УДК 514.17+517.51

Об одной задаче для симплекса и куба в \mathbb{R}^n

Невский М. В. ¹

Ярославский государственный университет им. П.Г. Демидова 150000 Россия, г. Ярославль, ул. Советская, 14

e-mail: mnevsk@uniyar.ac.ru получена 14 марта 2013

Ключевые слова: n-мерный симплекс, n-мерный куб, осевой диаметр, гомотетия, интерполяция, проектор

Пусть S — невырожденный симплекс в \mathbb{R}^n . Обозначим через $\alpha(S)$ минимальное $\sigma>0$ такое, что единичный куб $Q_n:=[0,1]^n$ принадлежит трансляту σS . В случае $\alpha(S)\neq 1$ транслят $\alpha(S)S$, содержащий Q_n , есть образ S при гомотетии с центром в некоторой точке $x\in\mathbb{R}^n$. В статье получена следующая формула для вычисления x. Обозначим через $x^{(j)}$ ($j=1,\ldots,n+1$) вершины S. Пусть \mathbf{A} — матрица порядка n+1, строки которой содержат координаты $x^{(j)}$; последний столбец \mathbf{A} состоит из 1. Предположим, что $\mathbf{A}^{-1}=(l_{ij})$. Тогда координаты x суть числа

$$x_k = \frac{\sum_{j=1}^{n+1} \left(\sum_{i=1}^n |l_{ij}|\right) x_k^{(j)} - 1}{\sum_{i=1}^n \sum_{j=1}^{n+1} |l_{ij}| - 2} \quad (k = 1, \dots, n).$$

В силу условия $\alpha(S) \neq 1$ знаменатель, стоящий в правой части этого равенства, отличен от нуля. Приводятся также оценки для норм проекторов при линейной интерполяции непрерывных функций, заданных на Q_n .

1. Введение

Пусть C — выпуклое тело в \mathbb{R}^n , т. е. компактное выпуклое подмножество \mathbb{R}^n с непустой внутренностью. Через $C_{x,\sigma}$ обозначим образ C при гомотетии с центром в точке $x \in \mathbb{R}^n$ и коэффициентом σ . Положим $\sigma C := C_{m,\sigma}$, где m — центр тяжести C. Как обычно, -C := (-1)C. Под *транслятом* понимается результат параллельного переноса. Обозначим через $d_i(C)$ максимальную длину отрезка, содержащегося в C и параллельного i-й координатной оси. Величину $d_i(C)$ будем называть i-м осевым диаметром C. Понятие осевого диаметра было введено Скоттом [8], [9].

 $^{^{1}}$ Работа выполнена при поддержке гранта Правительства РФ, договор № 11.G34.31.0053.

Пусть Q_n — стандартный n-мерный единичный куб $[0,1]^n$. Через $\alpha(C)$ обозначим минимальное $\sigma > 0$, для которого Q_n принадлежит трансляту σC . Ниже $\Pi_1(\mathbb{R}^n)$ есть совокупность многочленов от n переменных степени ≤ 1 .

Всюду далее S — невырожденный симплекс в \mathbb{R}^n . Обозначим вершины S через $x^{(j)} = \left(x_1^{(j)}, \dots, x_n^{(j)}\right), \ j=1,\dots,n+1$. Матрица

$$\mathbf{A} := \begin{pmatrix} x_1^{(1)} & \dots & x_n^{(1)} & 1\\ x_1^{(2)} & \dots & x_n^{(2)} & 1\\ \vdots & \vdots & \vdots & \vdots\\ x_1^{(n+1)} & \dots & x_n^{(n+1)} & 1 \end{pmatrix}$$

