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In this paper we focus on regular expressions with acyclic backreferences and treat them as a semiring satisfying cer-

tain theorems of Kleene algebra. Using these theorems as term rewriting rules, we introduce an algorithm for memory

disambiguation of regular expressions. Furthermore, we demonstrate that the class of regexes with acyclic backreferences

is closed under language reversal, in contrast to the generic backref-regexes, and provide the reversal algorithm, based

on the disambiguation procedure. The results of our experiments revealed that, in certain cases, the matching time was

significantly reduced when using the reversed expressions compared to the initial ones.
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выражениях с обратными ссылками посредством применения
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В работе рассматривается класс расширенных регулярных выражений с обратными ссылками, которые пред-

ставляются как элементы полукольца, частично удовлетворяющего теоремам алгебры Клини. Используя эти тео-

ремы в качестве правил переписывания, возможно построить алгоритм устранения неоднозначности в ячейках

памяти выражений. В дальнейшем этот алгоритмможет быть применён для построения обращений расширенных

регулярных выражений в заданных ограничениях. Предложенные алгоритмы были апробированы на тестовой

выборке регулярных выражений, построенных на базе выражений из RegexLib и StackOverflow. Результаты экс-

периментов показали, что в ряде случае время сопоставления с преобразованным регулярным выражением было

значительно меньше, чем с исходным.

Ключевые слова: расширенные регулярные выражения; обратные ссылки; группы захвата; реверсирование;

неоднозначность; алгебра Клини
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Ismagilova D.N., Nepeivoda A.N.

Introduction
Regular expressions in the classical textbooks on formal language theory are defined as a set of expres-

sions closed under alternation, iteration, and concatenation. These expressions define regular languages,

i.e. they are equivalent to the finite state automata. In modern formal language theory, the notion “regex”

is used to define extended Perl-like regular expressions, making use of capture groups and backreferences.

For the sake of clarity, the classical regular expressions are usually
1

called “academic” [1].

There exist well-known algorithms efficiently matching strings against academic regular expressions.

These algorithms are implemented in regex libraries that support the academic regex style, such as Rust

regex module or RE2 library
2
. However, implementing the classical approach with a transition to determin-

istic finite automata (DFA) can sometimes be challenging, especially when using certain syntactic sugar like

unrestricted lookaheads. The lookaheads require the intersection construction, which leads to the critical

growth in the DFA size in certain cases [2]. In order to address this issue, the RE2 library adopts a flexible

non-determinisic-automata(NFA)–DFA approach, relying on the regex structure. For instance, if a regu-

lar expression contains no ambiguity, then it is simply transformed to Glushkov NFA [3] (the transforma-

tion produces a DFA in this case). If a regular expression is reverse-unambiguous, then its reversal is used

in the matching algorithm. For example, the expression (.∗) a .{ n }, which generates exponentially large

DFAs, is treated as a reversal of deterministic regular expression .{ n } a (.∗).
Rewriting the regexes without transitioning to finite automata is also used in other ways to boost

the matching efficiency. Conversion to the strong star-normal form, for instance, allows a matching al-

gorithm to avoid nested-stars ambiguity as in the regex (.∗)∗ . Since equivalence of classical regular expres-

sions can be checked by complete axioms schemas, the corresponding schemas can be used as rewriting

rules for regex optimisation.

However, in most regex libraries, including the widely-used PCRE2
3
, languages defined inside the sup-

ported regex syntax are context-sensitive, which make them more expressive but also harder to analyse com-

pared to the academic case. Since matching against such an extended regex is known to be NP-complete [4],

popular algorithms for treating the PCRE2 regexes use backtracking-based matching techniques, with lim-

ited (e.g. in Java 11+) or no optimizations of the complex regex structure
4
. This results in large match-

ing time against even relatively small strings if a regex is ambiguous. Estimating regex ambiguity is an-

other open problem due to the context-sensitivity: in order to define determinism, one must consider val-

ues stored in memory cells corresponding to the back-references. Moreover, anonymous capture groups

make it difficult to define the extended regex algebra, as the reference containment may change depending

on the parentheses structure. In particular, this property ruins associativity of alternation. For example,

PCRE2 expression
5
(
(a | b) | c

)
\2 recognises language {aa, bb}, while expression

(
a | (b | c)

)
\2 recognises

language {bb, cc}.
In the last decade, new matching algorithms with the backreference support were constructed, such

as those based on memory finite automata (MFA) [5]. These algorithms inherit some properties of Glushkov

automaton [3]. However, the MFA formalism admits non-balanced capture groups, which makes the use

of rewriting rules problematic.

The goal of this work is to partly implement the techniques used in RE2 library for the extended syn-

tax. We defined a class of extended regular expressions ACREG satisfying certain laws of Kleene algebra,

1
Sometimes terms “standard” and “basic” are used to distinguish the “pure” regexes from the extended ones as well. However,

a “standard regex” can be confused with “standard POSIX” or “standard PCRE” regex, and “basic regex” is overloaded also to denote

the basic syntax of regular expressions with no option and positive iteration syntactic sugar.

2
https://github.com/google/re2

3
https://www.pcre.org/current/doc/html/index.html

4
https://www.pcre.org/current/doc/html/index.html, https://github.com/python/cpython

5
Since PCRE2 does not admit usage of uninitialised references, the alternation arguments not belonging to the second capture

group are not recognised by the expressions.
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and used these laws in order to disambiguate memory usage in the regexes. We studied a dataset of regexes

taken from StackOverflow
6

and discovered that all of these regexes can be treated as elements of the ACREG
class. Based on the memory-disambiguated structure, we provided the algorithm reversing ACREG regexes.

We also proved that class of the generic extended regexes defined in paper [5] is not closed under reversal.

The suggested algorithms were implemented in a model regex engine in order to test efficiency of matching

strings against disambiguated regexes and their reversed versions. The experiments showed that the memory

disambiguation makes it possible to use rather efficient matching heuristics.

The paper is structured as follows. Section 1 contains basic definitions of backref-regexes and rewriting

rules based on Kleene algebra laws, memory finite automaton construction, and notions of deterministic

and backwards-deterministic academic regular expressions. Section 2 describes the regex formalism used,

its main properties, and theoretical concepts underlying the normalisation and reversal algorithms. Section 3

presents the experiments with implementation of the algorithms, Section 4 discusses the related works con-

sidering regex simplification and backreferences formalisms. The proofs of the main statements of the paper

and the algorithms pseudocode are given in the Appendix.

1. Preliminaries
Henceforth we denote a letter alphabet by Σ, and the empty word by 𝜀. If 𝜌 is a regex, then L (𝜌) is its

language, i.e. the set of the words recognized by 𝜌 .

The regexes, as well as the letters from Σ, are written in typewriter font.

1.1. Kleene algebra

Definition 1. A semiring ⟨S, +, ·, 0, 1⟩ over S is a commutative monoid wrt + with the unit element 0

and monoid
7

wrt · with the unit element 1 satisfying the additional axioms:

• ∀𝑥,𝑦, 𝑧 ∈ S
(
(𝑥 + 𝑦) · 𝑧 = 𝑥 · 𝑧 + 𝑦 · 𝑧

)
(right distributivity)

• ∀𝑥,𝑦, 𝑧 ∈ S
(
𝑥 · (𝑦 + 𝑧) = 𝑥 · 𝑦 + 𝑥 · 𝑧

)
(left distributivity)

• 0 is zero wrt ·.

Definition 2. A Kleene algebra is a semiring ⟨A, +, ·, ∅, 1⟩, idempotent wrt +, with the additional unary

operation
∗
, satisfying the following axioms [7]:

• ∀𝑥 ∈ A
(
1 + 𝑥 · 𝑥∗ = 𝑥∗ & 1 + 𝑥∗ · 𝑥 = 𝑥∗

)
(unfolding rule)

• ∀𝑥,𝑦, 𝑧 ∈ A
(
(𝑥 ·𝑦 + 𝑧 +𝑦 = 𝑦 ⇒ 𝑥∗ · 𝑧 +𝑦 = 𝑦) & (𝑦 · 𝑥 + 𝑧 +𝑦 = 𝑦 ⇒ 𝑧 · 𝑥∗ +𝑦 = 𝑦)

)
(Kozen’s axioms)

Academic regular expressions over an alphabet Σ form a Kleene algebra, where union (alternation)

is treated as the addition, and concatenation — as the multiplication. The following theorems are satisfied

in any Kleene algebra.

