MODELING AND ANALYSIS OF INFORMATION SYSTEMS, VOL. 31, NO. 3, 2024

] ? r journal homepage: www.mais-journal.ru
LR

Sinormation Syems THEORY OF COMPUTING

Discovering Hierarchical Process Models: An Approach Based on Events
Partitioning

A.K. Begicheva!, I. A. Lomazoval, R. A. Nesterov' DOL: 10.18255/1818-1015-2024-3-294-315

INational Research University Higher School of Economics, Moscow, Russia

MSC2020: 68Q85 Received June 25, 2024
Research article Revised July 18, 2024
Full text in English Accepted July 24, 2024

Process mining is a field of computer science that deals with the discovery and analysis of process models based on auto-
matically generated event logs. Currently, many companies are using this technology to optimize and improve their business
processes. However, a discovered process model may be too detailed, sophisticated, and difficult for experts to understand.
In this paper, we consider a problem of discovering the hierarchical business process model from a low-level event log, i. e.,
the problem of the automatic synthesis of more readable and understandable process models based on the data stored in the
event logs of information systems.

The discovery of better-structured and more readable process models is extensively studied in the framework of process
mining research from different perspectives. In this paper, we present an algorithm for discovering hierarchical process
models represented as two-level workflow Petri nets. The algorithm is based on predefined event partitioning so that this
partitioning defines a sub-process corresponding to a high-level transition at the top level of a two-level net. In contrast
to existing solutions, our algorithm does not impose restrictions on the process control flow and allows for concurrency
and iterations.

Keywords: process mining; Petri nets; workflow nets; process discovery; hierarchical process model; event log

INFORMATION ABOUT THE AUTHORS

Begicheva, Antonina K. | ORCID iD: 0000-0001-6657-1760. E-mail: abegicheva@hse.ru
(corresponding author) | Lecturer, M. Sc.

Lomazova, Irina A. | ORCID iD: 0000-0002-9420-3751. E-mail: illomazova@hse.ru
Professor, Dr. Sc.

Nesterov, Roman A. | ORCID iD: 0000-0002-4162-9070. E-mail: rnesterov@hse.ru
Associate professor, PhD

Funding: Basic Research Program at HSE University.

For citation: A.K. Begicheva, I. A. Lomazova, and R. A. Nesterov, “Discovering hierarchical process models: an approach based
on events partitioning”, Modeling and Analysis of Information Systems, vol. 31, no. 3, pp. 294-315, 2024. DOI: 10.18255/1818-1015-
2024-3-294-315.

© Begicheva A. K., Lomazova L. A., Nesterov R. A., 2024
This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).

294

http://www.mais-journal.ru
https://doi.org/10.18255/1818-1015-2024-3-294-315
https://orcid.org/0000-0001-6657-1760
mailto:abegicheva@hse.ru
https://orcid.org/0000-0002-9420-3751
mailto:ilomazova@hse.ru
https://orcid.org/0000-0002-4162-9070
mailto:rnesterov@hse.ru
https://creativecommons.org/licenses/by/4.0/

MOAENNPOBAHUE N AHATN3 MHPOPMALIMOHHBIX CUCTEM, TOM 31, Ne 3, 2024

/
,7 ? ’ CalT XypHana: www.mais-journal.ru
UL

lnormation Sysem: THEORY OF COMPUTING

CuHTe3 HepapXmuecKX MojeJieii IIpoIeccoB: IIOAXO0/ Ha OCHOBE
pa30ueHNA COOBITUIT HAa MHOYKECTBA
A.K. Bernuesal!, . A. Jlomasosa!, P. A. Hecrepos! DOI: 10.18255/1818-1015-2024-3-294-315

lHaLII/IOHaJII)HbIIZ I/ICCJIeJIOBaTeJ'IBCKI/Iﬂ YHUBEPCUTET «BpIcmIas 1mkosa SKOHOMMKI», MOCKBa, Poccus

YK 004.942 ITonyuena 25 mions 2024 r.
Hayunag cratbs IToce mopaborku 18 mrons 2024 .
IToTHBI TEKCT HA aHIJIMIICKOM S3BIKe TpunsTa K nyoaukanuu 24 s 2024 r.

Process mining — 3To 06;1aCTh KOMIIBIOTEPHBIX HAayK, KOTOpasd 3aHMMAETCS CHTe30M I aHAIM30M MOJeJIel] IPOLecCoB
Ha OCHOBE aBTOMATMYECK) TeHepUpPYeMbIX KypHaJIoB COOBITMIL. B HacTosIlee BpeMs MHOTME OPTaHM3ALMI MCIIOb3Y-
10T 9TY TEXHOJIOTMIO MJISI ONTMMMS3ALMM ¥ COBEpPIIEHCTBOBAHMS Gu3Hec-TporeccoB. OMHAKO CHHTE3MPOBaHHAS MOENb
Ipoliecca MOKeT GBITh CIMIIKOM II0APOGHOI, CII0XKHOI U TPYIHOI Il IOHMMAaHMA 9KcIepTaMi. B pa6oTe MbI paccmar-
puBaeM 3ajauy CHHTe3a JMepapXmudecKoil Mojein Gu3Hec-IIpoliecca U3 HM3KOYPOBHEBOIO)KypHasla COOBITHII, TO €CTb,
3aJlayy aBTOMAaTIMYECKOT0 CUHTe3a 6ojlee yxo00UnTaeMbIX U IIOHATHBIX MOJEJIEI IPOIecCOB Ha OCHOBE JaHHBIX, XpaHi-
LIUXCA B)KypHaJIaX COOBITIIT MHPOPMALVIOHHBIX CUCTEM.

ITocTpoeHne Gosee CTPYKTYPMPOBAHHBIX U y000UYNTaeMbIX MOl IIPOIeCCOB IIMPOKO M3yuaeTcsa B paMKax JC-
CJIeOBaHMI B 06JIacTy process mining ¢ pasHbIX TOUeK 3peHMs. B 9Toif crarbe MBI IpeACTaBiIsgeM aJrOPUTM CHHTE3a
MepapXm4ecKux Mojesiell IIPOLeccoB, IMIPeCTABICHHBIX B BI/e JBYXYPOBHEBBIX CeTeil IOTOKOB PabOT. AITOPUTM OCHO-
BaH Ha IIpeloNpeeJIeHHOM pa3oyieHuu COOBITIII Ha MHOKECTBA, KOTOPBIE OIPe/IeNIAI0T IIOAIIPOIIECCEI, COOTBETCTBYIOIIVIE
BBICOKOYPOBHEBBIM IIepexojaM Ha BepXHeM ypOBHe ABYyXYPOBHEBOJI CETU IIOTOKOB paboT. B oTimume OT CyIeCTBYOINX
PpelIeHmit, IpeCTaBIeHHbI alfOPMTM He HaKJIaAbIBaeT OrpaHNMYEHMI Ha IIOTOK YIPABJIEHN IIPOIIECCOM, a TaKXke J0-
IyCKaeT Mapajulen3M 1 UTepaIiu.

Krouesple cJIoBa: CHTE3 MOJIeNell IpoIeccoB; ceTu IleTpy; ceTu MOTOKOB paboT; MepapXmuecKye MOJAe M IPOIeCCOB;
JKYpHAaJI COOBITUII

MHPOPMAIIMA Ob ABTOPAX
Beruuesa, Autonnua | ORCID iD: 0000-0001-6657-1760. E-mail: abegicheva@hse.ru

KoncrantunosHa | IIpemogaBaTeis, MarucTp
(aBTOp IJISL KOPPECIIOHIEHIII)

JomasoBa, Upuna Anekcaunposua | ORCID iD: 0000-0002-9420-3751. E-mail: ilomazova@hse.ru
Ipodeccop, mOKTOp PUIUKO-MATEMATIIECKIX HAYK

Hecrepos, Poman Anekcarngposuy | ORCID iD: 0000-0002-4162-9070. E-mail: rnesterov@hse.ru
ouent, KaHA. pus.-Mar. HayK

PuHaHcupoBaHue: [IporpamMmMa pyHIaMeHTATBHBIX MccIegoBaHMIT Hal[moHaIBHOTO MCCIIe{0BATEIBCKOTO YHIUBepcUTeTa «BbIc-
1Iast IIKOJIa SKOHOMMKII».

s puruposanms: A. K. Begicheva, I. A. Lomazova, and R. A. Nesterov, “Discovering hierarchical process models: an approach
based on events partitioning”, Modeling and Analysis of Information Systems, vol. 31, no. 3, pp. 294-315, 2024. DOI: 10.18255/1818-
1015-2024-3-294-315.