является невырожденной. Положим $\Delta := \det(\mathbf{A})$, тогда $\operatorname{vol}(S) = |\Delta|/n!$. Обозначим через $\Delta_j(x)$ определитель, который получается из Δ заменой j-й строки на строку $(x_1, \ldots, x_n, 1)$. Введём в рассмотрение многочлены из $\Pi_1(\mathbb{R}^n)$, определяемые равенством $\lambda_j(x) := \Delta_j(x)/\Delta$. Пусть

$$\lambda_j(x) = l_{1j}x_1 + \dots + l_{nj}x_n + l_{n+1,j}. \tag{1.1}$$

Так как $\lambda_j\left(x^{(k)}\right) = \delta_j^k$ (здесь δ_j^k — символ Кронекера), то коэффициенты λ_j удовлетворяют системе линейных уравнений

$$\begin{pmatrix} x_1^{(1)} & \dots & x_n^{(1)} & 1 \\ x_1^{(2)} & \dots & x_n^{(2)} & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_1^{(n+1)} & \dots & x_n^{(n+1)} & 1 \end{pmatrix} \begin{pmatrix} l_{1j} \\ l_{2j} \\ \vdots \\ l_{n+1,j} \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$$

(в правой части 1 стоит только в j-й строке). Умножая это равенство слева на \mathbf{A}^{-1} , получаем, что коэффициенты λ_j составляют j-й столбец \mathbf{A}^{-1} , m. e. $\mathbf{A}^{-1} = (l_{ij})$. Любой многочлен $p \in \Pi_1(\mathbb{R}^n)$ может быть записан в виде

$$p(x) = \sum_{j=1}^{n+1} p\left(x^{(j)}\right) \lambda_j(x). \tag{1.2}$$

Применяя (1.2) последовательно к $p(x)=1,\,x_1,\,\ldots,\,x_n,$ получим для $x\in\mathbb{R}^n$

$$\sum_{j=1}^{n+1} \lambda_j(x) = 1, \quad \sum_{j=1}^{n+1} \lambda_j(x) x^{(j)} = x.$$
 (1.3)

Соотношения (1.3) означают, что числа $\lambda_1(x), \ldots, \lambda_{n+1}(x)$ являются барицентрическими координатами x относительно симплекса S.

В предыдущих работах автору удалось доказать ряд формул для геометрических характеристик симплекса. В [2] показано, что для i-го осевого диаметра S верно равенство

$$\frac{1}{d_i(S)} = \frac{1}{2} \sum_{i=1}^{n+1} |l_{ij}|. \tag{1.4}$$

В S существует ровно один отрезок длины $d_i(S)$, параллельный оси x_i . Центр этого отрезка есть точка

$$m^{(i)} = \sum_{j=1}^{n+1} \frac{|l_{ij}|}{\sum_{k=1}^{n+1} |l_{ik}|} x^{(j)}.$$
 (1.5)

В [7] установлено, что

$$\alpha(S) = \sum_{i=1}^{n} \frac{1}{d_i(S)}.$$
(1.6)

Из (1.4) и (1.6) следует равенство

$$\alpha(S) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n+1} |l_{ij}|. \tag{1.7}$$

Некоторое обобщение (1.6) получено в [5].

Настоящая статья продолжает данный цикл работ автора. В ней рассматривается задача о вычислении для симплекса S такой точки $x \in \mathbb{R}^n$, для которой с минимальным возможным для этого симплекса коэффициентом $\sigma > 0$ справедливо включение $Q_n \subset S_{x,\sigma}$. Задача имеет решение, и причём единственное, в случае $\alpha(S) \neq 1$; при этом минимальное σ как раз и равно $\alpha(S)$. В статье приводятся формулы, в которых центр x минимальной положительной гомотетии вычисляется через вершины S и числа l_{ij} — коэффициенты многочленов λ_j (см. (1.1)).

В заключительной части работы приводятся оценки для норм проекторов при линейной интерполяции непрерывных функций, заданных на Q_n . Эти оценки касаются ситуации $d_1(S) = \ldots = d_n(S) = 1$, где S — симплекс с вершинами в узлах интерполяции.

