𝑡9 𝑡10 𝑡5 𝑡6 𝑡3 𝑡11, 𝜎6 = 𝑡1 𝑡2 𝑡3 𝑡4 𝑡3 𝑡5 𝑡6 𝑡11. A partition for this low-level activity set is 𝐴 = 𝐴0 ∪ 𝐴1 ∪ · · · ∪ 𝐴5,
where 𝐴0 = {𝑡1}, 𝐴1 = {𝑡2}, 𝐴2 = {𝑡3, 𝑡4, 𝑡12}, 𝐴3 = {𝑡5, 𝑡6}, 𝐴4 = {𝑡7, 𝑡8, 𝑡9, 𝑡10}, 𝐴5 = {𝑡11}. A set of high-level
activities for our example is 𝐴̃ = {𝛼0, . . . , 𝛼5}, such that for every high-level activity from 𝐴̃ the corresponding
sub-process 𝛼𝑖 ∈ 𝐴̃, 𝑖 ≤ |𝐴̃| contains activities only from 𝐴𝑖 ∈ 𝐴.

As the high-level WF-net of the hierarchical WF-net we consider the workflow net shown in Fig. 5 with ac-
tivities labeled with 𝐴̃.

The existing process mining algorithm should be able to discover the workflow net presented in Fig. 6 directly
from the low-level event log 𝐿. In this low-level net, we can also see that sub-processes, corresponding to high-
level activities 𝛼0, 𝛼1, . . . 𝛼5, have the same relations between activities as in the net from Fig. 5. For simplicity,
the sub-processes 𝛼0, 𝛼1 and 𝛼5, consisting of the single transition, are not highlighted with double rectangles.

Discovering a high-level WF-net is not so easy and is quite a challenge. The main problem with it

is caused by the possible interleaving of concurrent sub-processes and iteration. A naive solution could be

to replace each activity 𝑡 𝑗 ∈ 𝐴𝑖 by 𝛼𝑖 — the name of the corresponding sub-process — in the log 𝐿. Then

we need to remove stuttering, i. e., to replace, wherever possible, several sequential occurrences of the same

high-level activity by a single activity. Then we apply the one of popular discovery algorithms to the obtained

log over the set 𝐴̃ of activities. However, this does not work, due to the presence of the patterns of behavior

other than the simple sequential execution.
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Fig. 5. The high-level workflow net for Fig. 6

Fig. 6. An example of a low-level net with cycles inside the subprocess and between two subprocesses
corresponding to the high-level net from Fig. 5

Consider the examples in Fig. 7. Fragment (a) in Fig. 7 shows two concurrent sub-processes 𝛽 and 𝛾 ,

executing after sub-process 𝛼 , which consists of the single transition. After replacing low-level activities

with the corresponding sub-process names and removing stuttering, for the fragment (a), we get the fol-

lowing runs: ⟨𝛼, 𝛽,𝛾, . . . ⟩, ⟨𝛼,𝛾, 𝛽, . . . ⟩, ⟨𝛼, 𝛽,𝛾, 𝛽,𝛾, . . . ⟩, ⟨𝛼,𝛾, 𝛽,𝛾, 𝛽, . . . ⟩ etc. Fragment (b) in Fig. 7 shows

a cycle. The body of this cycle is the sequence of two sub-processes 𝛽 and 𝛾 . Among runs for the fragment

(b) we also have ⟨𝛼, 𝛽,𝛾, . . . ⟩, ⟨𝛼, 𝛽,𝛾, 𝛽,𝛾, . . . ⟩. That is why iterations should be considered separately.

Discovering high-level WF-nets for acyclic processes, i. e., logs without iteration, was studied earlier

in [3] where all details can be found. Here, we refer to this algorithm as Algorithm 𝔄0 and illustrate it

with the example in Fig. 7(a). Algorithm 𝔄0, discovering a high-level WF-model from a log 𝐿 without cycles,

reduces this problem to the classical discovery problem, which can be solved by many popular algorithms,

such as Inductive Miner. Therefore, Algorithm 𝔄0 can be parameterized by Algorithm 𝔇, i. e., an already

known algorithm for solving the classical discovery problem.

Algorithm 𝔄0(𝔇):
Step 1. For all traces in 𝐿, replace each activity with the corresponding sub-process names and remove stut-

tering.