© Bernuesa A. K., Jlomazosa 1. A., Hecrepos P. A., 2024
Jra crarks oTKphITOro pocrymna nox aurensueir CC BY license (https://creativecommons.org/licenses/by/4.0/).

295

http://www.mais-journal.ru
https://doi.org/10.18255/1818-1015-2024-3-294-315
https://orcid.org/0000-0001-6657-1760
mailto:abegicheva@hse.ru
https://orcid.org/0000-0002-9420-3751
mailto:ilomazova@hse.ru
https://orcid.org/0000-0002-4162-9070
mailto:rnesterov@hse.ru
https://creativecommons.org/licenses/by/4.0/

Begicheva A. K., Lomazova I. A., Nesterov R. A.

Introduction

Over the past decade, companies whose processes are supported by various information systems have
become convinced of the need to store as much potentially useful information about the process executions
within a system as possible. This was facilitated by qualitative improvement in the areas related to the extrac-
tion of valuable information from the recorded data, which helps to adjust the operation of companies over
time and thus save and increase their resources. Process mining is a field of computer science that provides
a palette of tools to extract the logic of the system behavior as well as to model and optimize the processes
that occur in a system. In particular, process mining methods allow one to find inconsistencies between
the planned and actual behavior of a system and to track the occurrence of the inefficient or incorrect be-
havior.

Despite the fact that increasing attention is being paid to preserving the optimal amount of the necessary
information about processes, the actual data on process executions is not always available in a convenient
format and with the necessary degree of detail, since system logs are generated for a lot of different purposes.

Process discovery aims at extracting processes from event logs and constructing models of these pro-
cesses. Most of the available process discovery methods produce a model with the same level of detail
provided by the initial event log [1].

Therefore, a promising area of research is the problem of discovering a more readable process model
from a detailed event log, while preserving the important information about the process execution for ex-
perts. Readability of process models can be achieved in various ways. The most commonly used methods
are filtering rare behavior from the original event log, skipping “minor” events (the significance of an event
is assessed according to the chosen methodology); and abstraction, when some events are considered in-
distinguishable from others. We will discuss existing methods in more detail in Section 1. In our study,
we consider the latter approach, when more readable models are the result of model abstraction — they are
more compact and have the optimal level of detail for the work of experts in comparison to the level of model
detail that could be obtained by direct discovery methods. To preserve the important data, we are dealing not
only with abstract (high-level) models, but also with hierarchical models storing the low-level information
in the form of sub-processes.

In this paper, we propose an algorithm for discovering hierarchical process models from event logs. Pro-
cesses are represented using workflow nets [2], a special subclass of Petri nets used for modeling the control
flow of business processes. This study extends our previously achieved results [3] where we proposed an ap-
proach to discovering abstract models for processes without cycles. Here, we provide a more general solution
by overcoming the prohibition of cyclic behavior.

Hierarchical models allow us to have a high-level view of the model by “folding” the behavior of an in-
dividual sub-process into a high-level transition with the ability to unfold it back. Thus, at the top level,
there is a high-level model in which every individual transition corresponds to a sub-process built from low-
level events. The history of detailed behavior of the process is recorded in a low-level event log. Regarding
the number of levels in the hierarchy, we will only use two levels — high and low, but the algorithm can
naturally be extended to any number of levels.

The paper is structured as follows. Section 1 presents the review of related research. Section 2 gives theo-
retical preliminaries and the definitions used in the text. In Section 3, we discuss the basics of the hierarchical
process discovery algorithm. Section 4 presents the main discovery algorithm and the proof of its correct-
ness in the light of the perfect fitness preservation. Section 5 reports the outcomes from the experimental
evaluation. In Section 6, we conclude the paper and discuss the possible future work directions.

1. Related work

Research connected with our paper can be classified into approaches to abstracting event logs and process
models and approaches to constructing hierarchical process models from event logs.

296

Discovering Hierarchical Process Models: An Approach Based on Events Partitioning

One of the recent surveys [4] gives a comprehensive review of approaches and methods that can be
applied for low-level event abstraction. The authors divide the methods according to: the learning strategy
(supervised or unsupervised), the structure of the process models (strictly sequential or with interleaving),
the low-level events grouping approach (deterministic or probabilistic) and the nature of the processed data
(discrete or continuous data).

For example, the method presented in [5] is a supervised method that aligns the model complexity
with the needs of different stakeholders. Another example of a supervised approach to event abstraction
was presented in [6]. This method takes a low-level event log and transforms it to an event log at the desired
level of abstraction, using the following behavioral patterns: sequence, choice, parallel, interleaving and rep-
etition of events. This technique allows one to obtain a reliable mapping from low-level events to activity
patterns automatically and construct a high-level event log using these patterns. Detecting high-level events
based on the patterns of behavior in an event log does not make it possible to refine the accuracy of abstrac-
tion, based on the general knowledge of the system, or provide it only partially. Patterns provide the ability
to change the scale but not to participate in the selection of correct high-level events. This could only be
useful for a superficial analysis. However, there is a risk of combining unrelated low-level events into a sin-
gle high-level event only because they are executed sequentially, but not because they belong to the same
logical component of a system.

Another supervised event abstraction method was discussed in [7]. The nature of this method is as fol-
lows. The authors annotate a low-level event with the correct high-level event using the domain knowledge
from the actual process model by the special attribute in the event log. In addition, this paper assumes that
multiple high-level events are executed in parallel. This allows us to interpret a sequence of identical values
as a single instance of a high-level event.

Unsupervised techniques do not require additional information beyond the input log. For example, in [8],
the authors specify a fully unsupervised framework for partially ordered event data that detects abstraction
classes using event data based on its observed execution context. In [9], the authors offer a framework
for evaluating unsupervised abstraction techniques and evaluate the state-of-the-art methods using 400
event logs. One of the conclusions drawn from these evaluations is that there is typically a trade-off between
high precision and high comprehensibility in the resulting model. The less abstract the model is the higher
its calculated precision will be.

An example of the multi-perspective approach that combines features of the unsupervised and super-
vised methodologies is provided in [10]. After automatic identification of event groups, this method allows
users to select the groups that are relevant and can be used for low-level log abstraction.

A general approach to the representation of multi-level event logs and the corresponding multi-level
hierarchical models was studied in [11]. The authors highlighted the fact that this approach can combine
multiple modeling notation for representing different levels in multi-level process models.

There are many ways of abstracting process models by reducing their size in order to make them more
convenient to work with. Each method may be useful depending on a group of interrelated factors: the ab-
straction purposes, the presence of certain patterns and constructs, and the specifics of modeling notation.
Reducing the size of the model by abstraction can be done as the “convolution” of groups of elements, or im-
plemented by throwing some parts of the model away (insignificant in a particular case) [12]. The importance
of the low-level event log abstraction is emphasized, among others, in [13].

Researchers determine which level of abstraction is appropriate for a particular case in different ways,
but the main criterion is that the model should be readable and understandable. In [14], the abstraction
of a process model occurs through “simplification” automatically: the user determines only the desired de-
gree of detail, but not the actual correctness of identifying high-level events. Conversely, the paper [5]
stressed the importance of the abstraction level dependence on the domain expert knowledge.

297

Begicheva A. K., Lomazova I. A., Nesterov R. A.

Petri nets [15] can also be extended by adding the hierarchy as, e.g., in Colored Petri nets (CPN) [16].
Hierarchical events allow one to construct more compact, readable and understandable process models.
The hierarchy of CPN models can be used as an abstraction, in the case of two levels: a high-level abstract
model and a low-level refined model. In our paper, the high-level model is a model with abstract transi-
tions. An abstract transition refers to a Petri net sub-process which refines the activity represented by this
high-level transition. A complete low-level, also referred to as classical, process model can be obtained
from a high-level model by substituting sub-processes for high-level transitions. By the classical process
model, we mean a model that is not loaded with information about the hierarchy, which has the same level
of detail as the original event log.

Synthesis of a classical process model is a standard process discovery problem that has been extensively
studied in the literature. A wide range of process discovery algorithms supports the automated classical
process model synthesis [1].

Inductive Miner [17] is one of the most widely used process discovery algorithms that produces well-
structured process models, built recursively from building blocks for standard behavioral patterns. They can
be potentially used for constructing high-level process models. However, this technique does not take the ac-
tual correspondence between low-level events and sub-processes. In [18], the authors also used the recog-
nition of behavioral patterns in a process by a structural partitioning algorithm and then defined a specific
workflow schema for each pattern.