2. Вычисление центра гомотетии

Пусть S — невырожденный симплекс в \mathbb{R}^n . Из определения $\alpha(S)$ легко следует, что некоторый транслят симплекса $\alpha(S)S$ описан вокруг Q_n , т. е. каждая (n-1)-мерная грань этого транслята содержит вершину Q_n . Поэтому $\alpha(S)=1$ тогда и только тогда, когда существует транслят S, описанный вокруг Q_n .

Теорема 2.1. Если $\sigma = \sum_{i=1}^n 1/d_i(S) \neq 1$, то существует единственная точка $x = (x_1, \dots, x_n)$ такая, что $Q_n \subset S_{x,\sigma}$. Имеют место равенства

$$x_k = \frac{1}{2(\sigma - 1)} \left[\sum_{j=1}^{n+1} \left(\sum_{i=1}^n |l_{ij}| \right) x_k^{(j)} - 1 \right], \quad k = 1, \dots, n.$$
 (2.1)

Eсли $0<\sigma<\sum_{i=1}^n 1/d_i(S),\ mo\ для\ любой\ x\in\mathbb{R}^n\ верно\ Q_n\not\subset S_{x,\sigma}.$

Доказательство. Предположим, что $\sigma = \sum_{i=1}^n 1/d_i(S) \neq 1$. В силу (1.6) это число совпадает с $\alpha(S)$. Так как симплекс σS отличен от S, то транслят σS , содержащий Q_n , является результатом гомотетии S с центром в некоторой точке и коэффициентом σ . Иначе говоря, существует точка x, для которой $Q_n \subset S_{x,\sigma}$. Единственность

x следует из того, что симплекс $S_{x,\sigma}$ (т.е. транслят $\alpha(S)S$, содержащий Q_n) описан вокруг Q_n . Вычислим x в явном виде.

Пусть $m^{(i)}$ есть центр единственного отрезка длины $d_i(S)$, принадлежащего S и параллельного i-й координатной оси. Точка $m^{(i)}$ вычисляется с помощью (1.5). Обозначим через Q транслят куба $(1/\sigma)Q_n$, центр которого совпадает с точкой

$$m := \frac{1}{\sigma} \sum_{i=1}^{n} \frac{1}{d_i(S)} m^{(i)}. \tag{2.2}$$

В [3] было доказано, что $Q \subset S$. Применяя (2.2), (1.5) и (1.4), получим

$$m = \frac{1}{\sigma} \sum_{i=1}^{n} \frac{1}{d_i(S)} \sum_{j=1}^{n+1} \frac{d_i(S)}{2} |l_{ij}| x^{(j)} = \frac{1}{2\sigma} \sum_{j=1}^{n+1} \left(\sum_{i=1}^{n} |l_{ij}| \right) x^{(j)}.$$
 (2.3)

Так как минимальный положительный гомотетический образ S, содержащий Q_n , есть транслят σS , то Q представляет собой единственный максимальный гомотетический образ Q_n , принадлежащий S. (Различные способы иллюстрации этого факта даются в [5].) Транслят σS , содержащий Q_n , совпадает с $S_{x,\sigma}$. Из соображений подобия имеем $Q_n = Q_{x,\sigma}$. Поэтому при гомотетии с центром в x и коэффициентом σ центр m куба Q переходит в центр $c = \left(\frac{1}{2}, \ldots, \frac{1}{2}\right)$ куба Q_n . Значит, при любом $k = 1, \ldots, n$ выполняется соотношение

$$\frac{1}{2} - x_k = \sigma(m_k - x_k).$$

Из этого равенства и (2.3) следует, что

$$x_k = \frac{1}{2(\sigma - 1)} \left[\sum_{j=1}^{n+1} \left(\sum_{i=1}^n |l_{ij}| \right) x_k^{(j)} - 1 \right].$$

Первая часть теоремы доказана.

Пусть теперь $0 < \sigma < \sum_{i=1}^{n} 1/d_i(S)$. В силу (1.6) $0 < \sigma < \alpha(S)$. Из определения $\alpha(S)$ следует, что никакой транслят σS не содержит Q_n . Поэтому для любой точки $x \in \mathbb{R}^n$ выполняется $Q_n \not\subset S_{x,\sigma}$.

