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We consider the problem of the nonparametric entropy estimation of a stationary
ergodic process. Our approach is based on the nearest-neighbor distances. We
propose a broad class of metrics on the space © = AN of right-sided infinite
sequences drawn from a finite alphabet A. The new metric has a parameter which
is a non-increasing function. We apply this metrics to nearest-neighbor entropy
estimators. We prove that, under certain conditions, the estimators has a small
variance. We show that a special selection of the metric parameters reduction of
the estimator’s bias. The article is published in the author’s wording.

Introduction

The paper studies the problem of the estimation of the entropy (entropy rate) of informa-
tion sources with a finite state space. For our purposes, an information source, or a
stationary process, is a shift-invariant ergodic measure i on the space Q = AN of right-
sided infinite sequences drawn from a finite alphabet A, where N = {1,2,...}. Thus, an
infinite random sequence generated by u is viewed as a point in €2 chosen randomly with
respect to pu.

We propose a broad class of metrics on 2. The new metric has a parameter which is a
non-increasing function. We apply this metric to the nearest-neighbor entropy estimator.

It is proved that, under certain conditions, the estimator has a small variance.

We describe a fast algorithm for finding the nearest-neighbor entropy estimator.

It is also proved that, under certain parameters of our metric, the estimator has a
small bias.

We describe an effective algorithm for finding these parameters.
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1. Problem Statement

Let Q = AN and p be a shift-invariant ergodic probability measure on €. Let &g, &1, ..., &n
be independent random variables taking values in 2 and identically distributed with a
common law .

We want to evaluate the entropy of the measure u.

In addition we impose the following restrictions on the measure:

da,b>0 : p(Cu(x)) <be ™™, ¥Vn >0, ae xec, (1)

where by
Cs(x) ={yeQ:yi=z1,...,ys = x5) }
we denote cylinders in the space Q.

Let & = (&1,&,...) be a point in Q chosen randomly with respect to u. Recall that
the entropy h of a measure p is defined as follows

h=— lim ~Elog u(Ca(€)), (2)

n—oo M,

here and throughout the paper, all logarithms are to base e, i.e., natural.

2. Metrics on §) = AN

In this section we introduce a wider class of so-called [1| weak metrics, for which the
triangle inequality holds with some constant C' > 1.

Let A={1,2,..., A} and suppose that A is even.

Let = (21,29, ...) beapoint in Q = AN, then by az denote the point (a, z1, 7, ... ),
ac A

The class of metrics p is defined as follows:

plx,y) = e @), (3)
where the function «a(x,y) is defined as follows:
_ Oé(ill,y)—{—]_, a:b;
o) = { S0 W

Auxiliary functions A, (t) are non-decreasing and
0 < Aap(t) = Npalt) < 1.
Moreover the family of functions A, (%) is chosen such that the set of functions

Sa = {)\a,l(t)v ceey )‘a,a—l(t)a )\a,a—l—l(t)v ceey )‘a,A(t)}

does not depend on a (S = Sy =---=5,) and |S,| = A — 1.

In other words, the functions A, ;(t) may be interpreted as the edge coloring of the
complete graph with A vertices by A — 1 colors. Note that such coloring exists only for
even A.
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Take the following well-known coloring:

AL = Ao = )\Q,A—l = )\3,A—2 == >\A/2,A/2+1§
‘)\‘k‘: Aok = Ab—l bl = " = A 2k—1 = A2k, A-1 = *** = AA/24k—1,4/24k; (5)
.)\.A.—l = Xo,a-1 = A1 a2 =X a3=""= A2 14/
Take
/\k(t):gb(%—k%gb—l(t)), k=1,2,...,A—1, (6)

where ¢(t), is non-increasing defined on the interval (0, 1] such that

¢(1) = 0;
6 (L) = o(t) + 1. (7)

We stress that ¢(t) is an arbitrary function on the interval (4 , 1] (non-increasing
and 0 < ¢(t) <1).

If ¢(t) =0, % <t <1, we obtain the well-known metric, and denote it by py.

If () =1, & <t <1, we obtain the metric £ po.

We stress also that the metric p with an arbitrary function ¢(t) is bi-Lipschitz
equivalent to the metric pg, i.e.

6_1p0(w7 y) < p(iB, y) < p0<$7y>‘ (8)

Therefore, p is a weak metric [1] (or near-metric), i.e. the triangle inequality holds with
some constant C' > 1.

While each point & has infinitely many coordinates, for any practical calculations,
we need to limit the number of coordinates which are used for calculation. We make it
by introducing a truncation of the metric that uses only the first m coordinates of the
points.