In [19], a two-phase approach to mining hierarchical process models was presented. Process models were
considered as interactive and context-dependent maps based on common execution patterns. In the first
phase, an event log is abstracted to the desired level by detecting relevant execution patterns. An example
of such a pattern is the maximal repeat that captures typical sequences of activities in the log. Every pat-
tern is then estimated by its frequency, significance, or some other metric needed for accurate abstraction.
In the second phase, the Fuzzy Miner discovery algorithm [14], adapted to process map discovery, is applied
to the transformed log.

FlexHMiner [20] is a general algorithm based on process trees implemented in ProM software. The au-
thors stress the flexibility of this approach: to identify the hierarchy of events, the method supports both
supervised methods and methods using the general knowledge of a process. The limitations of this method
include the fact that each of the sub-processes can be executed only once, which means that the method
is not suitable for processes with cycles.

A large volume of literature is devoted to the problem of discovering structured models from event logs.
Researchers offer different techniques to improve the structure of discovered models, e.g., in [21], and to
produce already well-structured process models [22, 23]. Different ways of detecting sub-processes in event
logs, using low-level transition systems, were discussed in [24-26]. However, these works did not consider
mining hierarchical process models from event logs.

One way to use process discovery techniques for abstract model synthesis is log pre-processing. For ex-
ample in [27] the authors divide the initial log into sub-processes using activity instances information.
The limitation of the proposed method is in the activity instance partitioning: as the authors only consider
cases where a subprocess always begins and ends with fixed events.

In [3], the authors presented an algorithm for the discovery of a high-level process model from the event
log for acyclic processes. This method takes the initial data on abstraction in the form of a set of detailed
events grouped into high-level ones, which means that any method of identifying abstract events can po-
tentially be used, including those based on expert knowledge. After pre-processing, this algorithm allows
the use of any existing process discovery approach that is suitable for the synthesis of a classical process
model. The possibility of using existing approaches as components makes the proposed algorithm flexible.

This paper extends the conditions of applicability of the algorithm from [3] since it works only for acyclic
models. For the algorithm to find and process potential cycles in the event log, we will reuse the method

298

Discovering Hierarchical Process Models: An Approach Based on Events Partitioning

for detecting the repetitive behavior in a event log proposed and tested in [28, 29], which partially covers
the general solution of the cycle detection problem.

2. Preliminaries

By N we denote the set of non-negative integers.

Let X be a set. A multiset m over the set X is a mapping: m : X — N, i. e., a multiset may contain several
copies of the same element. For an element x € X, we write x € m, if m(x) > 0. For two multisets m, m’ over
Xwewritem C m’iff Vx € X : m(x) < m’(x) (the inclusion relation). The sum, the union and the subtraction
of two multisets m and m’ are defined as usual: Vx € X : (m+ m’)(x) = m(x) + m’(x),(mU m’)(x) =
max(m(x), m’(x)), (m—-m’)(x) = m(x) —m’(x), if m(x) —m’(x) > 0, otherwise (m—m’)(x) = 0. By M(X)
we denote the set of all multisets over X.

For a set X, by X* with elements of the form (x3, . . ., xx) we denote the set of all finite sequences (words)
over X, () denotes the empty word, i. e., the word of zero length. The concatenation of two words w; and w,
is denoted by wy - ws.

Let Q € X be a subset of X. The projection [o: X* — Q" is defined recursively as follows: () o = (),
and for 0 € X* and x € X:
oloifx ¢ Q

olo-(x)ifx€Q

We say that X = X3 U X, U --- U X, is a partition of the set X if for all 1<i, j<n such that i # j we have
Xl' N Xj = 0

2.1. Petri nets

(0-<X>)FQ={

Let P and T be two finite disjoint sets of places and transitions, respectively, and F : (PXT)U(TxP) —» N
be an arc-weight function. Let also A be a finite set of event names (or activities) representing observable
actions or events, 7 — a special label for silent or invisible action, A : T — A U {r} is a transition labeling
function. Then N = (P, T, F, A) is a labeled Petri net.

Graphically, a Petri net is designated as a bipartite graph, where places are represented by circles, tran-
sitions by boxes, and the flow relation F by directed arcs.

A marking in a Petri net N = (P, T, F, 1) is a function m : P — N mapping each place to some number
of tokens (possibly zero). Hence, a marking in a Petri net may be considered as a multiset over its set
of places. Tokens are graphically designated by black circles. A current marking m is represented by putting
m(p) tokens into each place p € P. A marked Petri net (N, my) is a Petri net N together with its initial
marking m,.

For transition t € T, its preset (denoted °t) and its postset (denoted t*) are defined as sets of its input
and output places respectively, i.e., *t = {p | F(p,t) # 0} and t* = {p | F(¢,p) # 0}.

A transition t € T is enabled in a marking m, if for all p € °t, m(p) > F(p,t). An enabled transition

t may fire yielding a new marking m’, such that m’(p) = m(p) — F(p, t) + F(¢,p) for each p € P (denoted
A
m g) m’, or just m — m’). A marking m’ is reachable from a marking m, if there exists a sequence of firings

m=my — my — ...m = m'. By R(N,m) we denote the set of all markings reachable from marking
m in a net N. A transition t € T is called dead for a marked net (N, my), if for each reachable marking
m € R(N, my), t is not enabled in m.

Let (N, mg) be a marked Petri net with transitions labeled with activities from A U {r}, and let
Mo <> m; < ... be a finite or infinite sequence of firings in N, which starts from the initial marking m
and cannot be extended. Then a sequence of observable activities p, such that p = {ay, as, ...)[4, is called

. . . ai ag .
a run. For a finite run p, which corresponds to a sequence of firings my — ... — my, we call my and my, its
initial and final markings respectively.

299

Begicheva A. K., Lomazova I. A., Nesterov R. A.

€1
(5) €6
(:)—> €o €4 —>(j p
er
€3

€5

Fig. 1. A workflow net for handling compensation requests

In our study, we consider workflow nets — a special subclass of Petri nets [2] for workflow modeling.
A workflow net is a (labeled) Petri net with two special places: i and f. These places mark the beginning
and the ending of a workflow process.

A (labeled) marked Petri net N = (P,T,F, A, mg) is called a workflow net (WF-net) if the following
conditions hold:

1. There is one source place i € P and one sink place f € P, such that *i = f* = 0.

2. Every node from P U T is on a path from i to f.

3. The initial marking m, in N contains the only token in its source place.

Given a WF-net, by [in] we denote its initial marking with the only token in place i, and by [fin] — its
final marking with the only token in place f.

The example of a workflow net that simulates a simple process of handling ticket refund requests,
is shown in Fig. 1 [30].

Soundness [2] is the main correctness property for workflow nets. A WF-net N = (P,T,F, A, [in])
is called sound, if

1. For any marking m € R(N, [in]), [fin] € R(N, m);

2. If for some m € R(N, [in]), [fin] C m, then m = [fin];

3. There are no dead transitions in N.

2.2. Eventlogs

Most information systems record the history of their process execution into event logs. An event record
usually contains case ID, an activity name, a time step, and some information about resources, data, etc.
In the light of our research, we use case IDs for splitting an event log into traces, timestamps — for ordering
events within each trace, and abstract from all event attributes except event names (activities).

Let A be a finite set of activities. A trace o is a finite sequence of activities from A, i.e., o € A*. By #a(0)
we denote the number of occurrences of activity a in trace o.

An event log L is a finite multi-set of traces, i.e., L € M(A*). Let X € A. We extend projection [x
to event logs, i.e., for an event log L € M(A*), its projection is the event log L[y, defined as the multiset
of projections of all traces in L. In other words, LIx(cx) = L(o) for all ¢ € L.

An important question is whether the event log matches the behavior of the process model and vice
versa. There are several metrics to measure conformance between a WF-net and an event log. Specifically,
fitness defines to what extend the log can be replayed by the model.

Let N be a WF-net with transition labels from A, an initial marking [in], and a final marking [fin]. Let
o be a trace over A. We say that trace o = (ay, ..., ar) perfectly fits N, if o is a run in N with initial marking
[in] and final marking [fin]. An event log L perfectly fits N, if every trace from L perfectly fits N.

300

Discovering Hierarchical Process Models: An Approach Based on Events Partitioning

3. Discovering hierarchical WF-nets
3.1. Hierarchical WF-nets

Here, we define hierarchical workflow (HWF) nets with two levels of representing the process behavior.
Transitions in a high-level WF-net are labeled by activities from A, while transitions in a set of low-level
WF-nets are labeled by the corresponding low-level activities from A.

An HWF-net is a tuple N = (1\7, Ni, Ns, ..., N, £), where:

1. N = (13, T.F,)I [i;l]) is a WF-net, called a high-level WF-net, where A: T — A is a transition labeling

function;
2. N; = (P;, T, F;, A;, [in];) is a WF-net, called a low-level WF-net for i = 1,2,...,k with a transition
labeling function A;: T; — A;, where A; C A is a subset of low-level activities for Nj, such that
A1, Ay, ..., Ax — is a partitioning of A;

3. £: A — {Ny,Ny,...,Ni} is a partial injective function mapping certain activities in A to low-level
WF-nets.