Приведём формулы для вычисления x, в которых используются только вершины S и числа l_{ij} .

Теорема 2.2. Для невырожденного симплекса $S \subset \mathbb{R}^n$ условие $\alpha(S) \neq 1$ эквивалентно

$$\sum_{i=1}^{n} \sum_{j=1}^{n+1} |l_{ij}| \neq 2. \tag{2.4}$$

Пусть выполнено (2.4) и $\sigma := \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n+1} |l_{ij}|$. Тогда единственная точка x, для которой верно включение $Q_n \subset S_{x,\sigma}$, может быть вычислена по равенствам

$$x_k = \frac{\sum_{j=1}^{n+1} \left(\sum_{i=1}^n |l_{ij}|\right) x_k^{(j)} - 1}{\sum_{i=1}^n \sum_{j=1}^{n+1} |l_{ij}| - 2}, \quad k = 1, \dots, n.$$
 (2.5)

Доказательство. Эквивалентность условий $\alpha(S) \neq 1$ и (2.4) вытекает из равенства (1.7). Справедливость второй части теоремы следует из (1.6), (1.7) и предыдущего утверждения.

3. Случай $S \subset Q_n, d_1(S) = \ldots = d_n(S) = 1$

В этом пункте мы рассмотрим ситуацию, когда симплекс S содержится в Q_n . Если $S \subset Q_n$, то, очевидно, $d_i(S) \leq 1$, поэтому

$$\alpha(S) = \sum_{i=1}^{n} \frac{1}{d_i(S)} \ge n. \tag{3.1}$$

Равенство в (3.1) имеет место тогда и только тогда, когда каждый осевой диаметр $d_i(S)$ равен 1. Итак, если $S \subset Q_n$, то $\alpha(S) = n$ эквивалентно $d_1(S) = \ldots = d_n(S) = 1$. Сформулируем для этой ситуации специальный вариант теоремы 2.1.

Теорема 3.1. Пусть $S \subset Q_n$ и $d_1(S) = \ldots = d_n(S) = 1$. Существует единственная точка $x \in S$ такая, что $Q_n \subset S_{x,n}$. При n > 1 имеют место равенства

$$x_k = \frac{1}{2(n-1)} \left[\sum_{j=1}^{n+1} \left(\sum_{i=1}^n |l_{ij}| \right) x_k^{(j)} - 1 \right], \quad k = 1, \dots, n.$$
 (3.2)

Eсли $0 < \sigma < n$, то для любой $x \in \mathbb{R}^n$ верно $Q_n \not\subset S_{x,n}$.

Доказательство. В случае n=1 имеем S=[0,1], поэтому x есть центр отрезка [0,1]. Для n>1 утверждение следует из теоремы 2.1. Дополнительное свойство $x\in S$ получается из включений $S\subset Q_n\subset S_{x,n}$, откуда $S\subset S_{n,x}$.

Условие $d_1(S) = \ldots = d_n(S) = 1$ выполняется, если S имеет максимальный возможный объём из всех симплексов, принадлежащих Q_n . Действительно, если $S \subset Q_n$ — симплекс максимального объёма, то $Q_n \subset -nS$. (Допустим, что последнее включение не имеет места. Тогда некоторая вершина S может быть перемещена в Q_n таким образом, что объём симплекса увеличится. Но это невозможно.) Так как Q_n является центрально-симметричным телом $(-Q_n = Q_n)$, то из включения $Q_n \subset -nS$ вытекает, что Q_n содержится в трансляте nS. Отсюда имеем $\alpha(S) \leq n$. Так как одновременно выполняется и противоположное неравенство (3.1), то $\alpha(S) = n$ и все $d_i(S) = 1$. Указанное свойство отмечалось в [2], [7].