∀𝑥,𝑦 ∈ A
(
𝑥 · (𝑦 · 𝑥)∗ = (𝑥 · 𝑦)∗ · 𝑥

)
(sliding rule)

∀𝑥,𝑦 ∈ A
(
(𝑥 + 𝑦)∗ = 𝑥∗ · (𝑦 · 𝑥∗)∗ = (𝑥∗ · 𝑦)∗ · 𝑥∗

)
(denesting rule)

∀𝑥 ∈ A
(
𝑥∗ = (𝑥𝑛)∗ (𝜀 | 𝑥 | 𝑥2 | . . . 𝑥𝑛−1)

)
(fusion rule)

∀𝑥,𝑦, 𝑧 ∈ A
(
𝑥 · 𝑦 = 𝑦 · 𝑧 ⇒ 𝑥∗ · 𝑦 = 𝑦 · 𝑧∗

)
(bisimulation rule)

The denesting rule is called so because it is used to reduce the star height of an expression, through

transforming iterations to unions; we use this rule in backward order, so we call it the nesting transformation.

1.2. Deterministic Regular Expressions

Definition 3. A linearization 𝜌lin of a regex 𝜌 is obtained by indexing all the letters from Σ in 𝜌 by their

positions.

6
https://github.com/SBULeeLab/LinguaFranca-FSE19

7
Following the paper [6], we assume existence of the unit wrt ·.
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Table 1. FIRST and LAST sets
Regular

FIRST LAST

expression

a {a} {a}

𝜏1 | 𝜏2 FIRST(𝜏1) ∪ FIRST(𝜏2) LAST(𝜏1) ∪ LAST(𝜏2)

𝜏1𝜏2

FIRST(𝜏1) ∪ FIRST(𝜏2), LAST(𝜏1) ∪ LAST(𝜏2),
if 𝜀 ∈ L (𝜏1); if 𝜀 ∈ L (𝜏2);

FIRST(𝜏1) otherwise LAST(𝜏2) otherwise

𝜏∗ FIRST(𝜏) LAST(𝜏)

Table 2. FOLLOW set

Regular expression FOLLOW

ab
{
(a, b)

}
𝜏1 | 𝜏2 FOLLOW(𝜏1) ∪ FOLLOW(𝜏2)

𝜏1𝜏2

FOLLOW(𝜏1) ∪ FOLLOW(𝜏2){
(𝑥1, 𝑥2) | 𝑥1 ∈ LAST(𝜏1) & 𝑥2 ∈ FIRST(𝜏2)

}
𝜏∗ FOLLOW(𝜏) ∪

{
(𝑥1, 𝑥2) | 𝑥1 ∈ LAST(𝜏) & 𝑥2 ∈ FIRST(𝜏)

}
For example, the linearized version of expression (a | b)∗a is the expression (a1 | b2)∗a3.

Definition 4. Given an academic regex 𝜌 , it is called deterministic, or one-unambiguous [8], if for every

two words 𝜔1, 𝜔2 in L (𝜌lin), s.t. 𝜔1 = 𝑢𝛾𝑖𝑤 , 𝜔2 = 𝑢𝛾 𝑗𝑤
′

and 𝛾𝑖 and 𝛾 𝑗 are linearizations of a same letter

𝛾 ∈ Σ, 𝑖 = 𝑗 holds.

We say that regex 𝜌 is backwards-deterministic, if its reversal (denoted with 𝜌𝑅) is deterministic.

An alternative definition of the deterministic regular expression can be formulated in terms of a Glushkov

automaton [3] if Glushkov(𝜌) is deterministic, then 𝜌 is deterministic. A Glushkov non-deterministic finite

automaton (NFA) for an academic regex 𝜌 can be defined using FIRST, LAST, and FOLLOW sets of 𝜌lin

(see Tables 1, 2). The letters of 𝜌lin correspond to non-initial states of Glushkov(𝜌); the LAST-set points out

the final states, the FIRST-set defines transitions from the initial state, and FOLLOW-set defines all the other

transitions.

An example of the Glushkov NFA based on the regex (a | b)∗a is given in Figure 1. This NFA is non-

deterministic — there are ambiguous transitions from the state a1 to states a1 and a3. The reversed expression

a(a | b)∗ produces a deterministic Glushkov NFA, thus, (a | b)∗a is backwards-deterministic.

The RE2 library utilises both properties of regex determinism and backwards-determinism, in order

to choose the most efficient NFA representation
8
.

1.3. Regular Expressions with Backreferences

In general, the extended regex syntax is borrowed from the paper [5]. Following that paper, we also call

such expression ref-words.

8
https://github.com/google/re2
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S

a1

b2

a3

a

b

a

b

b

a

a

a

Fig. 1. Glushkov NFA constructed for the regex (a | b)∗a.

Definition 5. Given an input alphabet Σ and the memory set cardinality 𝑘 ∈ N, a regular expression

with backreferences (ref-word) is defined recursively:

• 𝛾 ∈ Σ, 𝜀, and &𝑖 , where 𝑖 ≤ 𝑘 , are ref-words (the latter defines containment of the 𝑖-th memory cell);

• if 𝜌1 and 𝜌2 are ref-words, then so are (𝜌1 | 𝜌2), (𝜌1𝜌2), (𝜌𝑖)∗ ;

• if 𝑖 ≤ 𝑘 and 𝜌 is a ref-word containing neither &𝑖 nor [𝑖𝜏 ]𝑖 , then [𝑖𝜌 ]𝑖 is also a ref-word.

The last operation defines capture groups. Thus, unlike expressions in PCRE2 syntax, which permits

both unnamed and named capture groups, the ref-words have all their capture groups explicitly named.

We require memory brackets [𝑖 , ]𝑖 to be balanced both wrt the regular parentheses, and wrt each other. That

is the only distinction from the formalism given in paper [5], which admits unbalanced capture groups.

The ref-word definition above does not specify semantics of uninitialized backreferences, e.g. in the ex-

pression (&1a[1b∗ ]1)∗ . Following the terminology of the paper [9], we say that we assume 𝜀-semantics: all

uninitialized references are valued 𝜀.

Proposition 1. All Kleene algebra identities (i.e. theorems of the form ∀𝑥1, . . . , 𝑥𝑛 (Φ1 = Φ2)) are true for ref-
words.

Proof. All memory initializations and references inside any instance of Φ1 and Φ2 can be replaced with fresh

elements of the input alphabet. If the resulting instances of Φ1 and Φ2 are equal, then so are their preimages.

□

Although the ref-words satisfy most of the Kleene algebra laws, they do not form a Kleene algebra.

Example 1. In the bisimulation law, let us consider 𝑥 = [1a]1, 𝑦 = &1, 𝑧 = aa. Then L (𝑥𝑦) = L (𝑦𝑧) =

{aa}, but L (𝑥∗𝑦) = {𝜀} ∪ {a𝑛+2 | 𝑛 ∈ N}, L (𝑦𝑧∗) = {a2·𝑛 | 𝑛 ∈ N}.

Thus, the fact that ref-words generate same languages does not imply their equivalence wrt algebraic

rewriting rules.

1.4. Memory Finite Automaton

A memory finite automaton (MFA) [5] is a tuple ⟨Q, Σ, 𝛿, 𝑞0, 𝐹 ⟩, where Q is a finite set of states, Σ is the in-

put alphabet, 𝑞0 ∈ Q is a starting state, 𝐹 ⊆ Q are final states, and 𝛿 : Q × (Σ ∪ {𝜀} ∪ {&1, &2, . . . , &𝑘 }) →
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0 1 2 3 4

a, ⟨𝑜⟩

a, ⟨⋄⟩

𝜀, ⟨𝑐⟩ b, ⟨⋄⟩ &1

Fig. 2. MFA for [1a+ ]1b&1

P(Q × {𝑜, 𝑐,⋄}𝑘 ) is a transition table. The symbols 𝑜, 𝑐,⋄ are memory instructions (𝑜 — opening, 𝑐 — closing,

⋄ — preserving instruction
9
).

An MFA configuration is a tuple (𝑞,𝑤, (𝑢1, 𝑟1), . . . , (𝑢𝑘 , 𝑟𝑘 )), where 𝑞 is a current state, 𝑤 is an input

to read, and for all 𝑖, 1 ≤ 𝑖 ≤ 𝑘, (𝑢𝑖 , 𝑟𝑖) is an i-th memory state (𝑢𝑖 is a stored string; 𝑟𝑖 ∈ {𝑂,𝐶} is a memory

status, which is either 𝑂 or 𝐶). The initial memory state is (𝑞0,𝑤, (𝜀,𝐶), . . . , (𝜀,𝐶)).
A transition from configuration (𝑞, 𝑣𝑤, (𝑢1, 𝑟1), . . . , (𝑢𝑘 , 𝑟𝑘 )) to (𝑝,𝑤, (𝑢 ′

1
, 𝑟

′
1
), . . . , (𝑢 ′

𝑘
, 𝑟

′

𝑘
)) is possible if the-

re is a transition rule (𝑝, 𝑠1, . . . , 𝑠𝑘 ) ∈ 𝛿 (𝑞,𝛾), where either:

• 𝛾 ∈ Σ ∪ {𝜀} and 𝑣 = 𝛾 ,

• or 𝛾 is &𝑗 , where 𝑗 ∈ {1, 2, . . . , 𝑘}, and 𝑠𝑏 = 𝑐 ∨ 𝑟 𝑗 = 𝐶 & 𝑠 𝑗 = ⋄ and 𝑣 = 𝑢 𝑗 ,

and for all 𝑖 memory states change as follows:

• (𝑠𝑖 = ⋄) & (𝑟𝑖 = 𝑂) ⇒ (𝑢 ′
𝑖 , 𝑟

′
𝑖 ) = (𝑢𝑖𝑣, 𝑟𝑖),

• (𝑠𝑖 = ⋄) & (𝑟𝑖 = 𝐶) ⇒ (𝑢 ′
𝑖 , 𝑟

′
𝑖 ) = (𝑢𝑖 , 𝑟𝑖),

• 𝑠𝑖 = 𝑜 ⇒ (𝑢 ′
𝑖 , 𝑟

′
𝑖 ) = (𝑣,𝑂),

• 𝑠𝑖 = 𝑐 ⇒ (𝑢 ′
𝑖 , 𝑟

′
𝑖 ) = (𝑢𝑖 ,𝐶).