Step 2. For each trace 𝜎 that contains 𝑡𝑖 ∈ 𝜎, 𝑖 ≤ |𝜎 | such as #𝑡𝑖 > 1, find all occurrence of 𝑡𝑖 in 𝜎 . For each

occurrence’s position 𝑘 create a clone of 𝜎 , delete from it every 𝑡𝑖 except the one at the position 𝑘

and remove (newly formed) stuttering. Replace 𝜎 with the set of all obtained clones of 𝜎 .

For example, the trace ⟨𝛼, 𝛽,𝛾, 𝛽,𝛾, . . . ⟩ will be replaced by two traces ⟨𝛼, 𝛽,𝛾, . . . ⟩ and ⟨𝛼,𝛾, 𝛽, . . . ⟩
obtained by keeping the first occurrences of 𝛽 and 𝛾 , and correspondingly by keeping the first oc-

currence of 𝛾 and the second occurrence of 𝛽 . In this example, constructing clones by keeping other

occurrences of 𝛾 does not generate new traces.

Step 3. Let 𝐿̃ be the resulting log from executing two previous steps. To obtain a high-level WF-net 𝑁̃ , apply

the given as the input parameter Algorithm 𝔇, to discover a WF-net from event log 𝐿̃.
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(a) concurrent sub-processes

(b) sub-processes inside a loop

Fig. 7. Interleaving and iteration of sub-processes

It was proven in [3] that if an algorithm used in Step 3 of Algorithm 𝔄0 for each input log 𝐿 discovers

a WF-net perfectly fitting 𝐿, then Algorithm𝔄0, given a log 𝐿 without repetitive behavior, produces an HWF-

net N such that eq(N) perfectly fits 𝐿.

3.4. Detecting cycles in event logs

Now we come to logs with the repetitive behavior. The main idea here is to represent a loop body

as a subset of its activities. Then a body of a loop can be considered as a sub-process with a new loop sub-

process name. To discover the repetitive behavior, we use the method from [28], which allow us to determine

causal, concurrency, and repetitive relations between events in an event log. Actually, for our purpose

we need only repetitive relations and the loop discovery based on them. We call the loop discovery algorithm

— Algorithm 𝔅. The strategy of this algorithm includes the pruning of interleaving tasks in an event trace

to separate them by the supports of minimal transition invariants (t-invariants) — firing sequences, which

represent potential cycles (see [31] for details). The procedure to obtain the t-invariants operates recursively

on every task in trace 𝜎𝑖 from the most external cycle in every trace to the smaller nested cycles.

Let us consider the application of Algorithm 𝔅 in the following example.

Consider the log 𝐿 from Example 1. Extracting the information about cycles is to derive the direct causal

and concurrency relations between transitions in the event log 𝐿. The result of this step is shown in Table 1.

Algorithm 𝔅 finds all sub-sequences containing the repetitive behaviour, i. e., if in a trace 𝜎 there is an

event 𝑡𝑖 such that #𝑡𝑖 > 1, then the sub-sequence, which contains repetitive behavior, should start with 𝑡𝑖
until the next occurrence of 𝑡𝑖 in 𝜎 . In [28], such sequences are called cycs. In 𝐿, the following cycs are

detected: cyc
1
= {𝑡3 𝑡4}, cyc

2
= {𝑡3 𝑡6 𝑡12} in 𝜎1, cyc

3
= {𝑡5 𝑡6 𝑡2 𝑡3 𝑡7 𝑡8 𝑡9 𝑡10} in 𝜎2, cyc

4
= {𝑡3 𝑡12 𝑡6} in 𝜎4,

cyc
5
= {𝑡5 𝑡3 𝑡4 𝑡6 𝑡7 𝑡3 𝑡8 𝑡9 𝑡10}, cyc6

= {𝑡3 𝑡4 𝑡6 𝑡7} in 𝜎5, cyc
7
= {𝑡3 𝑡4} in 𝜎6. We can see that cyc

7
is equal

to cyc
1
. Thus, we can merge them because the goal is to obtain a set of different cycs, and their frequency

is not important in this case. In addition, we can see that there is another cyc in cyc
5
. Furthermore, according

to [28], cyc
5

is not the elementary cyc because ∃𝑡𝑖 ∈ 𝑐𝑦𝑐 such that #𝑡𝑖 > 1, and we could derive a smaller

nested elementary 𝑐𝑦𝑐′ = {𝑡3 𝑡4 𝑡6 𝑡7} from it.