Разумеется, свойствами $d_i(S)=1$ и $\alpha(S)=n$ обладают не только симплексы $S\subset Q_n$ максимального объёма. Например, симплекс S^* с вершинами $x^{(1)}=e_1,\ldots,$ $x^{(n)}=e_n,\ x^{(n+1)}=0,$ имеет максимальный объём в Q_n только при n=1 и n=2. Очевидно, $d_i(S^*)=1$. Заметим, что вычисления по формуле (3.2) дают x=0, так что $Q_n\subset S_{0,n}^*$. Последнее включение легко усмотреть и непосредственно, так как $S_{0,n}^*=\operatorname{conv}(ne_1,\ldots,ne_n,0)$. Здесь и далее e_1,\ldots,e_n — канонический базис \mathbb{R}^n .

В качестве другого примера рассмотрим при $n \geq 2$ симплекс S^{**} с вершинами

$$x^{(j)} = \sum_{i \neq j} e_i, \quad 1 \le j \le n; \quad x^{(n+1)} = 0.$$

В этом случае

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 & \dots & 1 & 1 \\ 1 & 0 & 1 & \dots & 1 & 1 \\ 1 & 1 & 0 & \dots & 1 & 1 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 1 & 1 & 1 & \dots & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix},$$

$$\mathbf{A}^{-1} = \frac{1}{n-1} \begin{pmatrix} -(n-2) & 1 & 1 & \dots & 1 & -1 \\ 1 & -(n-2) & 1 & \dots & 1 & -1 \\ 1 & 1 & -(n-2) & \dots & 1 & -1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & \dots & -(n-2) & -1 \\ 0 & 0 & 0 & \dots & 0 & n-1 \end{pmatrix}.$$

При $n \geq 3$ симплекс S^{**} обладает следующим свойством [6; лемма 3.3]: замена любой вершины S^{**} на любую точку Q_n уменьшает объём симплекса. При n = 2, 3, 4 (и только в этих ситуациях) объём S^{**} является максимально возможным для симплекса, содержащегося в Q_n . В то же время при любом $n \geq 2$ из (1.4) следуют равенства $d_i(S^{**}) = 1, i = 1, \ldots, n$. Они эквивалентны тому, что сумма модулей элементов каждой из верхних n строк \mathbf{A}^{-1} равна 2. Вычисления по формуле (3.2) дают значение

$$x = \left(\frac{n-2}{n-1}, \dots, \frac{n-2}{n-1}\right).$$

С таким центром гомотетии x верно $Q_n \subset S_{x,n}^{**}$. Заметим, что в двумерной ситуации x=0. Если же n=3, то x совпадает с центром куба. В последнем случае S^{**} является правильным тетраэдром, вписанным в Q_3 .

4. Оценки ||P|| в случае $S \subset Q_n, d_1(S) = \ldots = d_n(S) = 1$

Круг вопросов, связанных с изучением геометрических свойств множеств, появился в работах автора в связи с исследованием полиномиальной интерполяции функций n переменных. Соотношения между геометрическими характеристиками применялись при выводе оценок для норм интерполяционных проекторов. По поводу этой тематики см., например, [2], [4], [7]. В настоящем пункте приводятся оценки проекторов при линейной интерполяции на Q_n . Мы ограничимся случаем, когда симплекс S с вершинами в узлах интерполяции обладает свойством $d_1(S) = \ldots = d_n(S) = 1$.

Обозначим через $C(Q_n)$ пространство непрерывных функций $f:Q_n\to\mathbb{R}^n$ с нормой

$$||f||_{C(Q_n)} := \max_{x \in Q_n} |f(x)|.$$

Пусть $S \subset Q_n$. Интерполяционный проектор $P: C(Q_n) \to \Pi_1(\mathbb{R}^n)$, узлы которого $x^{(j)}$ совпадают с вершинами S, определяется равенствами $Pf\left(x^{(j)}\right) = f_j := f\left(x^{(j)}\right)$,