The following rules define how MFA can be constructed from a ref-word (for convenience, the memory

instructions are given in a brief form, i.e. the preserving instructions ⋄ are omitted).

1. An automaton for a backreference or for a letter is an automaton with the single transition 𝛿 (𝑞0, 𝑥) =
(𝑝), 𝑝 ∈ 𝐹, 𝑥 ∈ Σ ∪ {&1, &2, . . . , &𝑘 }.

2. If ⟨Q, Σ, 𝛿𝜏 , 𝑞0, 𝐹 ⟩ is an automaton for a regex 𝜏 , then ⟨Q ∪ {𝑞′
0
} ∪ {𝑞𝐹 }, Σ, 𝛿, 𝑞′0, {𝑞𝐹 }⟩ is the automaton

for the regex [𝑖𝜏 ]𝑖 , where the transition function defined as follows:

• (𝑝, 𝑜𝑖) ∈ 𝛿 (𝑞′0, 𝑥), if (𝑝) ∈ 𝛿𝜏 (𝑞0, 𝑥);
• (𝑞𝐹 , 𝑐𝑖) ∈ 𝛿 (𝑞, 𝜀), if (𝑞) ∈ 𝐹 ;

• (𝑝) ∈ 𝛿 (𝑞, 𝑥), if (𝑝) ∈ 𝛿𝜏 (𝑞, 𝑥) (𝑞 ∈ 𝑄).

3. If ⟨Q1, Σ1, 𝛿1, 𝑞01, 𝐹1⟩ is an MFA for a ref-word 𝜏1, ⟨Q2, Σ2, 𝛿2, 𝑞02, 𝐹2⟩ is an MFA for a ref-word 𝜏2, then

⟨Q1∪Q2, Σ1∪Σ2, 𝛿, 𝑞0, 𝐹1∪𝐹2⟩ is an MFA for (𝜏1 | 𝜏2), where 𝑞0 = 𝑞01 = 𝑞02, and the transition function

is defined as follows:

• (𝑝) ∈ 𝛿 (𝑞, 𝑥), if (𝑝) ∈ 𝛿1(𝑞, 𝑥) ∪ 𝛿2(𝑞, 𝑥).
4. If ⟨Q1, Σ1, 𝛿1, 𝑞01, 𝐹1⟩ is an MFA for a regex 𝜏1, ⟨Q2, Σ2, 𝛿2, 𝑞02, 𝐹2⟩ is an MFA for a regex 𝜏2, then ⟨Q1 ∪

Q2, Σ1 ∪ Σ2, 𝛿, 𝑞01, 𝐹2⟩ is the MFA for 𝜏1𝜏2, where 𝛿 is defined as follows:

• 𝑞 ∈ 𝐹1, (𝑝) ∈ 𝛿2(𝑞02, 𝑥) ⇒ (𝑝) ∈ 𝛿 (𝑞, 𝑥);
• (𝑝) ∈ 𝛿1(𝑞, 𝑥) ⇒ (𝑝) ∈ 𝛿 (𝑞, 𝑥);
• (𝑝) ∈ 𝛿2(𝑞, 𝑥) & 𝑞 ≠ 𝑞02 ⇒ (𝑝) ∈ 𝛿 (𝑞, 𝑥).

5. If ⟨Q, Σ, 𝛿𝜏 , 𝑞0, 𝐹 ⟩ is an MFA for a regex 𝜏 , then ⟨Q, Σ, 𝛿, 𝑞0, 𝐹 ⟩ is the MFA recognizing 𝜏+ (positive

iteration of 𝜏), where 𝛿 is specified as follows:

• (𝑝) ∈ 𝛿𝜏 (𝑞, 𝑥) ⇒ (𝑝) ∈ 𝛿 (𝑞, 𝑥);
• (𝑝) ∈ 𝛿𝜏 (𝑞0, 𝑥) & 𝑞 ∈ 𝐹 ⇒ (𝑝) ∈ 𝛿 (𝑞, 𝑥).

If 𝜏∗ is recognized instead of 𝜏+, then the initial state 𝑞0 is additionally added to the final states of the con-

structed MFA.

9
In the more recent paper by Schmid [10], reset instruction is also used. There we omit the resets, because their introduction

has no impact on the constructions given in the paper.
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An example of a memory finite automaton for a non-regular language

{
a𝑛+1ba𝑛+1 | 𝑛 ∈ N

}
is given

in Figure 2.

2. Acyclic Regexes and their Disambiguation
Given an academic regex 𝜌 , we can determine ambiguities in 𝜌 , analysing FIRST and FOLLOW sets of its

linearised version. In the case of ref-words, we cannot compute FIRST(&𝑖 ) without knowing possible values

that can be stored in the 𝑖-th memory cell. Still, we are only required to track memory initializations that

are done last before the memory usage.

Example 2. Given ref-word 𝜌1 = [1a∗ ]1 [1b∗ ]1&1, the memoised block [1a∗ ]1 is useless, because it is re-

initialized at any path following it.

Given ref-word 𝜌2 = [1a∗ ]1( [1b]1)∗&1, the memoised block [1a∗ ]1 is useful: the memory cell &1 is val-

ued so when the second iteration block (i.e. ( [1b]1)∗) is skipped (no letter b is read from the input string).

Definition 6. An init set lasti:init(𝜌) is the set of all possible values of the 𝑖-th memory cell of 𝜌 after reading

the whole expression 𝜌 .

A 𝑝-positioned init set lasti:init(𝜌 [𝑝]) is the set of all possible values of the 𝑖-th memory cell after reading

𝑝-length prefixes of words recognised by 𝜌 .

The values are given in the extended syntax, which makes it possible to express cases when the initializa-

tion refers to the other cells. In such a case, e.g. we write lasti:init(𝜌) = {[𝑗𝜌 ′] 𝑗b&𝑗 }, in order to point the fact

that 𝑖-th cell initialization refers to 𝑗-th memory, initialized with expression 𝜌 ′, and then reuses the value

of 𝑗-th memory cell.

Example 3. Let 𝜌 = [1ba∗ ]1 [2ca∗ ]2( [1&2ab]1 | [2bb∗ ]2)∗ .

Then last2:init(𝜌) = {ca∗, bb∗}. The value ca∗ corresponds to the very first initialization (if no second

argument of the alternation under the iteration is used in the parse), and bb∗ corresponds to the case when

at least one second argument of the alternation is used in the parse.

The set last1:init(𝜌) contains three values: ba∗ — by the very first initialization; [2ca∗ ]2ab — if a first

alternative under the star occurs, without the second alternative preceding it; [2bb∗ ]2ab — otherwise.

The previous example demonstrates that the definition of lasti:init(𝜌) is context-sensitive. In fact, it con-

siders traces with all possible memory configurations, and we cannot guarantee that the configurations can

be finitely presented as regular expressions, being possibly stacked in references.

The simplest way to restrict the infinite memory dependencies is to detect them syntactically.

Definition 7. Given a ref-word 𝜏 , let us say that 𝑖 ∝ 𝑗 in 𝜏 , if [𝑖𝑢1&𝑗𝑢2]𝑖 occurs in 𝜏 as a subword, and 𝑢1

does not contain ]𝑖 . Let us denote the transitive closure of ∝ with ∝∗
.

We say that a ref-word 𝜌 has a syntactic circularity, if for some 𝑘 ∈ N, ⟨𝑘, 𝑘⟩ ∈∝∗
.

This criterion is clear and easy to implement. However, if the circularity of the references is defined

as the syntactic circularity, some non-circular ref-words can be incorrectly classified as cyclic.

Example 4. Let us consider the ref-word 𝜏1 = ( [1&2b]1&1 [1a∗ ]1 [2b∗&1]2)∗ . Syntactically, the memory cell

1 depends on 2 recursively (i.e. in a loop) and vice versa, but in fact the real value of the cell 1 is completely

reset in every star iteration, and the dependence is finite. Moreover, we can safely rename memory cells

in 𝜏1 in order to obtain a non-cyclic regex ( [3&2b]3&3 [1a∗ ]1 [2b∗&1]2)∗ .