The next step of the Algorithm 𝔅 is to build the causality graph for each cyc found. In the process

of building the causality graph, we use the relations between activities. These relations can be extracted

from the input event log using any suitable process discovery algorithm. The set of relations between activ-

ities for the log 𝐿 is presented in Table 1.

Now, having all relations, we can easily build the causality graph for each cyc. In [28], it is proposed that

a strongly connected component of the causality graph for a cyc is also the support of a minimal t-invariant

in the final model. The resulting graphs are shown in Fig. 8. Note that the graphs for cyc
1

and cyc
7

are equal

because they contain the same transitions, and this is also true for cyc
2

and cyc
4
. Therefore, we have depicted

them only once (Fig. 8a and Fig. 8b, respectively).

Let us consider the case of cyc
5

separately because the cyc contains a nested cyc. In this case, first,

we processed the nested (elementary) cyc′ and built the causality graph for it. The final causality graph
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Table 1. Relations between transitions in Example 1
𝑇𝑖 Causal Relationship Concurrent Relationship

𝑡1 𝑡2, 𝑡5

𝑡2 𝑡3, 𝑡5

𝑡3 𝑡11, 𝑡12 𝑡5, 𝑡6, 𝑡7

𝑡4 𝑡6

𝑡5 𝑡6 𝑡3

𝑡6 𝑡2, 𝑡7, 𝑡11 𝑡3, 𝑡4, 𝑡12

𝑡7 𝑡8 𝑡3

𝑡8 𝑡9

𝑡9 𝑡10

𝑡10 𝑡5

𝑡12 𝑡7, 𝑡8 𝑡6

for cyc′ is equal to the causality graph for cyc
6

presented in Fig. 8e. The strongly connected component

in this case is equal to cyc
1
, and it is already in our set of t-invariant supports. The next step is to remove

the detected t-invariant support of a nested cyc from cyc
5
. Afterwards, we get the new sequence of transitions

𝑐𝑦𝑐′
5
= {𝑡5 𝑡6 𝑡7 𝑡3 𝑡8 𝑡9 𝑡10}, and we can build the causality graph for this new elementary cyc. The resulting

graph is shown in Fig. 8d.

As a result of applying Algorithm 𝔅 to the log 𝐿, we obtain the following set of t-invariant supports:

𝑌1 = {𝑡3, 𝑡4}, 𝑌2 = {𝑡3, 𝑡12}, 𝑌3 = {𝑡5, 𝑡6, 𝑡7, 𝑡8, 𝑡9, 𝑡10}.
Algorithm 𝔅 allows us to detect the bodies of elementary cycles as sets of their activities and process

them recursively, starting with inner elementary cycles. Thus, at each iteration we are dealing with a loop

body without internal loops. To obtain a sub-trace, corresponding to the loop body with a set of activities

𝐵 from a log trace 𝜎 , we construct the projection 𝜎↾𝐵 . After filtering all current traces in this way, we get

an event log for discovering a WF-net that simulates the behavior of the loop body using Algorithm 𝔄0.

As mentioned in Section 3.2, partitioning of low-level events should not violate the log control flow

from the point of view on the iterated behavior. Here we give a more precise representation of this require-

ment based on the results produced by Algorithm 𝔅 to detect cycle bodies, in terms of t-invariants.

Let 𝐵 = {𝑏1, . . . , 𝑏𝑛} be the cycle bodies found by Algorithm 𝔅 and 𝐿 be an event log over 𝐴 = 𝐴1 ∪𝐴2 ∪
· · · ∪ 𝐴𝑘 , where 𝑘 is a number of high-level activities. Then, the partition of events 𝐴 = 𝐴1 ∪ 𝐴2 ∪ · · · ∪ 𝐴𝑘

is consistent with 𝐵 iff ∀𝑏𝑖 ∈ 𝐵 and 𝐴 𝑗 ∈ 𝐴 one of the following holds:

1. 𝑏𝑖 ∩𝐴 𝑗 = ∅;

2. 𝑏𝑖 ⊆ 𝐴 𝑗 ;

3. 𝐴 𝑗 ⊆ 𝑏𝑖 .