We refer to N, N1, Ny, ..., Ni as the components of N. A marking for N is defined by the mark-
ings of its components. A marking in N is a set M = {M, my,my, ..., mi}, where M is a marking in N
and myq, my, . .., my are markings in Ny, Ny, ..., Nj respectively.

The initial marking M, for HWF-net N contains exactly one token in the source place of N.

Let dom(f) denote the domain of £. We call the activities in dom(¢) — high-level activities. We also
call low-level WE-nets sub-processes. Accordingly, every transition in a high-level WF-net N is assigned
the corresponding low-level WF-net modeling the behavior of a sub-process.

Transition t € T U T; U ...Tj is enabled if it is enabled in its component by the ordinary firing rule,
described in the previous section, for Petri nets.

There are the three following alternatives of transition firing in HWF-nets:

1. Let t € (T \ dom(£)) UT, U ... T be a transition enabled in M. Then, the firing step M) M
is completed according to the standard rules, i. e., it only changes the marking in the low-level WF-net
containing f.

2. Let t € dom(¥) be a transition enabled in M. Then, a silent firing step M S M may be done,
where M" = {M’, m{,m),...,m;}, such that M"(p) = M(p) — F(p,t) for all p € P, my = m; + [in],,
where [in]; — is an initial marking for the sub-process Nj; corresponding to the enabled transition
t,m;" = m;,Vj # i, and 7 — is the invisible action, that takes all tokens from the input places for t
and add the initial marking to the low-level WF-net N;.

3. Let m; be a marking in the low-level WF-net N; that contains a token in its final place f. Then,
a silent firing step M SM may be done, where M’ = {M’, m|, m), ...,m;c}, such that M’ (p) =
M(p) +F(t,p) for all p € P, where t is the transition in the high-level WF-net N corresponding to Nj,
and m;" = m;" — [fin];, where [fin]; - is a final marking for N;, m;" = m;,Vj # i.

The example of an HWF-net is provided in Fig. 2. We do not impose specific restrictions on the number
of input and output places a transition in a high-level WF-net can have. In Fig. 2, we only show the refine-
ment of two transitions t; and f, in the high-level WF-net N with two low-level WF-nets N; and N. They
represent the low-level behavior of two sub-processes a7 and a,, respectively. Note that, if a low-level WF-
net corresponding to a high-level activity contains the single transition, we still represent such a sub-process
with an individual WF-net.

We next consider the operational semantics of an HWF-net by defining its run. For what follows, let
N = (1\7, N, Ny, ..., N,) be an HWF-net , where N —isa high-level net and Ni, N, ..., Ny — are nets
for its sub-processes.

301

Begicheva A. K., Lomazova I. A., Nesterov R. A.

Fig. 2. An HWF-net with two refined transitions

Intuitively, a set of transitions enabled in in a high-level WF-net determines the set of sub-processes
for which we can start to fire their low-level transitions. Transition firing, as described above, corresponds

to starting, executing and terminating sub-processes, which can be run concurrently.
- ~ A(t)
Let ¢’ be a transition enabled in the current marking M of an HWF-net. The following options of M —

M’ are possible.

If there are high-level transitions, enabled at m in a high-level WF-net, sharing common places, then
there is a conflict. We can choose, which sub-process to start, while the other sub-processes corresponding
to conflicting transitions in a high-level WF-net will not be able to be executed. For example, high-level
transitions #; and t,, once enabled, will be in conflict, and we can start only one of the corresponding sub-
processes, N7 or N,. Firing a transition in a high-level WF-net is complete if the corresponding low-level
WF-net reaches its final marking.

For instance, let us again consider the HWF-net shown in Fig. 2. After firing high-level transition t3
and executing a corresponding sub-process a3 (not provided in Fig. 2), two high-level transitions #; and t;
become enabled. They share a common place, i.e., high-level transitions #; and ¢, are in conflict. Thus,
we can execute exactly one of the corresponding sub-processes «; (low-level WF-net N;) and a, (low-level
WF-net N,). We can, for instance, obtain a sequence p = (a3, es, €, a4) Which will represent a possible run
of the HWF-net from Fig. 2. Note that high-level activities as and a4 should also be replaced with corre-
sponding sub-process runs.

Lastly, we give a straightforward approach to transforming an HWF-net N' = (N, Ny, Ny, ..., Ni, f)
to the corresponding equivalent classic WF-net denoted by eq(N) = (P, T, F, A, [in]). We need to replace
transitions in a high-level WF-net with their sub-process implementation given by low-level WF-net corre-
sponding by ¢. In addition, we need to remove tokens from the input places of low-level WF-nets. When
a transition # in a high-level WF-net N is replaced by a low-level WF-net N;, we need to fuse a source place
in N; with all input places of t and to fuse a sink place in N; with all output places of t. By construction,
eq(N) is a WF-net.

For instance, the WF-net eq(/N) equivalent the HWF-net N, shown in Fig. 2, is provided in Fig. 3. We re-
placed transition #; with N and transition ¢, with N, as determined by the labels of low-level WF-nets. This
figure also shows the double-line contours of corresponding high-level transitions.

Proposition 1 gives the main connection between an HWF-net and its classical representation.

302

Discovering Hierarchical Process Models: An Approach Based on Events Partitioning

eq(N) (®
o

Fig. 3. The WF-net equivalent to the HWF-net in Fig. 2

Proposition 1. Let N = (1\7, N1, Ny, ..., Ni,) be an HWF-net, and eq(N) be the corresponding equivalent
WF-net. A sequence p of activities is a run in N if and only if p is a run in eq(N).

In other words, a run in HWF-net N is also a run in the corresponding classical WF-net N and vice versa.
Proof of this proposition directly follows from the construction of the classical WF-net and from the way
we define the sequential semantics of a hierarchical WF-net and from semantic definition.

To sum up, for each HWF-net we can effectively build a classical WF-net having exactly the same be-
havior.

3.2. Events partitioning

We suppose that partitioning the set of low-level activities A into subsets Aj,... Ay is made either
by an expert, or automatically based on some information contained in extended action records, such as re-
sources or data. In Section 5, we give two examples of partitioning activities for a real log. Then we suppose
that a sub-process is defined by its set of activities, and we suppose that sets of activities for two sub-
processes do not intersect. If it is not the case and two sub-processes include some common activities like
“close the file”, one can easily distinguish them by appending the resource or file name to the activity iden-
tifier.

Let L be a log over a set A of activities, and let A = A; U Ay U --- U Ay be a partition of A. Let also
A={ay,a, ...} be a set of high-level activities (sub-process names).

The problem is to construct an HWF-net N = (1\7, N, Ny, ..., N, [), where for each i € [1, k], Nj is a sub-
process (WF-net), labeled by «;, with transitions labeled by low-level activities from A;. The runs of N should
conform to traces from L.

Another important remark concerning partitioning activities: we suppose that it does not violate the log
control flow. Specifically, if there are iterations in the process, then for a set of iterated activities B
and for each sub-process activities set A;, we assume that either BN A; = 0, or B C A;, or A; C B. Note
that this is a reasonable constraint, taking into account the concept of a sub-process. If it is still not the case,
i.e., , only a part of A; activities are iterated, then the partition can be refined, such that A; is split into two
subsets: a subset of iterated activities and the remainder.

For example, consider a low-level WF-net discovered from an event log shown in Fig. 4. Suppose that
the set B of the iterated activities includes {as, a4, b3, b4} and that the low-level events are partitioned into two
subsets A; = {ay, as, as, as} and Ay = {bq, by, b3, by}.

303

Begicheva A. K., Lomazova I. A., Nesterov R. A.

Fig. 4. The example cycle and high-level activity inconsistency

Using the proposed events partitioning, we cannot represent this model as a high-level WF-net, since
the iterated activities belong to different high-level events. In addition, in the set of iterated activities B,
low-level events as and a4 are always executed before b3, by. Thus, one needs to revise this partitioning
of low-level events in such a way that either B is fully included into a high-level activity A;, or a high-level
activity A; is a part of a cycle.

3.3. The proposed solution

Here, we describe the main ideas and the structure of the algorithm to discover the hierarchical WF-net
from an event log.

Let L be a log with activities from A, and let A = A; U A; U --- U A be a partition of A. Let A =
{a1, @z, . .. ax } be a set of high-level activities (sub-process names).