We define p™), the truncation of the metric p, as follows:

m —a(m)
P (@, y) = e @), (9)
where

aO(z,y) = 0;
(m-1) 1, a=0b; (10)
(m) _ o (w7 y) + ) a )
o (CLZB, by) { Aa,b(a(m_l)(w; y))’ a 7é b.

Proposition 1. The set of values of o™ (x,y) is

o fo(2). v 1) a
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Proof. The proof is by induction on m.
For m = 0, there is nothing to prove.
Using definition (10), we get

A-1

O = | M(@rn1) U{ @y + 1} (12)

By the inductive assumption and (6), we obtain

AOIA (Pp1) {cﬁ(k + N) N=1,2 A" k=12 A 1}
E\¥m-1) = i am | =L 4. ) = L4 - .
et A A

Using (7), we obtain

(s 1) fo(25), ¥ 1,

Substituting in (12), we get (11). O

In all practical calculations we also need to limit the number of parameters that are
used for finding the values of the function ¢(t). We make it by introducing a truncation
of the function ¢(?).

We define ¢;(t), the truncation of the function ¢(t), as follows:

o) =0 (%), N <<, N=ATt 41, AR 42, AL
G () =adu(t)+1, 0<t<1.
It should be stressed that the functions = = ¢(t) and ¢ = ¢; '(x) have intervals of

constancy and discontinuities (a constancy interval of one function corresponds to a
discontinuity of the other).

(13)

Corollary 1. Let ¢(t) = ¢y(t), then the set of values of ™ (x,y) is
m—l
J{®+ &}
k=0

3. Nearest Neighbor Entropy Estimator

Suppose n + 1 points &g, ..., &, are given by its first m coordinates. Therefore we must
to use the truncation p(™ of the metric (3) - (7).

Suppose the truncation of the function (7) is given by the truncation ¢;(t), I < m,
and ¢;(t) is given by parameters

-1 .
@-:¢(%), i=1,2,... Al — A7t 1, (14)

Note that
126 =20z > Ba_a14 20 (15)
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In addition to the points and metrics we use an auxiliary parameter k that serves to
control the applicability of evaluation. The estimators obtained for different values of k
are estimates of one and the same magnitude.

The nearest neighbor estimator nnk) (p'™) of the inverse entropy 1/h is defined as
follows [4]:

A () = b (rP (™) = D)) (16)
where
1 n
(k)( (m)y — (k) (m) (¢ ¢
Tn p ) - maX « (5176])7 (17)
n+1 = Q]

and max(k){Xl, . ,XN} = Xk, if X1 > X2 > e 2 XN.

Applying Corollary 1, we obtain
Corollary 2. The estimator nq(lk) (p'™) is a linear function of the parameters f3;, i =
1,2,..., A —1.

4. Properties of Estimator

In this section, we consider statistical properties of the estimator (16).

Proposition 2. Let &, ..., &, be n + 1 independent points in the space ) chosen
randomly with respect to p and k = O(logn), then

Ery”
i B (p) _ 1
nooo  Inmn h

The proof follows from (8) and Proposition 8 in [4].

Proposition 3. Suppose Condition (1) holds, then there exists a constant ¢ > 0 such
that
Er(p) - Erl(o™) = O ™)

form > clnn.

This Proposition can be proved just as in [2].
Using (6), we obviously have the following property:

1 >)\1(t1) >)\2(t2) > e >)\A,1(tA,1>, vtl,tQ,...tA,1 > 0. (18)
If we combine this property with Theorem 2 from [2], we get

Proposition 4. There exists a constant C such that

m2k?

n

Dr(p™) < ©
Thus, for determining the accuracy of n%k) (p'™) we must found the bias. By Proposition 3
it is sufficient to find bias for m = cc.
The application of Theorem 1 [4] yields the following
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Proposition 5.

n!

T = 1)i(n— k)l /o X E -, 1

where

x(t) = / o(t,w) du(w), (20)

and by x = v(t,w) we denote the generalized inverse function of t = u(B(w,e™")), where
by B(w,r) we denote an open ball of radius r centered at x.

5. Determination Parameters of the Metric

We will choose the parameters of the metric so that to minimize the average deviation.

Since by Corollary 2 the estimator is a linear function of the parameters, we obtain
a quadratic optimization problem on the simplex.

Problems involving estimation under linear inequality constraints arise often in statistics [3].
The traditional use for constrained estimation is for nonparametric regression with shape
restrictions.