The example in Fig. 4 discussed earlier in Section 3.2 shows that the inconsistency between the event par-

titioning and iterated behavior does not allow to construct an WF-net, since high-level events have common

parts. Inconsistency can be corrected by revising the initial event partitioning.

The resulting high-level WF-net is then constructed recursively by replacing, the body of each detected

loop with the name of its sub-process, starting with the inner loops. Note that if, after this step, in the WF-

net there are transitions that are involved in more than one cycle, we need to merge all the same named

transitions into a single one with that name. This also applies to places, because logically some of them should

also be merged, depending on the activities relations. As the strategy of the merging algorithm, we also

use the one proposed in [28]. We call the algorithm for merging transitions by activities correspondence

Algorithm ℭ.

4. Algorithm for discovering HWF-nets from low-level event logs
Here, we describe our main discovery algorithm in more detail.
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a) cyc
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b) cyc
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c) cyc
3 d) cyc

5

e) cyc
6

Fig. 8. Causality graphs for every cyc from 𝐿

Let 𝐴 be a set of activities and 𝐿 — a log over 𝐴. Let then 𝐴 = 𝐴1 ∪ · · · ∪ 𝐴𝑘 be a partition of 𝐴. Let

𝐴̃ = {𝛼1, . . . , 𝛼𝑘 } be a set of sub-process names. For 𝑖 ∈ [1, 𝑘], 𝐴𝑖 is a set of activities of a sub-process 𝛼𝑖 .

Then Algorithm 𝔄(𝔇) constructs an HWF-net N = (𝑁̃ , 𝑁1, 𝑁2, . . . , 𝑁𝑘 , ℓ) with high-level WF-net

𝑁̃ = (𝑃,𝑇 , 𝐹, ˜𝜆, ˜[𝑖𝑛]), where
˜𝜆 : 𝑇 → 𝐴̃ and for each 𝛼𝑖 ∈ 𝐴̃, ℓ (𝛼𝑖) = 𝑁𝑖 , i. e., sub-process named with 𝛼𝑖

corresponds to low-level WF-net 𝑁𝑖 in N .

By 𝐵̃ = {𝛽0, 𝛽1, . . . , 𝛽𝑚} we denote a set of cycle names and by ℓ𝐵 — a function which maps each name

from 𝐵̃ to a WF-net that implements the cycle with this name. For a WF-net 𝑁 , denote by Loop(𝑁 ) a WF-net

that is a loop with body 𝑁 .

Algorithm 𝔄(𝔇):
Step 1. Apply Algorithm 𝔅 to 𝐿 to find a set 𝐵 = {𝑏1, . . . , 𝑏𝑚} of cycle bodies, where every 𝑏 ∈ 𝐵 is a set

of activities in some cycle and 𝑚 = |𝐵 |. A cycle name for each 𝑏 ∈ 𝐵 will be stored in a set 𝐵̃ where

|𝐵̃ | = |𝐵 |. The correspondence between every 𝑏 ∈ 𝐵 and its name 𝛽 ∈ 𝐵̃ is defined by index, i. e.,

for each set of cycle activities 𝑏𝑞 ∈ 𝐵 a cycle name will be 𝛽𝑞 ∈ 𝐵̃, where 𝑞 = 1, 2, . . . ,𝑚 is the index.

Step 2. Construct the projection 𝐿↾𝑏𝑖 for each 𝑏 ∈ 𝐵 and apply Algorithm 𝔄0(𝔇) to it (with respect to the par-

tition𝐴 = 𝐴1∪· · ·∪𝐴𝑘 ). Let 𝑁̃ be the resulting high-level WF-net over the set 𝐴̃ of sub-process names.

Let 𝑁1, . . . , 𝑁 𝑗 — resulting WF-nets for sub-processes with names 𝛼1, . . . , 𝛼 𝑗 . Let 𝑁𝛽1
, . . . , 𝑁𝛽𝑚 — re-

sulting WF-nets for sub-processes within the cycle.

Step 3. Let ℓ𝐵 (𝛽1) = 𝑁𝛽1
, . . . , ℓ𝐵 (𝛽𝑚) = 𝑁𝛽 𝑗

. Let also ℓ (𝐴1) = 𝑁1, . . . , ℓ (𝐴 𝑗 ) = 𝑁 𝑗 .