 $j=1,\ldots,n+1$. Через $\|P\|$ обозначим норму P как оператора из $C(Q_n)$ в $C(Q_n)$. Имеет место равенство

$$||P|| = \max_{x \in Q_n} \sum_{j=1}^{n+1} |\lambda_j(x)|.$$

Введём следующие обозначения:

$$\theta_n := \min\{\|P\| : S \subset Q_n\},$$

$$\mu_n := \min\{\|P\| : S \subset Q_n, d_1(S) = \dots = d_n(S) = 1\},$$

$$\nu_n := \max\{\|P\| : S \subset Q_n, d_1(S) = \dots = d_n(S) = 1\}.$$

Запись $A \asymp B$ означает, что для некотрых $c_1, c_2 \ge 0$ при всех $n \in \mathbb{N}$ выполняется $c_1B(n) \le A(n) \le c_2B(n)$.

Теорема 3.2. Справедливы соотношения:

$$\mu_1 = \nu_1 = 1, \quad \mu_2 = \frac{5}{2}, \quad \nu_2 = 3;$$
(4.3)

$$\mu_n \le \min\left(\frac{n+1}{2}, \frac{4\sqrt{e}}{3}\sqrt{n+2} + 1\right), \quad n \ne 2;$$
(4.4)

$$\mu_n \simeq \sqrt{n}, \quad \mu_n \simeq \theta_n;$$
 (4.5)

$$\nu_n \ge 2n - 1. \tag{4.6}$$

Доказательство. Для n=1 условие $d_1(S)=1$ эквивалентно $S=Q_1=[0,1]$. Соответствующий проектор имеет норму 1, поэтому $\mu_1=\nu_1=1$. В двумерной ситуации для S с условием $d_1(S)=d_2(S)=1$ минимальное значение $\|P\|$ равно $\frac{5}{2}$; оно достигается на симплексе с вершинами (0,0) (1,0), $(\frac{1}{2},1)$. Максимальное значение $\|P\|$ равно 3; оно соответствует S с вершинами (0,0) (1,0), (0,1). Поэтому справедливы равенства (4.3).

Пусть $n \in \mathbb{N}$. Рассмотрим симплекс S^{**} из предыдущего пункта. Как было показано, для него все $d_i(S^{**}) = 1$. Если $n \neq 2$, то норма соответствующего интерполяционного проектора P^{**} удовлетворяет неравенству

$$||P^{**}|| \le \frac{n+1}{2},$$

см. [4; теорема 3.2.3]. Поэтому для $n \neq 2$ верно $\mu_n \leq (n+1)/2$. Пусть теперь S имеет максимальный объём в Q_n . В [1; теорема 3.1] доказано, что для соответствующего проектора P

$$||P|| \le \frac{4\sqrt{e}}{3}\sqrt{n+2} + 1. \tag{4.7}$$

Так как все осевые диаметры S равны 1, то и μ_n не превосходит правой части (4.7). Таким образом, выполняется (4.4).

Неравенство (4.7) означает, что $\mu_n \leq \text{const} \cdot \sqrt{n}$. Очевидно, $\theta_n \leq \mu_n$. Как показано в [1; следствие 4.5], $\theta_n \approx \sqrt{n}$. Следовательно, справедливы соотношения (4.5).

Наконец, заметим, что норма интерполяционного проектора P^* , соответствующего симплексу $S^* = \text{conv}(e_1, \dots, e_n, 0)$ (см. п. 3), равна 2n - 1. Так как $d_i(S^*) = 1$, то $\nu_n \geq ||P^*||$. Отсюда следует (4.6).

Теорема доказана. □

На настоящий момент точные значения θ_n известны лишь для n=1,2,3 и 7. При этом для n=1,3,7 экстремальными являются симплексы $S\subset Q_n$ со свойством $d_i(S)=1$. В двумерной ситуации экстремальные симплексы последним соотношениям не удовлетворяют. По поводу этих результатов см. [4]. Вопрос о том, является ли n=2 единственным значением, для которого минимум $\|P\|$ достигается на симплексе без свойства $d_1(S)=\ldots=d_n(S)=1$, остаётся открытым.