In ref-word 𝜏2 = ( [1a∗ ]1 [1&2b]1&1 [2b∗&1]2)∗ the cyclic dependence occurs, because re-initialized

value of the memory cell 1 is not used by the memory cell 2. No equivalent renaming of cells in 𝜏2 can

destroy the loop.

In ref-word 𝜏3 = [1a∗ ]1b[2&1&1]2b[1&2&2]1b&1, the cells 1 and 2 depend on each other, but they can

again be safely renamed, resulting in the non-cyclic regex [1a∗ ]1b[2&1&1]2b[3&2&2]3b&3.
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[1&2]1

1-st cell

dependency︷︸︸︷
[2 &1]2

2-nd cell

dependency︷   ︸︸   ︷
[1a∗]1 [1 &2]1 [1&2]1

1-st cell

dependency︷   ︸︸   ︷
[1a∗]1 [2 &1]2

2-nd cell

dependency︷︸︸︷
[1 &2]1

[1&2]1 [2&1]2 [1a∗]1 [1&2]1 is a memory chain [1&2]1 [1a∗]1 [2&1]2 [1&2]1 is not a memory chain

generated by 𝜏2

Fig. 3. Memory chains in Example 4

Example 4 points out the following features of ref-word containing real memory loops.

• A memory loop can appear only inside an iteration.

• Inside the iteration, the cells are required to be initialized by references to each other, with no re-

initialization of the given cells by the other values until the cyclic dependence occurs.

The second feature can be formulated as follows.

Definition 8. A dependent memory chain is a sequence [𝑖2 &𝑖1 ]𝑖2 [𝑖3 &𝑖2 ]𝑖3 [𝑖𝑛 &𝑖𝑛−1 ]𝑖𝑛 . We say that 𝜔 ∈ ΣM
∗

contains a dependent memory chain if the dependent chain occurs in 𝜔 as a scattered subword, and no

memory brackets [𝑖 𝑗 ]𝑖 𝑗 , 1 < 𝑖 ≤ 𝑛, are used outside of the chain in a subword preceding usage of &𝑖 𝑗
and following the expression [𝑖 𝑗 &𝑖 𝑗−1 ]𝑖 𝑗 in the chain.

The memory chains from ref-words in Example 4 are considered in Figure 3.

In order to formulate the loop requirement, we can linearize the memory operations, and require the mem-

ory chain to have the same linearization indices of its first and last elements. In fact, an NFA construction

is appropriate to track such a dependence.

Definition 9. Dependency finite automaton (DepFA) for a ref-word 𝜌 is an NFA for the academic regex

ℎ(𝜌)lin, where ℎ(𝛾) = 𝜀 for all 𝛾 ∈ Σ, and ℎ(𝑥) = 𝑥 otherwise.

There the memory brackets (as well as the references) are considered as letters of the input alphabet

of the NFA. Thus, the classical Glushkov NFA construction can be used. No nested brackets with same

indices are possible, therefore, the factorized expression defines a regular language over linearized version

of the alphabet ΣM = {&𝑖 , [𝑖 , ]𝑖 | 𝑖 ≤ 𝑘}.
Definition 10. A ref-word 𝜌 is acyclic if language of its DepFA does not contain a dependent memory

chain starting and ending with the same subexpression [𝑘&𝑗𝑘 ′]𝑘 . I.e., the linearized indices point out that

the dependent memory chain occurs inside an iteration.

We denote the set of acyclic ref-words with ACREG.

Thus, the ACREG restriction guarantees that no MFA trace has a memory cell depending on its previous

value in a loop. Thus, any syntactic circularity can be resolved by cell renaming, if the capture brackets

are linearized. Henceforth, we assume that ref-words from ACREG do not contain the syntactic circularity.

Hence, we can say that the memory cells form a strict partial order wrt to ∝ relation, which leads to the fol-

lowing lemma.

Lemma 1. For any ref-word 𝜌 ∈ ACREG and any 𝑖 , its set lasti:init(𝜌) is finite.
Proof. For non-iterated subregexes, the property is trivial. Let us consider a leftmost subregex (𝜌1)∗ of 𝜌 ,

thus, 𝜌 = 𝜌0(𝜌1)∗𝜌2, where for all 𝑖 lasti:init(𝜌0) is finite. Since no memory cell can depend on its value, there

is at least one index 𝑖 s.t. for every subregex [𝑖𝜌 ′]𝑖 of 𝜌1, 𝜌 ′ contains no references that are re-initialized

in 𝜌1. Thus, lasti:init(𝜌1

∗) is guaranteed to be finite. Let us call the set of these references 𝑙𝑒𝑣𝑒𝑙 (0, 𝜌1)
Now given some 𝑛, let us choose all the indices of level 𝑛 + 1 s.t. their memory cells in 𝜌1 depend

either on non-re-initialized references or on the references in the set 𝑙𝑒𝑣𝑒𝑙 (𝑘, 𝜌1), 𝑘 ≤ 𝑛. All the sets

lastj:init(𝜌0(𝜌1)∗) of 𝑗 ∈ 𝑙𝑒𝑣𝑒𝑙 (𝑛, 𝜌1) are finite, thus, the indices of level 𝑛 + 1 have finite lastj:init-sets.

Stepwise moving from left to right iterative subregexes in 𝜌 , we can construct only finite sets lasti:init(𝜌)
for all 𝑖 . □

434



Disambiguation of Regular Expressions With Backreferences via Term Rewriting

Lemma 1 allows us to introduce the formal definition of the set of last-initialized memories. Below

the function Upd (M, 𝑖, 𝜏) resets the value of 𝑖-th memory cell to 𝜏 ; function SubstM (M, 𝜏) substitutes all

the first occurrences of non-initialized references &𝑖 in 𝜏 by [𝑖M[𝑖] ]𝑖 (leaving the other references un-

changed).

Definition 11. Given a memory cell 𝑖 and a ref-word 𝜏 , the set of last initializations of i-th memory cell
lasti:init(𝜏) is M[𝑖], where M is the set of all memory initializations, defined recursively.

• SetMemM (𝛾) := ∅, where 𝛾 is a letter or a back-reference;

• SetMemM (𝜏1 | 𝜏2) := SetMemM (𝜏1) ∪ SetMemM (𝜏2);
• SetMemM (𝜏1𝜏2) := SetMemM′ (𝜏2), where M′ = SetMemM (𝜏1);
• SetMemM ( [𝑖𝜏 ]𝑖) := Upd (M′, 𝑖, SubstM (M′, 𝜏)), where M′ = SetMemM (𝜏);
• SetMemM (𝜏∗) :=

⋃
SetMemM (𝜏𝑛).

The first two rules of the definition are self-explanatory.

Given a concatenation of two expressions, 𝜏1 and 𝜏2, the set of possible memory values after reading both

expressions is equal to the set of possible memory values after reading 𝜏2, updated with respect to memory

values changes in 𝜏1.

Given a capture group 𝑖 containing an expression 𝜏 , the set of memory values of the 𝑖-th cell is to be

updated with respect to the changes of memory values occurring in 𝜏 .

As for the last rule of the definition processing the iteration operation, in absence of memory loops,

the set SetMemM (𝜏∗) always stabilizes for some finite value 𝑛.

Example 5. Given 𝜏 = [1&2b]1&1 [3a∗ ]3 [2b&3]2, let us compute its SetMem⟨𝜀,𝜀,𝜀 ⟩ (𝜏∗) value. The mem-

ory state ⟨𝜀, 𝜀, 𝜀⟩ comes from 𝜀-semantics used for the ref-words. For simplicity, we represent the whole

vector of last initializations by tuples containing alternations, treating the elements of the tuples as sets,

and overload the union operation as a mapped union through the tuple elements.

SetMem⟨𝜀,𝜀,𝜀 ⟩ (𝜏∗) = ⟨𝜀, 𝜀, 𝜀⟩ ∪ SetMem⟨𝜀,𝜀,𝜀 ⟩ (𝜏) ∪ SetMem𝜏 (𝜏𝑛+1)
SetMem⟨𝜀,𝜀,𝜀 ⟩ (𝜏) = ⟨b, b[3a∗ ]3, a∗⟩
SetMem⟨b,b[3a∗ ]3,a∗ ⟩ (𝜏) = ⟨[2b[3a∗ ]3]2b, b[3a∗ ]3, a∗⟩

The next star unfolding iteration adds no new values to the memory sets, thus, the resulting memory set

is ⟨𝜀 | b | [2b[3a∗ ]3]2b, 𝜀 | b[3a∗ ]3, 𝜀 | a∗⟩.