Step 4. For every 𝜎 ∈ 𝐿 such as 𝑏 𝑗 ⊆ 𝜎 and 𝑖 = 1, 2, . . . , |𝐿 | replace by 𝛽 𝑗 all occurrences of activities from 𝑏 𝑗
in 𝜎𝑖 and remove stuttering.

Step 5. Let 𝐴𝑛𝑒𝑤 be a current set of activities such as 𝐴𝑛𝑒𝑤 = 𝐴 ∪ 𝐵̃ and 𝐴̃𝑛𝑒𝑤 be a current partition of 𝐴𝑛𝑒𝑤

such as 𝐴̃𝑛𝑒𝑤 = 𝐴̃ ∪ 𝐵̃.

Step 6. Apply Algorithm𝔄0(𝔇) to the log 𝐿 obtained at Step 4 with respect to the current partition of activities

𝐴̃𝑛𝑒𝑤 . Let 𝑁̃ be a resulting high-level WF-net.

Step 7. For each 𝛽 ∈ 𝐵̃, replace a transition labeled by 𝛽 in 𝑁̃ with the sub-process Loop(ℓ𝐵 (𝛽)).
Step 8. For each pair of transition 𝑡𝑖 , 𝑡 𝑗 ∈ 𝑇 from 𝑁̃ , which are corresponding to the same 𝛼 sub-process name,

apply the merging Algorithm ℭ.

The resulting net 𝑁̃ is a high-level WF-net for the HWF-net constructed by Algorithm. Its low-level WF-nets,

which are defined by function ℓ , are also built during Algorithm operation.

Correctness of Algorithm 𝔄(𝔇) is justified by the following statement.

308



Discovering Hierarchical Process Models: An Approach Based on Events Partitioning

Theorem 1. Let 𝐴 be a set of activities and 𝐿 — a log over 𝐴. Let also 𝐴 = 𝐴1 ∪ · · · ∪ 𝐴𝑘 be a partition of 𝐴,
and 𝐴̃ = {𝛼1, . . . , 𝛼𝑘 } — a set of sub-process names.

If Algorithm𝔇, given a log 𝐿′, discovers a WF-net 𝑁 ′ such that 𝑁 ′ perfectly fits 𝐿′, then Algorithm 𝔄(𝔇)
constructs an HWF-net N = (𝑁̃ , 𝑁1, 𝑁2, . . . , 𝑁𝑘 , ℓ), such that N perfectly fits 𝐿 according to the substitution.

Proof. To prove that an HWF-net built using Algorithm 𝔄(𝔇) perfectly fits the input log, provided that

Algorithm 𝔇 discovers models with perfect fitness, we use three previously proven assertions, namely:

1. The theorem proven in [3] states that when 𝔇 is an discovery algorithm with perfect fitness, Algo-

rithm 𝔄0(𝔇) discovers a high-level WF-net, whose refinement perfectly fits the input log without

repetitions (the log of an acyclic process).

2. In [28] it is proven that, given a log 𝐿, Algorithm 𝔅 correctly finds in 𝐿 all repetitive components that

correspond to supports of t-invariants in the Petri net model for 𝐿.

3. Proposition 1 in Subsection 3.1 justify correctness of refining a high-level WF-net by substituting sub-

process modules for high-level transitions.

4. In [28] it is proven that the given merging strategy of Algorithm ℭ correctly merges all equally named

transitions after substitutions of the processes corresponding to the components of repetitive behavior

to the Petri net model for 𝐿.

□

Taking the above into consideration, proving the theorem is straightforward, though quite technical.

Thus, we informally describe the logic of the proof here.

Let Algorithm 𝔇 be a discovery algorithm that discovers a perfectly fitting WF-net for a given event log.