A hierarchical WF-net N (HWF-net) consists of a high-level WF-net N with activities A = {ay, ..., o},
and k sub-process WF-nets Ny, Ny, ..., N, where for each Nj, all its activities belong to A;.

Sub-process WF-nets Ni, N, ..., Ni can be discovered directly. To discover N;, we filter log L to L; =
L14,. Then we apply one of popular algorithms (e. g., Inductive Miner) to discover a WF-net from event log
L;. The fitness and precision of the obtained model depend solely on the choice of the discovery algorithm.

Example 1. Consider an event log L of a business process over the set of low-level activities A = {11, ty, t3, L4, t5, g,
t7, t3, to, t10, t11, E12 }- Let L be an event log, such that L = {01, 09, 03, 04, 05, 0 }, Where o1 = t1batststytstetiatrtstyy,
Oy =ty t5 tg Ip 13 t7 t3 Ly t10 U5 b t11, O3 =ty ta t3 b5 g 111, Oy = L1 fp b5 t3 tio te I3 111, Os = L1 fa b5 i3ty tg by 3t B3
to to Is b t3 111, O = t1 ta 13 tg U3 t5 tg t11. A partition for this low-level activity set is A = Ag UA; U -+ U As,
where Ay = {t1}, A1 = {t2}, Az = {3, ts, t1a}, As = {t5, 16}, As = {t7, 13, to, t10}, As = {t11}. A set of high-level
activities for our example is A = {ay, ..., as}, such that for every high-level activity from A the corresponding
sub-process a; € A,i < |A| contains activities only from A; € A.

As the high-level WF-net of the hierarchical WF-net we consider the workflow net shown in Fig. 5 with ac-
tivities labeled with A.

The existing process mining algorithm should be able to discover the workflow net presented in Fig. 6 directly
from the low-level event log L. In this low-level net, we can also see that sub-processes, corresponding to high-
level activities ag, a1, . . . a5, have the same relations between activities as in the net from Fig. 5. For simplicity,
the sub-processes a, oy and as, consisting of the single transition, are not highlighted with double rectangles.

Discovering a high-level WF-net is not so easy and is quite a challenge. The main problem with it
is caused by the possible interleaving of concurrent sub-processes and iteration. A naive solution could be
to replace each activity t; € A; by a; — the name of the corresponding sub-process — in the log L. Then
we need to remove stuttering, i. e., to replace, wherever possible, several sequential occurrences of the same
high-level activity by a single activity. Then we apply the one of popular discovery algorithms to the obtained
log over the set A of activities. However, this does not work, due to the presence of the patterns of behavior
other than the simple sequential execution.

304

Discovering Hierarchical Process Models: An Approach Based on Events Partitioning

Fig. 6. An example of a low-level net with cycles inside the subprocess and between two subprocesses
corresponding to the high-level net from Fig. 5

Consider the examples in Fig. 7. Fragment (a) in Fig. 7 shows two concurrent sub-processes § and y,
executing after sub-process a, which consists of the single transition. After replacing low-level activities
with the corresponding sub-process names and removing stuttering, for the fragment (a), we get the fol-
lowing runs: {a, 8, ...), (& ¥, By - 3 . BV Bo Vs - -)s ., ¥, B, V> B - . .) etc. Fragment (b) in Fig. 7 shows
a cycle. The body of this cycle is the sequence of two sub-processes f and y. Among runs for the fragment
(b) we also have (a, B,v,...), (&, B, v, B, ¥, - . -). That is why iterations should be considered separately.

Discovering high-level WF-nets for acyclic processes, i.e., logs without iteration, was studied earlier
in [3] where all details can be found. Here, we refer to this algorithm as Algorithm %, and illustrate it
with the example in Fig. 7(a). Algorithm 2, discovering a high-level WF-model from a log L without cycles,
reduces this problem to the classical discovery problem, which can be solved by many popular algorithms,
such as Inductive Miner. Therefore, Algorithm U, can be parameterized by Algorithm D, i.e., an already
known algorithm for solving the classical discovery problem.

Algorithm Uy (D):

Step 1. For all traces in L, replace each activity with the corresponding sub-process names and remove stut-
tering.

Step 2. For each trace o that contains t; € 0,i < |o| such as #t; > 1, find all occurrence of t; in o. For each
occurrence’s position k create a clone of ¢, delete from it every ¢; except the one at the position k
and remove (newly formed) stuttering. Replace o with the set of all obtained clones of o.
For example, the trace {(a, S, v, .V, ..) will be replaced by two traces (o, B,y,...) and {(a,y,f,...)
obtained by keeping the first occurrences of and y, and correspondingly by keeping the first oc-
currence of y and the second occurrence of . In this example, constructing clones by keeping other
occurrences of y does not generate new traces.

Step 3. Let L be the resulting log from executing two previous steps. To obtain a high-level WF-net N, apply
the given as the input parameter Algorithm D, to discover a WF-net from event log L.

305

Begicheva A. K., Lomazova I. A., Nesterov R. A.

e POt - o 8 v
[t OOl Ot H-Oplt=O—{t:]

ta Ot s

v

(b) sub-processes inside a loop

(a) concurrent sub-processes
Fig. 7. Interleaving and iteration of sub-processes

It was proven in [3] that if an algorithm used in Step 3 of Algorithm U, for each input log L discovers
a WF-net perfectly fitting L, then Algorithm 2, given a log L without repetitive behavior, produces an HWF-
net N such that eq(N) perfectly fits L.

3.4. Detecting cycles in event logs

Now we come to logs with the repetitive behavior. The main idea here is to represent a loop body
as a subset of its activities. Then a body of a loop can be considered as a sub-process with a new loop sub-
process name. To discover the repetitive behavior, we use the method from [28], which allow us to determine
causal, concurrency, and repetitive relations between events in an event log. Actually, for our purpose
we need only repetitive relations and the loop discovery based on them. We call the loop discovery algorithm
— Algorithm B. The strategy of this algorithm includes the pruning of interleaving tasks in an event trace
to separate them by the supports of minimal transition invariants (t-invariants) — firing sequences, which
represent potential cycles (see [31] for details). The procedure to obtain the t-invariants operates recursively
on every task in trace o; from the most external cycle in every trace to the smaller nested cycles.

Let us consider the application of Algorithm B in the following example.

Consider the log L from Example 1. Extracting the information about cycles is to derive the direct causal
and concurrency relations between transitions in the event log L. The result of this step is shown in Table 1.

Algorithm B finds all sub-sequences containing the repetitive behaviour, i. e., if in a trace o there is an
event t; such that #t; > 1, then the sub-sequence, which contains repetitive behavior, should start with ¢;
until the next occurrence of t; in o. In [28], such sequences are called cycs. In L, the following cycs are
detected: cyc, = {t3 ts}, cyc, = {ts te t12} in 01, cycy = {t5 ts ta t3 t7 13 ty t1o} in 03, cyc, = {t3 t12 te} in oy,
cycs = {t5 t3 ty to by t3 t3 to tio}, cycg = {13 ts te t7} in 05, cyc;, = {t3 t4} in 06. We can see that cyc, is equal
to cyc;. Thus, we can merge them because the goal is to obtain a set of different cycs, and their frequency
is not important in this case. In addition, we can see that there is another cyc in cyc;. Furthermore, according

o0 [28], cycs is not the elementary cyc because 3¢t; € cyc such that #t; > 1, and we could derive a smaller
nested elementary cyc’ = {t3 t4 t¢ t7} from it.

The next step of the Algorithm B is to build the causality graph for each cyc found. In the process
of building the causality graph, we use the relations between activities. These relations can be extracted
from the input event log using any suitable process discovery algorithm. The set of relations between activ-
ities for the log L is presented in Table 1.

Now, having all relations, we can easily build the causality graph for each cyc. In [28], it is proposed that
a strongly connected component of the causality graph for a cyc is also the support of a minimal t-invariant
in the final model. The resulting graphs are shown in Fig. 8. Note that the graphs for cyc, and cyc, are equal
because they contain the same transitions, and this is also true for cyc, and cyc,. Therefore, we have depicted
them only once (Fig. 8a and Fig. 8b, respectively).

Let us consider the case of cyc; separately because the cyc contains a nested cyc. In this case, first,
we processed the nested (elementary) cyc’ and built the causality graph for it. The final causality graph

306

Discovering Hierarchical Process Models: An Approach Based on Events Partitioning

Table 1. Relations between transitions in Example 1

T; | Causal Relationship | Concurrent Relationship
31 t2, ts

t2 t3, ts

t3 t11, b2 Is, te, b7
fy te

ts te t3

te ta, t7, 111 t3, 14, 112
t7 I3 t3

I3 ty

ty t10

t1o Is

t12 t7, 13 le

for cyc’ is equal to the causality graph for cyc, presented in Fig. 8e. The strongly connected component
in this case is equal to cyc,, and it is already in our set of t-invariant supports. The next step is to remove
the detected t-invariant support of a nested cyc from cyc;. Afterwards, we get the new sequence of transitions
cycs = {ts ts t7 t3 13 to t10}, and we can build the causality graph for this new elementary cyc. The resulting
graph is shown in Fig. 8d.