2.1. Ref-words Determinism

If the possible last initializations of the memory cells are known, then we can determine whether a ref-

word is unambiguous, looking at the first symbols of the given init-sets. In this subsection, we specify

the algorithm computing FIRST set for ref-languages, which is easily used then to track the determinism.

The algorithm for computing FIRST set for academic regular expressions involves the following rule:

FIRST(𝜌1𝜌2) =
{

FIRST(𝜌1), if 𝜀 ∉ L (𝜌1)
FIRST(𝜌1) ∪ FIRST(𝜌2), otherwise.

In ref-words, when 𝜌1 is valued 𝜀, its value can impose some restrictions on the memory values. Thus,

a context-sensitive definition of 𝜀-collapsing is required to track these restrictions.

Definition 12. Collapsing update of backref-normalized regexes is defined as follows:

• Collapse(M, 𝜌1𝜌2) := Collapse(Collapse(M, 𝜌1), 𝜌2);
• Collapse(M, &𝑖 ) := Collapse(Subst (𝑖 := 𝜀,M),M[𝑖]);
• Collapse(M, 𝜌1 | 𝜌2) := Collapse(M, 𝜌1) ∪ Collapse(M, 𝜌2);
• Collapse(M, 𝜌∗) := M;
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• Collapse(M, [𝑖𝜌 ]𝑖) := Collapse(Subst (𝑖 := 𝜀,M), 𝜌);
• Collapse(M, 𝛾) := ⊥.

Given the fact that every reference has an finite set of initializations, we can formalize the algorithm

for computing context-sensitive FIRSTM-set of a ref-word.

Definition 13. Given a ref-word 𝜌 and set of its last initializations M, FIRSTM (𝜌) can be computed recur-

sively:

• FIRST⊥(𝜌) := ∅
• FIRSTM (𝛾) := {𝛾}, where 𝛾 ∈ Σ
• FIRSTM (&𝑖 ) := FIRST∅(M[𝑖])
• FIRSTM ( [𝑖𝜌 ]𝑖) := FIRSTM (𝜌)
• FIRSTM (𝜌1 | 𝜌2) := FIRSTM (𝜌1) ∪ FIRSTM (𝜌2)
• FIRSTM (𝜌∗) := FIRSTSetMemM (𝜌∗ ) (𝜌)
• FIRSTM (𝜌1𝜌2) := FIRSTM (𝜌1) ∪ FIRSTCollapse (M,𝜌1 ) (𝜌2)

Based on the definition, we can formulate the notion of determinism for acyclic ref-words, similarly

to the one-unambiguity of academic regular expressions.

Definition 14. Let us say that a ref-word in ACREG has a one-ambiguous trace if either:

• it contains a subregex (𝜌1 | 𝜌2)𝜌3 with the memory state M s.t. FIRSTM (𝜌1) ∩ FIRSTM (𝜌2) ≠ ∅
or FIRSTCollapse (M,𝜌1 ) (𝜌3) ∩ FIRSTM (𝜌2) ≠ ∅, or FIRSTCollapse (M,𝜌2 ) (𝜌3) ∩ FIRSTM (𝜌3) ≠ ∅;

• it contains a subregex (𝜌1)∗𝜌2 with the memory state M s.t. FIRSTSetMemM (𝜌1
∗ ) (𝜌1) ∩

FIRSTSetMemM (𝜌1
∗ ) (𝜌2) ≠ ∅.

If a ref-word 𝜏 does not contain a one-ambiguous trace, then it is deterministic, i.e. a 1-symbol lookahead

can determine the parse path in 𝜏 for any input string.

2.2. Ref-words Reversal

We can notice that the referencing operations are in some sense dual to the capture operations, and if all

the last initializations are known, we can swap the reading and the writing operations with each other when

reading a ref-word from the end. However, if the last initializations are ambiguous, the swap operation

cannot be done.

For example, in the ref-word 𝜌 = [1ba∗ ]1 [2ca∗ ]2( [1&2ab]1 | [2bb∗ ]2)∗ the memories are ambiguous,

since SetMem⟨𝜀,𝜀,𝜀 ⟩ (𝜌) = ⟨ba∗ | [2ca∗ ]2ab | [2bb∗ ]2ab, ca∗ | bb∗⟩. So we cannot guess which expression

must replace &2 in the reversal 𝜌𝑅 . On the other hand, if all elements of the memories set of a ref-word have

the cardinality 1, then the substitution is uniquely defined.

Definition 15. Let us say that an expression 𝜏 is in the semi-backref-normal form (sBNF) if for all its subex-

pressions 𝜏 ′ ending with &𝑖 the condition |lasti:init𝜏
′ | = 1 holds, and in complete backref-normal form, if ad-

ditionally every last usage of a reference before its re-initialization or the end of the regex is explicit in 𝜏 (i.e.

there are no traces where the reference is initialized but not used).

Given 𝜌 = (𝜌1 | . . . | 𝜌𝑛), where all the 𝜌𝑖 are in sBNF, but not necessarily have the same lastk:init sets,

we can transform it into the equivalent
10

expression 𝜌 [𝑘𝜀 ]𝑘 , satisfying sBNF condition. Thus, we assume

that such ref-words are already in sBNF (and in complete BNF if the corresponding 𝜌 is in BNF).

The two following lemmas verify possibility to transform any element of ACREG to backref-normal

form. Their proofs are given in the Appendix.

10
The equivalence holds wrt the language recognized by the expressions, but not wrt the algebraic transformations, hence we al-

ways require the given assumption to be implemented only to the whole ref-word, not its subwords.
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Lemma 2. The open-distributivity and nesting transformations preserve semi-backref-normal form of ACREG
elements, and do not increase the cardinalities of the corresponding lasti:init-sets.

Lemma 3. Every acyclic ref-word 𝜌 may be transformed to 𝜌 ′ such thatL (𝜌) = L (𝜌 ′) and 𝜌 ′ is semi-backref-
normal with respect to variable &𝑖 .

If a semi-BNF ref-word lacks explicit references preceding re-initializations, it remains to apply the un-

folding rule in order to construct the complete BNF.

Example 6. Let us demonstrate the basic steps of backref-normal-form transformation using the ref-word

[1ba∗ ]1 [2ca∗ ]2( [1&2ab]1 | [2bb∗ ]2)∗ . The red part of the ref-word denotes the subword which is trans-

formed on the current normalization step. First, we remove the capturing operation for the 1-st memory

cell, because it is never referenced. Then, we disambiguate the second memory cell.

ba∗ [2ca∗ ]2 (&2ab)∗ ( [2bb∗ ]2 (&2ab)∗)∗ (nesting rule)

(ba∗ [2ca∗ ]2 | ba∗ [2ca∗ ]2 (&2ab)∗&2ab︸                                              ︷︷                                              ︸
normalised part, denoted by ¯

) ( [2bb∗ ]2 (&2ab)∗)∗
(unfolding and

distributivity)

Ψ | Ψ( [2bb∗ ]2 (&2ab)∗)∗︸                   ︷︷                   ︸
denoted by Φ

[2bb∗ ]2 (&2ab)∗ (unfolding and distributivity)

Ψ | ΨΦ[2bb∗ ]2 |ΨΦ[2bb∗ ]2 (&2ab)∗&2ab (unfolding and distributivity)

Now every reference to the 2-th memory cell is determined to its value, and all the last references

to the memory before the init-set changes are made explicit.

The important property of the BNF ref-words is explicit presence of all last initializations of memory cells

in the regex, as well as the explicit presence of all last references to the initializations. Thus, if the mem-

ory operations are swapped, and the concatenation arguments are reversed in the academic-regex style,

the resulting ref-word will recognize the language of reversed words recognized by the initial ref-word. This

property essentially depends on non-circularity of memory, as the following lemma shows.

Lemma 4. Ref-words languages (without restriction on memory chains) are not closed under reversal.

Proof. Let us consider regex 𝜌 = [1a]1b( [2&1&1]2b[1&2&2]1)∗ . Then L (𝜌) = {aba2b . . . ba22k+1 | 𝑘 ∈ N},
and it reversal is L ′ = {a22k+1b . . . ba | 𝑘 ∈ N}. Suppose that L ′

is generated by an MFA A , corresponding

to backref-regex 𝜌 ′, containing a finite number of memory cells, say 𝑁 . Let us consider a derivation of word

a2
2𝑀+1

b . . . ba, where 𝑀 = 2
2
𝑁

. Then a2
2𝑀+1

must be generated by a star fragment in 𝜌 ′, and 𝜌 ′ can be

represented, possibly after a star unfolding, as 𝜏0(𝜏1)∗𝜌 ′′, where 𝜏0 and 𝜏1 contain only letters a and memorize

only the strings in the alphabet {a}. Note that a2
2𝑀−1

b . . . ba contains 2
2
𝑁

letters b, thus, they are also

generated by a star fragment in 𝜌 ′′. Thus, 𝜌 ′′ can be rewritten as 𝜏2(𝜏3)∗𝜏4. The words generated by 𝜏0(𝜏1)∗𝜏2𝜏4

(collapsing (𝜏3)∗ block to 𝜀) also belong to L ′
, but they can contain only 𝑂 (2𝑁 ) letters b, while the words

starting with a2
2𝑀+1

must contain at least 2
2
𝑁

letters b. Hence, L ′
does not belong to MFA languages. □

Most ACREG ref-words are easily reversed after the BNF construction. The main complication of the ref-

word reversal in ACREG class occurs when a ref-word contains a memory chain inside an iteration, where

the dependent cells are in mixed “read-write” form, i.e. the references to them precede their re-initializations.