From Step 1 to Step 5 of the algorithm, repetitive components, i. e., cycles are processed. At Step 1, all

inner elementary repetitive components in the log are discovered using Algorithm 𝔅. The activities of every

component are those of some inner loop body, which do not have repetitions. Then, a WF-net 𝑁 for this loop

body is correctly discovered using Algorithm 𝔄0(𝔇), and the loop itself is folded into a high-level activity 𝛽 ,

and 𝑁 is kept as the value ℓ𝐵 (𝛽). WF-nets for sub-processes within the body of this loop are also discovered

by Algorithm 𝔄0(𝔇) and accumulated by ℓ . If a loop activity 𝛽 is contained in another loop body, then

with the one more iteration of Step 1, the upper loop 𝑁 ′
is discovered, the transition labeled with 𝛽 in it

is replaced with 𝑁 , and 𝑁 ′
is itself folded into a new high-level activity.

After processing all loops, Algorithm proceeds to Step 6, where after reducing all loops to high-level

activities, Algorithm 𝔄0(𝔇) is applied to a log without repetitions.

In Step 7 all transitions labeled with loop activities in a high-level and low-level WF-nets are replaced

by WF-nets for these loops, kept by ℓ𝐵 .

Step 8 merges all equally named transitions that corresponds to the same activity in the event log.

That is why we can see that, while Algorithm 𝔄0(𝔇) ensures the perfect fitness between the acyclic

fragments of the model (when loops are folded into transitions), Algorithm 𝔅 ensures correct processing

of cyclic behavior, and Proposition 1 guarantees that replacing loop activities by the corresponding loop

WF-nets does not violate perfect fitness, the main algorithm provides systematic log processing and model

construction.

5. Experimental evaluation
In this section, we report the main outcomes from a series of experiments conducted to evaluate the al-

gorithm for discovering two-level hierarchical process models from event logs.

To support the automated experimental evaluation, we implemented the hierarchical process discovery

algorithm described in the previous section using the open source library PM4Py [32]. The source files

for our implementation are published on the open GitHub repository [33]. We conducted experiments using

two kinds of event logs:
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Fig. 9. A classical WF-net with generated by refining the WF-net in Fig. 1

1. Artificial event logs generated by manually prepared process models.

2. Real-life event logs provided by various information systems.

Event logs are encoded in a standard format as XML-based XES files.

To assess the quality of the algorithm quality, we will use several metrics of conformance checking. Con-
formance checking is an important part of process mining along with process discovery [34]. The main aim

of conformance checking is to evaluate the quality of process discovery algorithm by estimating the cor-

responding quality of discovered process models. Conformance checking provides four main quality di-

mensions. Fitness estimates the extent to which a discovered process model can execute traces in an event

log. A model perfectly fits an event log if it can execute all traces in an event log. According to Theorem

1, the hierarchical process discovery algorithm yields perfectly fitting process models. Precision evaluates

the ratio between the behavior allowed by a process model and the one not recorded in an event log. A model

with perfect precision can only execute traces in an event log. The perfect precision limits the use of a process

model since an event log represents only a finite “snapshot” of all possible process executions. Generaliza-

tion and precision are two dual metrics. The fourth metric, simplicity, captures the structural complexity

of a discovered model. We improve simplicity by the two-level structure of a discovered process models.

Within the experimental evaluation, we estimated fitness and precision of process models discovered

from artificially generated and real-life event logs. Fitness was estimated using alignments between a pro-

cess model and an event log as defined in [35]. The precision was estimated using the complex ETC-align

measures proposed in [36]. Both measures are values in the interval [0, 1]. As a discovery algorithm, we used

Inductive Miner.

5.1. Discovering HWF-Nets from Artificial Event Logs

The high-level source for generating artificial low-level event logs was the Petri net shown earlier

in Fig. 1. In this model, we refined its transitions with different sub-processes containing sequential, parallel

and cyclic executions of low-level events. The example of refining the Petri net from Fig. 1 is shown in Fig. 9,

where we show the corresponding classical representation of an HWF-net.

Generation of low-level event logs from the prepared model was implemented using the algorithm pre-

sented in [37]. Afterwards, we transform a low-level event log into a high-level event log by grouping

low-level events into a single high-level event and by extracting information about cyclic behavior.

The corresponding high-level WF-net discovered from the artificial low-level event log that is generated

from the WF-net shown in 9 is provided in Fig. 10. Intuitively, one can see that this high-level WF-net

is rather similar to the original Petri net from Fig. 1.

As for the quality evaluation for the above presented high-level model, we have the following:

1. The discovered high-level WF-net perfectly fits the high-level event log obtained from a low-level log,

where we identified cycles and grouped activities correspondingly.