As a result of applying Algorithm B to the log L, we obtain the following set of t-invariant supports:
Y1 = {ts3, ts}, Yo = {3, 12}, Y3 = {t5, L, 17, 13, to, 10 }.

Algorithm B allows us to detect the bodies of elementary cycles as sets of their activities and process
them recursively, starting with inner elementary cycles. Thus, at each iteration we are dealing with a loop
body without internal loops. To obtain a sub-trace, corresponding to the loop body with a set of activities
B from a log trace g, we construct the projection o [p. After filtering all current traces in this way, we get
an event log for discovering a WF-net that simulates the behavior of the loop body using Algorithm .

As mentioned in Section 3.2, partitioning of low-level events should not violate the log control flow
from the point of view on the iterated behavior. Here we give a more precise representation of this require-
ment based on the results produced by Algorithm B to detect cycle bodies, in terms of t-invariants.

Let B = {by,...,b,} be the cycle bodies found by Algorithm B and L be an event log over A = A; UA; U
-+ U Ag, where k is a number of high-level activities. Then, the partition of events A = A; U Ay U --- U Ag
is consistent with B iff Vb; € B and A; € A one of the following holds:

1. b;n Aj =0,

2. b; C Aj;

3. Aj - bl'.

The example in Fig. 4 discussed earlier in Section 3.2 shows that the inconsistency between the event par-
titioning and iterated behavior does not allow to construct an WF-net, since high-level events have common
parts. Inconsistency can be corrected by revising the initial event partitioning.

The resulting high-level WF-net is then constructed recursively by replacing, the body of each detected
loop with the name of its sub-process, starting with the inner loops. Note that if, after this step, in the WF-
net there are transitions that are involved in more than one cycle, we need to merge all the same named
transitions into a single one with that name. This also applies to places, because logically some of them should
also be merged, depending on the activities relations. As the strategy of the merging algorithm, we also
use the one proposed in [28]. We call the algorithm for merging transitions by activities correspondence
Algorithm €.

4. Algorithm for discovering HWF-nets from low-level event logs

Here, we describe our main discovery algorithm in more detail.

307

Begicheva A. K., Lomazova I. A., Nesterov R. A.

(), ® (&)
@@ @ @
() () ONO
b) ey, (1) (t)

¢) cyes d) cycs

a) cyc,

(k)

e) cyce
Fig. 8. Causality graphs for every cyc from L

Let A be a set of activities and L — a log over A. Let then A = A; U --- U A be a partition of A. Let
A= {a1, ..., ar} be a set of sub-process names. For i € [1, k], A; is a set of activities of a sub-process ;.

Then Algorithm (D) constructs an HWF-net N = (1\7 ,N1, Ny, ..., Ni, £) with high-level WF-net
N = (13, T,F, i [ih]), where 1: T — A and for each a; € A, {(a;) = Nj, i.e., sub-process named with ¢;
corresponds to low-level WF-net N; in N.

By B = {0, B, . - ., Bm} We denote a set of cycle names and by £z — a function which maps each name
from B to a WF-net that implements the cycle with this name. For a WF-net N, denote by Loop(N) a WF-net
that is a loop with body N.

Algorithm A (D):

Step 1. Apply Algorithm B to L to find a set B = {by,...,b,,} of cycle bodies, where every b € B is a set
of activities in some cycle and m = |B|. A cycle name for each b € B will be stored in a set B where
|B| = |B|. The correspondence between every b € B and its name f € B is defined by index, i.e.,
for each set of cycle activities by € B a cycle name will be 8, € B, where q=1,2,...,mis the index.

Step 2. Construct the projection L 'y, for each b € B and apply Algorithm %y (D) to it (with respect to the par-
tition A = A; U- - -UAg). Let N be the resulting high-level WF-net over the set A of sub-process names.
Let Ny,...,N; — resulting WF-nets for sub-processes with names ay, ..., ;. Let Ng,,...,Ng, — re-
sulting WF-nets for sub-processes within the cycle.

Step 3. Let tg(f1) = Np,, ..., tg(m) = Np;. Let also £(A;) = Ny, ..., £(A;) = Nj.

Step 4. For every o0 € Lsuchasb; C oandi=1,2,...,|L| replace by f; all occurrences of activities from b;
in 0; and remove stuttering.

Step 5. Let Aneqw be a current set of activities such as Apery = A U B and A,,., be a current partition of A,y
such as Anew = AUB.

Step 6. Apply Algorithm U, (D) to the log L obtained at Step 4 with respect to the current partition of activities
Apew. Let N be a resulting high-level WF-net.

Step 7. For each f§ € B, replace a transition labeled by f in N with the sub-process Loop(£z()).

Step 8. For each pair of transition #;, {; € T from N, which are corresponding to the same & sub-process name,
apply the merging Algorithm €.

The resulting net N is a high-level WF-net for the HWF-net constructed by Algorithm. Its low-level WF-nets,
which are defined by function ¢, are also built during Algorithm operation.
Correctness of Algorithm (D) is justified by the following statement.

308

Discovering Hierarchical Process Models: An Approach Based on Events Partitioning

Theorem 1. Let A be a set of activities and L — a log over A. Let also A = A; U - - - U Ag be a partition of A,
and A = {a1,...,ar} — a set of sub-process names.

If Algorithm ®, given a log L', discovers a WF-net N’ such that N' perfectly fits L', then Algorithm A(D)
constructs an HWF-net N = (]\7, N1, N, ..., Ny, t), such that N perfectly fits L according to the substitution.

Proof. To prove that an HWF-net built using Algorithm (D) perfectly fits the input log, provided that
Algorithm D discovers models with perfect fitness, we use three previously proven assertions, namely:

1. The theorem proven in [3] states that when D is an discovery algorithm with perfect fitness, Algo-
rithm Wy (D) discovers a high-level WF-net, whose refinement perfectly fits the input log without
repetitions (the log of an acyclic process).

2. In [28] it is proven that, given a log L, Algorithm B correctly finds in L all repetitive components that
correspond to supports of t-invariants in the Petri net model for L.

3. Proposition 1 in Subsection 3.1 justify correctness of refining a high-level WF-net by substituting sub-
process modules for high-level transitions.

4. In [28] it is proven that the given merging strategy of Algorithm € correctly merges all equally named
transitions after substitutions of the processes corresponding to the components of repetitive behavior
to the Petri net model for L.

O

Taking the above into consideration, proving the theorem is straightforward, though quite technical.
Thus, we informally describe the logic of the proof here.

Let Algorithm D be a discovery algorithm that discovers a perfectly fitting WF-net for a given event log.

From Step 1to Step 5 of the algorithm, repetitive components, i.e., cycles are processed. At Step 1, all
inner elementary repetitive components in the log are discovered using Algorithm B. The activities of every
component are those of some inner loop body, which do not have repetitions. Then, a WF-net N for this loop
body is correctly discovered using Algorithm (D), and the loop itself is folded into a high-level activity f,
and N is kept as the value (). WF-nets for sub-processes within the body of this loop are also discovered
by Algorithm %y (D) and accumulated by ¢. If a loop activity f is contained in another loop body, then
with the one more iteration of Step 1, the upper loop N’ is discovered, the transition labeled with f in it
is replaced with N, and N’ is itself folded into a new high-level activity.

After processing all loops, Algorithm proceeds to Step 6, where after reducing all loops to high-level
activities, Algorithm W, (D) is applied to a log without repetitions.

In Step 7 all transitions labeled with loop activities in a high-level and low-level WF-nets are replaced
by WF-nets for these loops, kept by #5.

Step 8 merges all equally named transitions that corresponds to the same activity in the event log.

That is why we can see that, while Algorithm (D) ensures the perfect fitness between the acyclic
fragments of the model (when loops are folded into transitions), Algorithm B ensures correct processing
of cyclic behavior, and Proposition 1 guarantees that replacing loop activities by the corresponding loop
WF-nets does not violate perfect fitness, the main algorithm provides systematic log processing and model
construction.

5. Experimental evaluation

In this section, we report the main outcomes from a series of experiments conducted to evaluate the al-
gorithm for discovering two-level hierarchical process models from event logs.