Список литературы

- 1. Невский М. В. Минимальные проекторы и максимальные симплексы // Модел. и анализ информ. систем. 2007. Т. 14, № 1. С. 3–10. (Nevskij M. V. Minimal projections and largest simplices // Modeling and Analysis of Information Systems. 2007. V. 14, № 1. P. 3–10 [in Russian]).
- 2. Невский М. В. Об одном свойстве n-мерного симплекса // Матем. заметки. 2010. Т. 87, № 4. С. 580–593. (English transl.: Nevskii M. V. On a property of n-dimensional simplices // Math. Notes. 2010. V. 87, № 4. Р. 543–555.)
- 3. Невский М. В. Об осевых диаметрах выпуклого тела // Матем. заметки. 2011. Т. 90, № 2. С. 313–315. (English transl.: Nevskii M. V. On the axial diameters of a convex body // Math. Notes. 2011. V. 90, № 2. P. 295–298.)
- 4. Невский М.В. Геометрические оценки в полиномиальной интерполяции / Яросл. гос. ун-т им. П.Г. Демидова. Ярославль: ЯрГУ, 2012. 218 с. (Nevskii M.V. Geometricheskie ocenki v polinomialnoi interpolyacii / P.G. Demidov Yarosl. Gos. Univ. Yaroslavl: YarGU, 2012. 218 s. [in Russian]).
- 5. Невский М. В. О минимальном положительном гомотетическом образе симплекса, содержащем выпуклое тело // Матем. заметки. 2013. Т. 93, № 3. С. 448–456. (English transl.: Nevskii M. V. On the minimal positive homothetic image of a simplex containing a convex body // Math. Notes. 2013. V. 93, № 3. P. 112–120.)
- 6. Hudelson M., Klee V., Larman D. Largest j-simplices in d-cubes: some relatives of the Hadamard maximum determinant problem // Linear Algebra Appl. 1996. V. 241–243. P. 519–598.
- Nevskii M. Properties of axial diameters of a simplex // Discrete Comput. Geom. 2011.
 V. 46, № 2. P. 301–312.
- 8. Scott P.R. Lattices and convex sets in space // Quart. J. Math. Oxford (2). 1985. V. 36. P. 359–362.
- 9. Scott P. R. Properties of axial diameters // Bull. Austral. Math. Soc. 1989. V. 39. P. 329–333.

On Some Problem for a Simplex and a Cube in \mathbb{R}^n

Nevskii M.V.

P.G. Demidov Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150000, Russia

Keywords: *n*-dimensional simplex, *n*-dimensional cube, axial diameter, homothety, interpolation, projection

Let S be a nondegenerate simplex in \mathbb{R}^n . Denote by $\alpha(S)$ the minimal $\sigma > 0$ such that the unit cube $Q_n := [0,1]^n$ is contained in a translate of σS . In the case $\alpha(S) \neq 1$ the translate of $\alpha(S)S$ containing Q_n is a homothetic copy of S with the homothety center at some point $x \in \mathbb{R}^n$. We obtain the following computational formula for x. Denote by $x^{(j)}$ $(j = 1, \ldots, n+1)$ the vertices of S. Let A be the matrix of order n+1 with the rows consisting of the coordinates of $x^{(j)}$; the last column of A consists of 1's. Suppose that $A^{-1} = (l_{ij})$. Then the coordinates of x are the numbers

$$x_k = \frac{\sum_{j=1}^{n+1} \left(\sum_{i=1}^n |l_{ij}|\right) x_k^{(j)} - 1}{\sum_{i=1}^n \sum_{j=1}^{n+1} |l_{ij}| - 2} \quad (k = 1, \dots, n).$$

Since $\alpha(S) \neq 1$, the denominator from the right-hand part of this equality is not equal to zero. Also we give the estimates for norms of projections dealing with the linear interpolation of continuous functions defined on Q_n .

Сведения об авторе: Невский Михаил Викторович,

Ярославский государственный университет им. П.Г. Демидова, канд. физ.-мат. наук, доцент, декан математического факультета