Thus, by Corollary 2, we get

Al_Alfl -1
(™) =n® (™) + > BRI (21)
i=1
We will minimize the function

F(B) = = 3" (96 — P () (22)

where

(k) m 1 m
 (p™) = ———> " (pt™). (23)

Substituting (21) in (22), (23), we obtain that F(f) is a quadratic form of its
parameters. Therefore, the problem of minimization of this function is reduced to the
problem of minimizing a quadratic form on the simplex (15).

6. Algorithm for Estimator Calculation

The algorithm consists of two stages.

1. Choose a part of the given strings.
Find the coefficients in the linear expansion (21).

Find the minimum of positive quadratic form (22) on the simplex (15).
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2. Find the estimator (16) for the remainder part of the given strings with the
parameters found in the first stage.

Since the property (18) holds, we can design a fast algorithm for the k-nearest
neighbor search. The time complexity of the search is O(m).

Let X1,..., XN be N words X; = %1 ... Tim, xi; € A.

For a given word X and integer k, we want to find the following:

max ®a ™ (X, Xo),

1<i<n

The dictionary ( X3,..., X ) will be stored as a trie T'. The root is associated with
the empty string.

To each node i, we assign an auxiliary parameter d(i) such that d(i) is the number
of descendant leaves in the subtrie with the root i. Thus, at each node i we store a list
C'(7) of all children and a parameter d(7).

Note that in our trie 7" all leaves are at level m. Thus, the required memory is O(AN).

Proposition 6. Suppose a k-nearest string belongs to the subtrie 7 with the root r. Let
ro, T1, ..., Ta—1 be the children of r. We enumerate the node r; by the index of the
corresponding function \; (see (5)). Then the k-nearest string belongs to the subtrie with

the root r; such that
i—1

id(rj) >k, Y d(ry) <k

Jj=0

7. Symmetric Bernoulli Measure

We show that for symmetric Bernoulli measures (with A equally probable symbols) we
can find a function ¢(t) of the metric (3) - (7) such that n) (p) is unbiased.

The function v(f,w) is independent of the point w for the symmetric Bernoulli
measure. Therefore, y(t) = v(t,w) and is defined by the following recursive equations:

S k+1. (24)

It is easy to verify that the solution to these equations is x(t) = ¢(¢).

We claim that for |
nt
) =p(t) = ——
(1) = (1) =~
n) (p) is unbiased.
Substituting x(¢) in (19), we obtain

(k — 1)!(:!— k)l n A /0 In(t) £ (1 — )" dt.
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Applying [5, 4.253.1], we get
P(n+1) — (k)

Er®(p) = 2
O AU O} (25)
where ¢(t) = £ InT'(¢) is the digamma function.
Hence,
k4 1) — (k) 1
By (p) = k4 =— 2
() = kI L (26)
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AsroputMm 3¢ PEeKTUBHOTO OIeHUBAHUS SHTPONNNI

Tumodeen E.A.

Hpocaasckuti 2ocydapecmeentniti yrnusepcumem um. 11 I Jlemudosa
150000 Poccua, e. Hpocaasavb, ya. Cosemcras, 14

KiroueBble cjioBa: SHTpONNS, HelapaMeTpuiecKas OlleHKa, METPUKa, Iap, Mepa
bepnynm

PaccmarpuBaercs 3aja4da HenapaMeTPUUECKOTO OIECHUBAHUsT SHTPOIMHU CTAIMOHAP-
HOT'O 9ProIMYIECcKOro mporiecca. [[puMenseTcs 1m0/1Xo/1, OCHOBAHHBIN Ha HAXOXKJICHUU pac-
crostHUil 10 OmmKaimmux Tovek. [Ipeiozken 10BOJILHO OOJIBINON KIacec METPUK Ha IIPO-
crpanctse 2 = AN mpaBocTOPOHHIX 6ECKOHETHBIX MOC/IE0BATEILHOCTEl HaJl KOHETHBIM
asipasutrom A. HoBasi Merpuka mmeeT napamerp — HeBo3pacTamoiyo dyHnkimio. /Joka-
3aHO, 9TO IIPU HEKOTOPBIX OIPAHUYEHUAX IIpe/iiaracMasl OlleHKa UMeeT MaJIylo JUCIep-
cuio. [Tokazamno, 4To crienuaJjbHbII BLIOODP ITapaMeTPOB ITO3BOJISIET YMEHBIITUTH CMEIIeHHE.
Ormmcan ajgropuT™ i BbIOOpa Takux mapamMerpoB. CraTbs myOJIUKyeTcs B aBTOPCKOA
PETAKITAN.

CBenenusi 06 aBrope: TumodeeB EBrennii AjiekcanapoBud,
fpocnascknit rocynaperBennbtit yausepeureT uM. [L.IN Jlemuiosa,
JI-p dbus.-mMaT. HAYK, mpodeccop