2. The classical WF-net obtained by refining transitions in a discovered high-level WF-net by discovered

sub-nets perfectly fits the low-level log.
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Fig. 11. A classical WF-net discovered from BPI Challenge 2015 event log

Other examples of process models that were used for the artificial event log generation are also provided

in the main repository [33].

5.2. Discovering HWF-nets from real-life event logs

We used two real-life event logs provided by Business Process Intelligence Challenge (BPI Challenge) 2015

and 2017 [38]. These event logs were also enriched with additional statistical information about classical

process models.

The BPI Challenge 2015 event log was provided by five Dutch municipalities. The cases in this event log

contain information on the main application and objection procedures in various stages. A classical low-

level WF-net for case 𝑓 1 discovered using the Inductive miner is shown in Fig. 11. In addition, Fig. 11 shows

an enlarged part of the process highlighted in the final model to clearly demonstrate the level of detail. It

is easy to see that the resulting model is absolutely inappropriate for visual analysis.

The code of each event in the BPI Challenge 2015 event log consists of three parts: two digits, a variable

number of characters, and three more digits.

Using the event log description, we know that the first two digits and the characters indicate the sub-

process the event belongs to, which allows us to assume an option of identifying the sub-processes.

We used the first two parts of the event name to create the mapping between low-level events and sub-

process names. After applying our hierarchical process discovery algorithm in combination with the In-
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ductive Miner, we obtained a high-level model presented in Fig. 12 that is far more comprehensible than

the classical model mainly because of its size.
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Fig. 12. A high-level WF-net discovered from the BPI Challenge 2015 event log

The BPI Challenge 2017 event log pertains to a loan application process of a Dutch financial institute.

The data contains all applications filed trough an online system from 2016 till February of 2017. Here, as a base

for mapping low-level events to sub-process names, we used the mark of the event type in its name —

application, offer or workflow. Thus, a mapping could be based on various features of event data depending

on the expert’s needs. The classical model for these data is presented in Fig. 13, which is also difficult to read

due to its purely sequential representation.
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Fig. 13. A classical WF-net discovered from the BPI Challenge 2017 event log

Applying the principle of mapping low-level events in the BPI Challenge 2017 event log described above,

we obtained the high-level WF-net shown in Fig. 14, which clearly demonstrates sub-processes (if necessary,

they can be expanded) and their order.

Table 2 shows the fitness and precision evaluation of classical and high-level WF-nets discovered

from real-life BPI Challenge 2015 and 2017 event logs.

Fitness 1 shows the fitness evaluation between the classical WF-net constructed from the high-level WF-

net by refining transitions with low-level sub-processes.

Fitness 2 shows the fitness evaluation between the high-level WF-net and an event log with low-level

events grouped into sub-processes. This confirms the formal correctness results of the hierarchical pro-
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cess discovery algorithm. Similar to the experimental results for artificial event logs, here we also observe

a decrease in the precision for the identification of sub-processes, therefore, generalizing traces in an initial

low-level event log.
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Fig. 14. A high-level WF-net discovered from the BPI Challenge 2017 event log

Table 2. Comparing metrics for classical and high-level WF-nets discovered from BPI Challenge event logs

Event log

High-level WF-net Classical WF-net

Fitness 1 Fitness 2 Precision Fitness Precision

BPI Challenge 2015 1 1 0.5835 1 0.5700

BPI Challenge 2017 1 1 0.3898 1 0.7000

6. Conclusion and Future Work
In this study, we propose a new process discovery technique for solving the problem of discovering

a hierarchical WF-net model from a low-level event log, based on sub-processes abstraction into high-level

transitions according to event partitioning. Unlike the previous solutions, we allow cycles and concurrency

in process behavior.

We prove that the proposed technique makes it possible to obtain hierarchical models, which fit event

logs perfectly. The technique was also evaluated in real and artificial event logs. Experiments show that

fitness and precision of obtained hierarchical models are almost the same as for the standard “classical” case,

while hierarchical models are much more compact, more readable and more visual.

To implement our algorithm and check it on real data we used Python and one of the most convenient in-

struments for process mining at the moment — the PM4Py [32]. The implementation is provided in the public

GitHub repository [33].

In further research, we plan to develop and evaluate various event partitioning methods for automatic

discovery of hierarchical models.
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