To support the automated experimental evaluation, we implemented the hierarchical process discovery
algorithm described in the previous section using the open source library PM4Py [32]. The source files
for our implementation are published on the open GitHub repository [33]. We conducted experiments using
two kinds of event logs:

309

Begicheva A. K., Lomazova I. A., Nesterov R. A.

Fig. 9. A classical WF-net with generated by refining the WF-net in Fig. 1

1. Artificial event logs generated by manually prepared process models.

2. Real-life event logs provided by various information systems.

Event logs are encoded in a standard format as XML-based XES files.

To assess the quality of the algorithm quality, we will use several metrics of conformance checking. Con-
formance checking is an important part of process mining along with process discovery [34]. The main aim
of conformance checking is to evaluate the quality of process discovery algorithm by estimating the cor-
responding quality of discovered process models. Conformance checking provides four main quality di-
mensions. Fitness estimates the extent to which a discovered process model can execute traces in an event
log. A model perfectly fits an event log if it can execute all traces in an event log. According to Theorem
1, the hierarchical process discovery algorithm yields perfectly fitting process models. Precision evaluates
the ratio between the behavior allowed by a process model and the one not recorded in an event log. A model
with perfect precision can only execute traces in an event log. The perfect precision limits the use of a process
model since an event log represents only a finite “snapshot” of all possible process executions. Generaliza-
tion and precision are two dual metrics. The fourth metric, simplicity, captures the structural complexity
of a discovered model. We improve simplicity by the two-level structure of a discovered process models.

Within the experimental evaluation, we estimated fitness and precision of process models discovered
from artificially generated and real-life event logs. Fitness was estimated using alignments between a pro-
cess model and an event log as defined in [35]. The precision was estimated using the complex ETC-align
measures proposed in [36]. Both measures are values in the interval [0, 1]. As a discovery algorithm, we used
Inductive Miner.

5.1. Discovering HWF-Nets from Artificial Event Logs

The high-level source for generating artificial low-level event logs was the Petri net shown earlier
in Fig. 1. In this model, we refined its transitions with different sub-processes containing sequential, parallel
and cyclic executions of low-level events. The example of refining the Petri net from Fig. 1 is shown in Fig. 9,
where we show the corresponding classical representation of an HWF-net.

Generation of low-level event logs from the prepared model was implemented using the algorithm pre-
sented in [37]. Afterwards, we transform a low-level event log into a high-level event log by grouping
low-level events into a single high-level event and by extracting information about cyclic behavior.

The corresponding high-level WF-net discovered from the artificial low-level event log that is generated
from the WF-net shown in 9 is provided in Fig. 10. Intuitively, one can see that this high-level WF-net
is rather similar to the original Petri net from Fig. 1.

As for the quality evaluation for the above presented high-level model, we have the following:

1. The discovered high-level WF-net perfectly fits the high-level event log obtained from a low-level log,

where we identified cycles and grouped activities correspondingly.

2. The classical WF-net obtained by refining transitions in a discovered high-level WF-net by discovered

sub-nets perfectly fits the low-level log.

310

Discovering Hierarchical Process Models: An Approach Based on Events Partitioning

Fig. 11. A classical WF-net discovered from BPI Challenge 2015 event log

Other examples of process models that were used for the artificial event log generation are also provided
in the main repository [33].

5.2. Discovering HWF-nets from real-life event logs

We used two real-life event logs provided by Business Process Intelligence Challenge (BPI Challenge) 2015
and 2017 [38]. These event logs were also enriched with additional statistical information about classical
process models.

The BPI Challenge 2015 event log was provided by five Dutch municipalities. The cases in this event log
contain information on the main application and objection procedures in various stages. A classical low-
level WF-net for case f1 discovered using the Inductive miner is shown in Fig. 11. In addition, Fig. 11 shows
an enlarged part of the process highlighted in the final model to clearly demonstrate the level of detail. It
is easy to see that the resulting model is absolutely inappropriate for visual analysis.

The code of each event in the BPI Challenge 2015 event log consists of three parts: two digits, a variable
number of characters, and three more digits.

Using the event log description, we know that the first two digits and the characters indicate the sub-
process the event belongs to, which allows us to assume an option of identifying the sub-processes.

We used the first two parts of the event name to create the mapping between low-level events and sub-
process names. After applying our hierarchical process discovery algorithm in combination with the In-

311

Begicheva A. K., Lomazova I. A., Nesterov R. A.

ductive Miner, we obtained a high-level model presented in Fig. 12 that is far more comprehensible than
the classical model mainly because of its size.

Fig. 12. A high-level WF-net discovered from the BPI Challenge 2015 event log

The BPI Challenge 2017 event log pertains to a loan application process of a Dutch financial institute.
The data contains all applications filed trough an online system from 2016 till February of 2017. Here, as a base
for mapping low-level events to sub-process names, we used the mark of the event type in its name —
application, offer or workflow. Thus, a mapping could be based on various features of event data depending
on the expert’s needs. The classical model for these data is presented in Fig. 13, which is also difficult to read
due to its purely sequential representation.

@:[

(S = ©) =
OEEEO g P g m: = @i@- e, =
) oz} &= o = . f ? E =

Fig. 13. A classical WF-net discovered from the BPI/ Challenge 2017 event log

Applying the principle of mapping low-level events in the BPI Challenge 2017 event log described above,
we obtained the high-level WF-net shown in Fig. 14, which clearly demonstrates sub-processes (if necessary,
they can be expanded) and their order.

Table 2 shows the fitness and precision evaluation of classical and high-level WF-nets discovered
from real-life BPI Challenge 2015 and 2017 event logs.

Fitness 1 shows the fitness evaluation between the classical WF-net constructed from the high-level WEF-
net by refining transitions with low-level sub-processes.

Fitness 2 shows the fitness evaluation between the high-level WF-net and an event log with low-level
events grouped into sub-processes. This confirms the formal correctness results of the hierarchical pro-

312

Discovering Hierarchical Process Models: An Approach Based on Events Partitioning

cess discovery algorithm. Similar to the experimental results for artificial event logs, here we also observe
a decrease in the precision for the identification of sub-processes, therefore, generalizing traces in an initial
low-level event log.

Fig. 14. A high-level WF-net discovered from the BPI Challenge 2017 event log

Table 2. Comparing metrics for classical and high-level WF-nets discovered from BP/ Challenge event logs

Event log High-level WF-net Classical WF-net
Fitness 1 | Fitness 2 | Precision | Fitness | Precision

BPI Challenge 2015 1 1 0.5835 1 0.5700

BPI Challenge 2017 1 1 0.3898 1 0.7000

6. Conclusion and Future Work

In this study, we propose a new process discovery technique for solving the problem of discovering
a hierarchical WF-net model from a low-level event log, based on sub-processes abstraction into high-level
transitions according to event partitioning. Unlike the previous solutions, we allow cycles and concurrency
in process behavior.

We prove that the proposed technique makes it possible to obtain hierarchical models, which fit event
logs perfectly. The technique was also evaluated in real and artificial event logs. Experiments show that
fitness and precision of obtained hierarchical models are almost the same as for the standard “classical” case,
while hierarchical models are much more compact, more readable and more visual.

To implement our algorithm and check it on real data we used Python and one of the most convenient in-
struments for process mining at the moment — the PM4Py [32]. The implementation is provided in the public
GitHub repository [33].

In further research, we plan to develop and evaluate various event partitioning methods for automatic
discovery of hierarchical models.

References

[1] A. Augusto et al., “Automated discovery of process models from event logs: Review and benchmark”,
IEEE Transactions on Knowledge and Data Engineering, vol. 31, no. 4, pp. 686-705, 2018.

313

Begicheva A. K., Lomazova I. A., Nesterov R. A.

W. van der Aalst, “Workflow verification: Finding control-flow errors using Petri-net-based
techniques”, in Business process management: models, techniques, and empirical studies, Springer, 2002,
pp. 161-183.

A. K. Begicheva and 1. A. Lomazova, “Discovering high-level process models from event logs”,
Modeling and Analysis of Information Systems, vol. 24, no. 2, pp. 125-140, 2017.

S.J. van Zelst, F. Mannhardt, M. de Leoni, and A. Koschmider, “Event abstraction in process mining:
Literature review and taxonomy”, Granular Computing, vol. 6, no. 3, pp. 719-736, 2021.

D. G. Maneschijn, R. H. Bemthuis, F. A. Bukhsh, and M.-E. Iacob, “A methodology for aligning process
model abstraction levels and stakeholder needs”, in Proceedings of the 24th International Conference
on Enterprise Information Systems - Volume 1, 2022, pp. 137-147.