Then the BNF itself becomes insufficient to give the reversal construction, and the sliding and fusion rewrit-

ing rules are to be implemented in order to link the initializations and the references occurring in the different

iterations of the same subexpression.
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Example 7. Given a ref-word 𝜌 = [1a∗ ]1(&2b[2&1c∗ ]2 [1a∗ ]1)∗ , the ref-word 𝜌𝑅 requires three memory

cells.

Indeed, let us unfold the outer star operation twice and specify the iterations by parameters:

ak0bak0ck1ak2ak0ck1bak2ck3ak4 .

The subexpression ak0 is used between occurrences of ak2 and of ck1 , and it is used by itself, thus, it

requires an independent memory cell in the reversal ref-word. Similarly, the memories containing ak2 and ck1

must be separated from each other.

The reversal actually can be constructed, if we use three memory cells instead of two, and sliding together

with fusion: 𝜏∗ = (𝜏𝜏)∗ (𝜏 | 𝜀). Now we only give the construction of the reversed ref-word, not specifying

the complete algorithm.

a∗c∗ ( [1a∗ ]1 | [3a∗ ]3 [2c∗ [1a∗ ]1]2&3&2) (b[2c∗ [3a∗ ]3]2&1&2b[2c∗ [1a∗ ]1]2&3&2)∗bc∗&1.

While the “read–write” dependent memory cells yield critical growth in the reversed ref-word size, they

are mostly of the theoretical interest. We found such regexes neither in the StackOverflow nor RegexLib

data sets.

3. Experiments
The backref-normal form and ref-word reversal algorithms were implemented in a model regex engine

that only supports backreferences and basic academic regex syntax. We implemented ref-word-to-MFA

transformation designed by Schmid [5], and matching method based on Thompson’s algorithm extended

to MFA. The algorithms implementing the base transformations of ref-words are given in the corresponding

section of Appendix.

In order to validate our formalization assumptions, we collected a set of regexes from StackOverflow
11

and RegexLib
12

and filtered out only ones containing backreferences. Analysing these regexes led to the fol-

lowing observations:

• Cyclic memory dependency does not occur in real regexes. Therefore, the ACREG formalization is suf-

ficient for practical purposes.

• Dependent memory chains are rare (only approximately 60 out of more than 3000 regexes with back-

references), and none of them have the “read–write” structure, requiring fusion transformation. Hence,

memory cells explosion in reversed regexes is unlikely to occur.

As a test base, we collected a set of regexes with backreferences that can be presented in Python syn-

tax, in order to compare the model implementation with the practical extended regex engine. That con-

dition imposed some restrictions on the regexes form, since Python syntax does not support re-defining

capture groups. Memory circularity is still possible in it, e.g. in (a∗b | \1)∗ . Most of the regexes were taken

from the StackOverflow dataset, sometimes with syntax simplification to meet the requirements of the model

implementation. Each regex was considered in four forms: the initial one, backref-normalized, reversed,

and in Python syntax. In order to track matching time growth, we used the “malicious pump” technique [11]:

the regex was matched against the strings 𝑠1𝑠
𝑘
2
𝑠3, where 𝑘 ∈ N simultaneously increases until the timeout

occurs.

The experiments demonstrated that none of the transformed regexes exhibited superlinear slowdown

in our implementation compared to the Python regex engine. Thus, the overheads of using longer ref-

words (after the nesting and unfolding transformations) were offset by reduced backtracking, due to limited

non-determinism in the memory of resulting ref-words.

11
https://github.com/SBULeeLab/LinguaFranca-FSE19

12
https://regexlib.com
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Reversed and normalized regexes also allow for more matching heuristics since every reference in such

a regex is necessarily used after the corresponding initialization. In the MFA matching algorithm, this means

that we can prune matching paths when the remaining input string is not long enough to match all words

that have been written to the memory but have not been read yet.

Overall, reversed regexes and initial regexes showed comparable matching time growth in most cases

(58 % in total). By saying “comparable matching time growth”, we mean that non-reversed and reversed

regexes reach timeout (0.5 sec) on input strings of lengths that differ from each other by no more than one

order of magnitude. In 25 % of cases, the reversed regexes were significantly more efficient (timeout strings

lengths differ by more than one order of magnitude), while in the remaining 17 % of cases, the non-reversed

regexes were superior in terms of matching time. More detailed results are displayed in Figure 4, classifying

regexes by difference in orders of magnitude of their timeout strings.

We sorted regexes by their iteration structure, identifying 4 groups:

1. Regexes with iteration in a capture group.

2. Regexes with iteration over a backreference.

3. Regexes with iteration in a capture group and over a backreference.

4. RW regexes — may produce a match where a cell references to a previous iteration step.

The performance benefits of using reversed regexes can be attributed to two main reasons. Firstly, a regex

may be less ambiguous when matched from the right. Secondly, in cases where left and right ambiguities

are comparable, the matching time reduces by means of described optimization for particular input strings

that cause memoization of long words. However, it is important to note that reversing a regex can also have

a negative impact on performance — if a regex is more ambiguous when matched from the right, the reversed

ref-word MFA contains more states. Another feature that affects performance is the backref normalization:

all transformations increase the length of the regex that results in large amount of states which offset any

potential benefits of reversal. Given the one-unambiguity criterion presented in Section 2, we can determine

whether the reversed and non-reversed regexes generate deterministic MFAs, but we still cannot distinguish

between slightly and heavily non-deterministic regexes.

4. Related works
Multiple formalizations of regular expressions with backreferences have been proposed in the litera-

ture. One such formalization, suggested by Campeanu, Salomaa, and Yu [12], is based on PCRE2 syntax

and involves implicit numbering of capture groups. Thus, memory cells cannot be reinitialized, and every

backreference must be preceded by the corresponding closed capture group, which completely forbids cyclic

memory dependencies. Campeanu–Salomaa–Yu backref-languages de-facto describe languages of the most

practical backref-regexes, and satisfy desirable properties like the extended pumping lemma. However,

the fact that the capture groups are anonymous ruins algebraic properties of this class, making it impos-

sible to use equivalence rules for regex rewriting.

In 2014, Markus Schmid suggested a new formalism for the capture groups: all the groups are named

and their structure is independent of the core regex structure [5]. Thus, unbalanced memory brackets

across different memory cells are allowed, enabling ref-words like [1a∗ [2b∗]1a]2. Model implementations

of the Schmid-style MFA matching algorithms have shown to be efficient compared to backtracking-based

matching algorithms. While Schmid formalization is convenient for transforming regular expressions to me-

mory finite automata (also introduced in [5]), the unbalanced structures cannot be represented as tree terms,

making rewriting rules difficult to apply. Schmid-style regular expressions are more expressible than PCRE2-

style regular expressions
13

used in practice [9], which results in complications in the algorithms rewriting

them. In the paper [13], authors attempted to formalise an analogue of the uniqueness of last initialisations

13
The statement holds if the only non-regular operation considered is back-referencing a string; lookaheads, lookbehinds and,

especially, recursive capture groups can be used to express languages non-expressible even in Schmid formalism.
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Fig. 4. Comparison of reversed and initial regexes in the MFA implementation

given in a regex, but the star case is not treated consistently in this formalisation (a possibility of an empty

iteration is ignored).

In the paper [10], Schmid introduced a polynomial matching time algorithm for a subclass of MFAs

with the bounded reference distance. His algorithm leverages the similarity between ref-words (i.e. ex-

tended regexes) and patterns, and relies on the paper [14], describing efficient matching algorithms for pat-

terns with bounded variable distance. Moreover, the paper [15] introduces a formalism for recursive regular

patterns, which brings pattern languages and backref-languages closer together. It is easy to notice that

the recursive patterns can be efficiently reversed, if the variables on layers are not mixed. However, the re-

cursive regex formalization is hardly compatible with the iteration unfolding rule. If there are independently

introduced variables under a Kleene star, each unfolding must introduce fresh variables, e.g. (XaX)∗ , where

X is a pattern variable, is unfolded to X1a X1X2a X2 . . . Xna Xn.

Algebraic rewriting is a widely applied technique for academic regular expressions to improve matching

efficiency. The strong star-normal form mentioned earlier [16] is a simple example of this technique. A more

complex example is given in paper [17], where the whole expressiveness of Kleene algebra is used to reduce

size of academic regular expressions. Due to PSPACE-hardness of equivalence in Kleene algebras, the paper
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uses bounded-size optimizations. Paper [18] describes experience of using rewriting rules to heuristically

optimize academic regexes and avoid catastrophic backtracking. In papers [19, 20] pattern-based rewriting

approach has also been used to locally repair suspicious subregexes using heuristically derived rewriting

rules.

Conclusion
The semantic-preserving rewriting approach showed itself as a promising way to boost efficiency of context-

sensitive extensions of regular expressions. The restrictions imposed on the regex set (namely, the non-

circularity) allowed us to define the reversal algorithm and partly adopt the RE2 flexible regex matching

algorithm for the regular expressions with backreferences. However, a lot of research remains to be a future

work.

• The dependent-memory checking algorithm requires more accurate implementation. For now, it uti-

lizes properties of finite automata, but the finite automata over the linearised words are known to be

hard to analyse in general (for example, they can define languages close to Shutzenberger one, impos-

ing worst-case bounds on automata intersection or complementation [2]).

• Real-world regexes are not only checked for the full matching, but also are wanted to preserve the sub-

stitutions in given capture groups. For example, a standard definition of Kleene star is greedy, i.e. every

iteration tries to capture a longest possible string. Thus, in the reversed regex, the matching groups

must become lazy, in order to respect the substitutions.

• Subtleties with the read-write dependent memory chains make the reversal algorithm for the whole

class of ACREG ref-words almost intractable. It would be interesting to implement a certified version

of the algorithm, at least for non-read-write regexes.

• Since the rewriting rules in BNF construction are used only in the length-increasing direction, the worst-

case and average-case estimations of regex growth are required.

• The last but not the least: in contrast from the academic case, lookaheads are not a mere syntactic sugar

in the case of extended syntax, they extend expressiveness of the languages [13, 21]. We observed that

the lookaheads are frequently used with the backreferences in the Internet regexes. Thus, studying

this extension would be also of a practical value.
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Appendix

4.1. Proof of Lemma 2

• Let 𝜌 be 𝜌1(𝜌2 | 𝜌3)𝜌4 in semi-backref-normal form. After opening of concatenation, the regex be-

comes 𝜌
′
= (𝜌1𝜌2𝜌4 | 𝜌1𝜌3𝜌4), and includes no new alternating subregexes, as compared to 𝜌 . Thus,

its ambiguity can only decrease.

• Let 𝜌 be 𝜌1(𝜌2 | 𝜌3)∗𝜌4 in sBNF and 𝜌
′
= 𝜌1𝜌2

∗ (𝜌3𝜌2

∗)∗𝜌4 be its image after the nesting transforma-

tion. Since both regexes are acyclic, their lasti:init sets are computed for the bounded depth of iterations
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of the Kleene star. But in both cases, the bounded iterations of (𝜌3𝜌2

∗) coincide with the bounded it-

erations of (𝜌2 | 𝜌3), with the unfolding and open-distributivity laws applied. Note that the unfolding

transformation does not change the regex lasti:init set: it only rewrites the star operator correspond-

ing to its definition. Hence, due to open distributivity transformations, the ambiguity of the nested

expression can either be preserved, or decreased, as compared to 𝜌 .

4.2. Proof of Lemma 3

The following algorithm decreases the cardinality of the set lasti:init for every backreference in 𝜌 .

• Consider 𝜌 = (𝜌1 | . . . | 𝜌𝑛)𝜌𝑛+1 where 𝜌𝑛+1 contains &𝑖 and does not contain [𝑖𝑠 ]𝑖 , and ∃𝑘1, 𝑘2 ≤
𝑛 : lasti:init(𝜌𝑘1 ) ≠ lasti:init(𝜌𝑘2 ) . We apply distributivity to 𝜌 , getting 𝜌

′
= (𝜌1,1 | . . . | 𝜌1, 𝑗1)𝜌𝑛+1 |

. . . (𝜌𝑚,1 | . . . | 𝜌𝑚,𝑗𝑚 )𝜌𝑛+1 where ∀𝑠, 𝑘, 𝑘 ′
: lasti:init𝑟𝑠,𝑘 = lasti:init𝑟𝑠,𝑘 ′ .

• Consider 𝜌0𝜌1

∗𝜌2 where 𝜌2 contains &𝑖 but not [𝑖𝑠 ]𝑖 and lasti:init(𝜌0) ≠ lasti:init(𝜌1), while 𝜌1 has

unavoidable initializations of 𝑖-th memory cell. Then the regex (𝜌0𝜌2 | 𝜌0𝜌1

∗𝜌𝑘
1
𝜌2) has at least one less

element in the lasti:init set preceding the given &𝑖 .

• Consider (𝜌1 | 𝜌2)∗𝜌3 where 𝜌3 contains &𝑖 but not [𝑖𝑠 ]𝑖 , and lasti:init(𝜌1) ≠ lasti:init(𝜌2). Its image after

the nesting transformation is 𝜌
′
= (𝜌1

∗𝜌2)∗𝜌1

∗𝜌3. If we apply the unfolding transformation to the star

operators in 𝜌 ′, we can make the traces with the last initialization from 𝜌1 and the traces with the last

initialization from 𝜌2 explicit, avoiding the ambiguity of the references in 𝜌3.

Iteration and alternation are the only sources of ambiguity, hence by applying above-described transforma-

tion we can reduce cardinality of all lasti:init sets to 1 after finite number of steps, by Lemma 1.

5. Pseudocodes

5.1. MFA construction

function𝑀𝐹𝐴(𝑏𝑡 )

switch bt.type do
case epsilon, literal, backreference

𝑄 := {𝑣,𝑢}; 𝑞0 := 𝑣 ; 𝑄 𝑓 𝑖𝑛𝑖𝑠ℎ := 𝑢; 𝑣 .𝑡𝑜 = {𝑢}
𝑣 .𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 [𝑢] := 𝑏𝑡 .𝑣𝑎𝑙𝑢𝑒

return 𝑄
case initialization

𝑄 := 𝑀𝐹𝐴(𝑏𝑡 .𝑐ℎ𝑖𝑙𝑑)
for 𝑣 ∈ 𝑞0.𝑡𝑜 do

𝑞0.𝑜𝑝 [𝑣] = ⟨𝑥,𝑂⟩
for 𝑣 ∈ 𝑄, 𝑣 .𝑡𝑜 ∩𝑄 𝑓 𝑖𝑛𝑎𝑙 ≠ ∅ do

for 𝑢 ∈ 𝑣 .𝑡𝑜 ∩𝑄 𝑓 𝑖𝑛𝑎𝑙 do
𝑣 .𝑜𝑝 [𝑢] := ⟨𝑥,𝐶⟩

return 𝑄
case alternation

𝑄𝑙𝑒 𝑓 𝑡 := 𝑀𝐹𝐴(𝑏𝑡 .𝑙𝑒 𝑓 𝑡); 𝑄𝑟𝑖𝑔ℎ𝑡 := 𝑀𝐹𝐴(𝑏𝑡 .𝑟𝑖𝑔ℎ𝑡)
𝑄 = {𝑠}; 𝑠 .𝑡𝑜 := 𝑞0,𝑙𝑒 𝑓 𝑡 .𝑡𝑜 ∪ 𝑞0,𝑟𝑖𝑔ℎ𝑡 .𝑡𝑜

𝑠 .𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 := 𝑞0,𝑙𝑒 𝑓 𝑡 .𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 ∪ 𝑞0,𝑟𝑖𝑔ℎ𝑡 .𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠

for 𝑣 ∈ 𝑄𝑙𝑒 𝑓 𝑡 ∪𝑄𝑟𝑖𝑔ℎ𝑡 \ {𝑞0,𝑙𝑒 𝑓 𝑡 , 𝑞0,𝑟𝑖𝑔ℎ𝑡 } do
𝑄 := 𝑄 ∪ {𝑣}

return 𝑄
case concatenation

𝑄𝑙𝑒 𝑓 𝑡 := 𝑀𝐹𝐴(𝑏𝑡 .𝑙𝑒 𝑓 𝑡);𝑄𝑟𝑖𝑔ℎ𝑡 := 𝑀𝐹𝐴(𝑏𝑡 .𝑟𝑖𝑔ℎ𝑡)
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𝑄 = ∅
for 𝑣 ∈ 𝑄𝑙𝑒 𝑓 𝑡 ∪𝑄𝑟𝑖𝑔ℎ𝑡 do

if 𝑣 ≠ 𝑞0,𝑟𝑖𝑔ℎ𝑡 then
𝑄 := 𝑄 ∪ 𝑣

if 𝑣 ∈ 𝑄𝑙𝑒 𝑓 𝑡,𝑓 𝑖𝑛𝑖𝑠ℎ then
𝑣 .𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 := 𝑞0,𝑟𝑖𝑔ℎ𝑡 .𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠

return 𝑄
case kleenePlus

𝑄 = 𝑀𝐹𝐴(𝑏𝑡 .𝑐ℎ𝑖𝑙𝑑)
for {𝑣,𝑢} ∈ 𝑄 do

if 𝑣 ∈ 𝑞0.𝑡𝑜,𝑢.𝑡𝑜 ∩𝑄 𝑓 𝑖𝑛𝑎𝑙 ≠ ∅ then
for 𝑡 ∈ 𝑢.𝑡𝑜 ∩𝑄 𝑓 𝑖𝑛𝑎𝑙 do

𝑢.𝑡𝑜 := 𝑢.𝑡𝑜 ∪ {𝑣}
𝑢.𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 [𝑣] := 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑢.𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 [𝑓 ], 𝑞0.𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 [𝑣])

return 𝑄

5.2. Ref-word Reversal

function 𝑟𝑒𝑣𝑒𝑟𝑠𝑒(𝑟𝑒𝑔𝑒𝑥𝑝)

switch regexp.type do
case epsilon, literal, backreference

return regexp

case kleeneStar, kleenePlus

𝑟𝑒𝑔𝑒𝑥𝑝.𝑠𝑢𝑏𝑟𝑒𝑔𝑒𝑥𝑝 = 𝑟𝑒𝑔𝑒𝑥𝑝.𝑠𝑢𝑏𝑟𝑒𝑔𝑒𝑥𝑝. 𝑟𝑒𝑣𝑒𝑟𝑠𝑒

case concatenation

for subregexp in regexp.subregexps do
𝑛𝑒𝑤𝑟𝑒𝑔𝑒𝑥𝑝.𝑠𝑢𝑏𝑟𝑒𝑔𝑒𝑥𝑝𝑠.𝑝𝑢𝑠ℎ 𝑓 𝑟𝑜𝑛𝑡 (𝑠𝑢𝑏𝑟𝑒𝑔𝑒𝑥𝑝. 𝑟𝑒𝑣𝑒𝑟𝑠𝑒)

case alternation

for subregexp in regexp.subregexps do
𝑛𝑒𝑤𝑟𝑒𝑔𝑒𝑥𝑝.𝑠𝑢𝑏𝑟𝑒𝑔𝑒𝑥𝑝𝑠.𝑝𝑢𝑠ℎ 𝑏𝑎𝑐𝑘 (𝑠𝑢𝑏𝑟𝑒𝑔𝑒𝑥𝑝. 𝑟𝑒𝑣𝑒𝑟𝑠𝑒)

5.3. Swapping Memory Operations

function 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑟𝑒𝑎𝑑 𝑤𝑟𝑖𝑡𝑒(𝑟, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑)

switch regexp.type do
case epsilon, literal return
case backreference

if 𝑥 ∈ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑 then return
else

𝑟 := 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑟𝑒𝑎𝑑 𝑤𝑟𝑖𝑡𝑒 (𝑟 .𝑟𝑒 𝑓 𝑡𝑜, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑)
𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑 := 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑 ∪ {𝑥}

case initialization

if 𝑥 ∈ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑 then
𝑟 := 𝑏𝑎𝑐𝑘𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 (𝑥)

else
𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑 := 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑 ∪ {𝑥}
return

case kleeneStar, kleenePlus
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𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑟𝑒𝑎𝑑 𝑤𝑟𝑖𝑡𝑒 (𝑟 .𝑠𝑢𝑏𝑟𝑒𝑔𝑒𝑥𝑝, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑)
case concatenation, alternation

for 𝑠 ∈ 𝑟 .𝑠𝑢𝑏𝑟𝑒𝑔𝑒𝑥𝑝𝑠 do
𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑟𝑒𝑎𝑑 𝑤𝑟𝑖𝑡𝑒 (𝑠, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑)

5.4. Backref-Normal-Form algorithm

function 𝐵𝑁𝐹 (𝑟 )

switch r.type do
case epsilon, literal, backreference

return
case alternation. concatenation

for 𝑠 ∈ 𝑟 .𝑠𝑢𝑏𝑟𝑒𝑔𝑒𝑥𝑝𝑠 do
𝐵𝑁𝐹 (𝑠)

if 𝑟 .𝑡𝑦𝑝𝑒𝑖𝑠 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛 then
for 𝑠 ∈ 𝑟 .𝑠𝑢𝑏𝑟𝑒𝑔𝑒𝑥𝑝𝑠 do

for 𝑟𝑒 𝑓 ∈ 𝑟 .𝑟𝑒 𝑓 𝑠 do
if 𝑙𝑎𝑠𝑡𝑖𝑛𝑖𝑡𝐴𝑚𝑏 (𝑟𝑒 𝑓 ) then

for 𝑖𝑛𝑖𝑡 ∈ 𝑙𝑎𝑠𝑡𝑖𝑛𝑖𝑡 (𝑟𝑒 𝑓 ), 𝑙𝑎𝑠𝑡𝑖𝑛𝑖𝑡𝐴𝑚𝑏 (𝑟𝑒 𝑓 ) do
if 𝑢𝑛𝑑𝑒𝑟𝐾𝑙𝑒𝑒𝑛𝑒𝑆𝑡𝑎𝑟 (𝑖𝑛𝑖𝑡) then

𝑆𝑙𝑖𝑑𝑖𝑛𝑔(𝑖𝑛𝑖𝑡)
if 𝑢𝑛𝑑𝑒𝑟𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑜𝑛(𝑖𝑛𝑖𝑡) then

𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒 (𝑖𝑛𝑖𝑡)
case kleeneStar, kleenePlus

𝐵𝑁𝐹 (𝑟 .𝑠𝑢𝑏𝑟𝑒𝑔𝑒𝑥𝑝)
if 𝐼𝑠𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑅𝑊 (𝑟 .𝑠𝑢𝑏𝑟𝑒𝑔𝑒𝑥𝑝) then

𝐴 := 𝑅𝑊𝑂𝑝𝑡𝑖𝑜𝑛𝑠 (𝑟 .𝑠𝑢𝑏𝑟𝑒𝑔𝑒𝑥𝑝)
𝐵 := 𝐴𝑙𝑙𝑂𝑝𝑡𝑖𝑜𝑛𝑠 (𝑟 .𝑠𝑢𝑏𝑟𝑒𝑔𝑒𝑥𝑝) \𝐴
𝑟 := 𝐷𝑒𝑛𝑒𝑠𝑡𝑖𝑛𝑔(𝐴, 𝐵)

if 𝐼𝑠𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛𝑅𝑊 (𝑟 .𝑠𝑢𝑏𝑟𝑒𝑔𝑒𝑥𝑝) then
𝐴 := 𝑅𝑒𝑎𝑑𝑆𝑢𝑏𝑟𝑒𝑔𝑒𝑥𝑝 (𝑟 .𝑠𝑢𝑏𝑟𝑒𝑔𝑒𝑥𝑝)
𝐵 :=𝑊𝑟𝑖𝑡𝑒𝑆𝑢𝑏𝑟𝑒𝑔𝑒𝑥𝑝 (𝑟 .𝑠𝑢𝑏𝑟𝑒𝑔𝑒𝑥𝑝)
𝐷𝑒𝑛𝑒𝑠𝑡𝑖𝑛𝑔(𝐴, 𝐵)
if 𝑙𝑎𝑠𝑡𝑖𝑛𝑖𝑡𝐴𝑚𝑏 (𝐴) then

𝑆𝑙𝑖𝑑𝑖𝑛𝑔(𝑟 )
if 𝐼𝑠𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑜𝑛(𝑟 .𝑠𝑢𝑏𝑟𝑒𝑔𝑒𝑥𝑝) then

𝐴 :=𝑚𝑒𝑚𝑜𝑟𝑦𝐹𝑟𝑒𝑒𝑂𝑝𝑡𝑖𝑜𝑛𝑠 (𝑟 .𝑠𝑢𝑏𝑟𝑒𝑔𝑒𝑥𝑝) ∪𝑈𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑𝑅𝑒 𝑓 𝑠𝑂𝑝𝑡𝑖𝑜𝑛𝑠 (𝑟 .𝑠𝑢𝑏𝑟𝑒𝑔𝑒𝑥𝑝)
𝐵 := 𝐴𝑙𝑙𝑂𝑝𝑡𝑖𝑜𝑛𝑠 (𝑟 .𝑠𝑢𝑏𝑟𝑒𝑔𝑒𝑥𝑝) \𝐴
𝐷𝑒𝑛𝑒𝑠𝑡𝑖𝑛𝑔(𝐴, 𝐵)

case initialization

𝐵𝑁𝐹 (𝑟 .𝑠𝑢𝑏𝑟𝑒𝑔𝑒𝑥𝑝)
𝑐𝑙𝑒𝑎𝑟 (𝑟𝑒𝑔𝑒𝑥𝑝) ⊲ Clear uninitialized references and unused initializations
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