F. Mannhardt, M. de Leoni, H. Reijers, W. van der Aalst, and P. Toussaint, “From low-level events
to activities — a pattern-based approach”, in Business Process Management, Springer, 2016, pp. 125-141.
N. Tax, N. Sidorova, R. Haakma, and W. van der Aalst, “Event abstraction for process mining using
supervised learning techniques”, in Proceedings of SAI Intelligent Systems Conference 2016, Springer,
2018, pp. 161-170.

C.-Y.Li, S.J. van Zelst, and W. van der Aalst, “A framework for automated abstraction class detection
for event abstraction”, in Intelligent Systems Design and Applications, Springer, 2023, pp. 126—136.

G. van Houdt, M. de Leoni, N. Martin, and B. Depaire, “An empirical evaluation of unsupervised event
log abstraction techniques in process mining”, Information Systems, vol. 121, p. 102 320, 2024.

A. Rebmann, P. Pfeiffer, P. Fettke, and H. v. d. Aa, “Multi-perspective identification of event groups
for event abstraction”, in Process Mining Workshops, Springer, 2023, pp. 31-43.

S. J. Leemans, K. Goel, and S.]J. van Zelst, “Using multi-level information in hierarchical process
mining: Balancing behavioural quality and model complexity”, in Proceedings of the 2nd International
Conference on Process Mining, IEEE, 2020, pp. 137-144.

A. Senderovich, A. Shleyfman, M. Weidlich, A. Gal, and A. Mandelbaum, “To aggregate or to eliminate?
Optimal model simplification for improved process performance prediction”, Information Systems,
vol. 78, pp. 96-111, 2018.

S. Smirnov, H. Reijers, M. Weske, and T. Nugteren, “Business process model abstraction: A definition,
catalog, and survey”, Distributed and Parallel Databases, vol. 30, pp. 63-99, 2012.

C. W. Gunther and W. M. Van Der Aalst, “Fuzzy mining—-adaptive process simplification based
on multi-perspective metrics”, in International conference on business process management, Springer,
2007, pp. 328-343.

W. Reisig, Understanding Petri nets: Modeling techniques, analysis methods, case studies. Springer, 2013.
K. Jensen and L. Kristensen, Coloured Petri nets: modelling and validation of concurrent systems.
Springer, 2009.

S. Leemans, D. Fahland, and W. van der Aalst, “Discovering block-structured process models
from event logs — a constructive approach”, in Application and Theory of Petri Nets and Concurrency,
Springer, 2013, pp. 311-329.

G. Greco, A. Guzzo, and L. Pontieri, “Mining taxonomies of process models”, Data & Knowledge
Engineering, vol. 67, no. 1, pp. 74-102, 2008.

J. Li, R. Bose, and W. van der Aalst, “Mining context-dependent and interactive business process
maps using execution patterns”, in Business Process Management Workshops. BPM 2010, Springer, 2010,
pp- 109-121.

X. Lu, A. Gal, and H. A. Reijers, “Discovering hierarchical processes using flexible activity trees
for event abstraction”, in Proceedings of the 2nd International Conference on Process Mining, IEEE, 2020,
pp. 145-152.

314

Discovering Hierarchical Process Models: An Approach Based on Events Partitioning

[27]

[28]

[29]
[30]
[31]

[32]

[33]
[34]

[35]

[36]
[37]

[38]

W. van der Aalst and C. Gunther, “Finding structure in unstructured processes: The case for process
mining”, in Seventh International Conference on Application of Concurrency to System Design (ACSD
2007), IEEE, 2007, pp. 3—12. por: 10.1109/ACSD.2007.50.

J. De Smedt, J. De Weerdt, and J. Vanthienen, “Multi-paradigm process mining: Retrieving better
models by combining rules and sequences”, in On the Move to Meaningful Internet Systems: OTM 2014
Conferences, Springer, 2014, pp. 446—-453. poI: 10.1007/978-3-662-45563-0_26.

J. de San Pedro and J. Cortadella, “Mining structured Petri nets for the visualization of process
behavior”, in Proceedings of the 31st Annual ACM Symposium on Applied Computing, ACM, 2016,
pp- 839-846. po1: 10.1145/2851613.2851645.

W. van der Aalst, A. Kalenkova, V. Rubin, and E. Verbeek, “Process discovery using localized events”,
in Application and Theory of Petri Nets and Concurrency, Springer, 2015, pp. 287-308. por: 10.1007/978-
3-319-19488-2_15.

A. Kalenkova and I. Lomazova, “Discovery of cancellation regions within process mining techniques”,
Fundamenta Informaticae, vol. 133, pp. 197-209, 2-3 2014. por: 10.3233/FI-2014-1071.

A. Kalenkova, I. Lomazova, and W. van der Aalst, “Process model discovery: A method based
on transition system decomposition”, in Application and Theory of Petri Nets and Concurrency, Springer,
2014, pp. 71-90. por: 10.1007/978-3-319-07734-5_5.

C.-Y. Li, S. J. van Zelst, and W. M. van der Aalst, “An activity instance based hierarchical framework
for event abstraction”, in Proceedings of the 3rd International Conference on Process Mining, 2021,
pp- 160-167. por: 10.1109/ICPM53251.2021.9576868.

T. Tapia-Flores, E. Lopez-Mellado, A. P. Estrada-Vargas, and J.-]. Lesage, “Discovering Petri net models
of discrete-event processes by computing t-invariants”, IEEE Transactions on Automation Science
and Engineering, vol. 15, no. 3, pp. 992-1003, 2017.

T. Tapia-Flores and E. Lopez-Mellado, “Discovering workflow nets of concurrent iterative processes”,
Acta Informatica, vol. 61, Sep. 2023. po1: 10.1007/s00236-023-00445-5.

W. van der Aalst, Process Mining: Discovery, Conformance and Enhancement of Business Processes.
Springer, Heidelberg, 2011.

K. Lautenbach, “Linear algebraic techniques for place/transition nets”, in Petri Nets: Central Models
and Their Properties. ACPN 1986, Springer, Heidelberg, 1987, pp. 142-167.

A. Berti, S. Van Zelst, and W. van der Aalst, “Process mining for Python (PM4Py): Bridging the gap
between process- and data science”, in Proceedings of the ICPM Demo Track 2019, CEUR-WS.org, 2019,
pp- 13-16.

A. Begicheva, Hierarchical process model discovery — hldiscovery, 2022. [Online]. Available: https://
github.com/gingerabsurdity/hldiscovery.

J. Carmona, B. van Dongen, A. Solti, and M. Weidlich, Conformance Checking: Relating Processes
and Models. Springer, 2018.

A. Adriansyah, B. F. van Dongen, and W. M. van der Aalst, “Conformance checking using cost-based
fitness analysis”, in 2011 ieee 15th international enterprise distributed object computing conference, IEEE,
2011, pp. 55—64.

J. Munoz-Gama and J. Carmona, “A fresh look at precision in process conformance”, in International
Conference on Business Process Management, Springer, 2010, pp. 211-226.

L. Shugurov and A. Mitsyuk, “Generation of a set of event logs with noise”, in Proceedings of the 8th
Spring/Summer Young Researchers Colloquium on Software Engineering, 2014, pp. 88-95.

A. Augusto et al.,, Data underlying the paper: Automated discovery of process models from event logs:
Review and benchmark (version 1), Data set. 4TU.Centre for Research Data, 2019. por: 10.4121/uuid:
adc42403-9a38-48dc-9f0a-a0a49bfb6371.

315

https://doi.org/10.1109/ACSD.2007.50
https://doi.org/10.1007/978-3-662-45563-0_26
https://doi.org/10.1145/2851613.2851645
https://doi.org/10.1007/978-3-319-19488-2_15
https://doi.org/10.1007/978-3-319-19488-2_15
https://doi.org/10.3233/FI-2014-1071
https://doi.org/10.1007/978-3-319-07734-5_5
https://doi.org/10.1109/ICPM53251.2021.9576868
https://doi.org/10.1007/s00236-023-00445-5
https://github.com/gingerabsurdity/hldiscovery
https://github.com/gingerabsurdity/hldiscovery
https://doi.org/10.4121/uuid:adc42403-9a38-48dc-9f0a-a0a49bfb6371
https://doi.org/10.4121/uuid:adc42403-9a38-48dc-9f0a-a0a49bfb6371

	Related work
	Preliminaries
	Petri nets
	Event logs

	Discovering hierarchical WF-nets
	Hierarchical WF-nets
	Events partitioning
	The proposed solution
	Detecting cycles in event logs

	Algorithm for discovering HWF-nets from low-level event logs
	Experimental evaluation
	Discovering HWF-Nets from Artificial Event Logs
	Discovering HWF-nets from real-life event logs

	Conclusion and Future Work

