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The method of the logistic function is presented for finding exact solutions of
nonlinear differential equations. The application of the method is illustrated by
using the nonlinear ordinary differential equation of the fourth order. Analytical
solutions obtained by this method are presented. These solutions are expressed via
exponential functions.

Introduction

Nonlinear differential equations and their solutions play an important role at
description of physical and other processes and as a result we can observe a large number
of publications in this area.

There are a lot of methods for finding exact solutions of nonlinear equations. For
example, the inverse scattering transform [1], the dressing method [2, 3], the Hirota
method [4], the group methods [5] and some others demonstrate a lot of advantages in
the case of exactly solvable nonlinear differential equations.

However, most of these methods do not give any new results in application to
nonlinear nonintegrable equations. In this case researchers often use ansätze methods.

The list of these approaches is extensive. Let us mention: the singular manifold
method [6], the trial function method [7], the tanh-expansion method [8–10], the simplest
equation method [11–15], the G′/G - expansion method [16–18] and the F-expansion
method [19–21].

Modern computer algebra systems like Mathematica and Maple play the main role in
the application of these methods. Using these powerful programs a researcher can make
cumbersome analytical calculations in a short period of time.

1The work was supported by Russian Science Foundation, project No. 14-11-00258 to support research
carried out by individual research groups.
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It is well known that any expression containing exponents, trigonometric or
hyperbolic functions can be rewritten in various forms. In the case of large expressions
the equivalence of these forms is not obvious. Using the computer algebra programs many
researchers find exact solutions of nonlinear differential equations but do not analyze the
obtained results. They often suppose that a new ansätze can give new solutions, but
they are often wrong. A lot of such examples and the list of common errors is given in
the work [22].

In this paper we demonstrate the most simple method for finding solitary wave
solutions of nonlinear differential equations with the application of the logistic function.
The logistic function (the sigmoid function) is determined by the following formula
[24–27]

Q(z) =
1

1 + e−z
, (1)

where z is independent variable on the complex plane. We see that the logistic function
has the pole of the first order on complex plane. This function can be used for finding
exact solutions of nonlinear differential equations [27,28]. Other variants of this approach
without the logistic function were used in some papers before (see, for a example [6, 7,
11,12,29]).

One can see that the logistic function is the solution of the first order differential
equation called the Riccati equation [27,28]

Qz −Q+Q2 = 0. (2)

The logistic function (1) can be presented taking the hyperbolic tangent into account
because of the following formula

1

1 + e−z
=

1

2
tanh

(z
2

)
+

1

2
. (3)

However the logistic function is more convenient for finding exact solutions as it has
been illustrated in recent papers [27,28].

Let us show that the general solution of the Riccati equation can be expressed via
the logistic function. The Riccati equation takes the form

yz = a y2 + b y + c, (4)

where a, b and c are arbitrary constants.
It is easy to obtain that the general solution of equation (4) can be written by means

of formula

y = B − 2B + b

a
Q(z) z =

z
′ − z0

2B + b
, (5)

where z0 is an arbitrary constant, B is defined via constants a, b and c from the algebraic
equation

aB2 + bB + c = 0. (6)

So, the logistic function is the solution of the Riccati equation to within transformations
(5).
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The aim of this paper is to to use the logistic function to look for the analytical
solutions of the generalized nonlinear wave equation in the form:

ut + αun ux − δ (um ux)x + uxx + σ uxxx + uxxxx = 0, (7)

where α, δ and σ are parameters of the equation, m and n are integer. This equation is
applied for description of many nonlinear waves.

In the case of n = 1 and δ = 0 equation (7) takes the form

ut + αuux + uxx + σ uxxx + uxxxx = 0. (8)

Nonlinear evolution equation (8) has been studied by many authors from various
points of view. This equation has drawn much attention not only because it is interesting
as a simple one-dimensional nonlinear evolution equation including effects of instability
and dissipation but it also is important for description of engineering and scientific
problems. Equation (8) was used in work [30] for explanation of the origin of persistent
wave propagation through medium of reaction-diffusion type. In paper [31] equation
(8) was derived for description of the nonlinear evolution of the disturbed flame front.
We can encounter the application of equation (8) for studying of motion of a viscous
incompressible fluid flowing down an inclined plane [32–34]. Mathematical modeling of
dissipative waves in plasma physics by means of equation (8) was presented in [35].
Elementary particles as the solutions of the Kuramoto—Sivashinsky equation were
studied in [36]. Equation (8) also can be used for description of long nonlinear waves
in viscoelastic tube [37].

The exact solutions of the Kuramoto—Sivashinsky equation are well known. The
solutions of Eq. (8) at σ = 0 were first found by Kuramoto [30]. Later Eq. (8) and its
generalizations were considered many times. For example, the exact solutions of these
equations were obtained and re-discovered in works [6, 7, 38–46].

In contrast to the Kuramato-Sivashinsky equation (8), equation (7) was not studied
at various values m and n. Using the traveling wave solution

u(x, t) = w(z), z = k x+ ω t, (9)

equation (7) can be written as the following:

k4wzzz + σ k3wzz + k2wz − δ k2wmwz +
α k

n+ 1
wn+1 + ω w + C1 = 0. (10)

To study equation (10) we apply the Painlevé test using three steps of the
Kovalevskaya method.

At the first step we determine the first member of the expansion of the general
solution in the Laurent series. This is accomplished by the means of the substitution

w =
a0
zp

(11)

into the leading members of equation (10).
The Painlevé analysis of the equation can be continued further if the value of the

power p will be integer.
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At the second step we determine the Fuchs indices of the expansion for solution in
the Laurent series. For this purpose we use the formula

w =
a0
zp

+ b zj−p. (12)

Here b is the coefficient of the expansion for the solution in the Laurent series which
cannot be found. The Fuchs indices can be found by means of a substitution of expression
(12) into the equation with the leading members again and equating the expression with
the first power β to zero.

At the third step we substitute the expansion of the general solution in the Laurent
series with undermined coefficients in the form

w(z) =
a0
zp

+
a1
zp−1

+
a2
zp−2

+ . . . (13)

into equation (10). At this step we check the existence of the arbitrary constants in
the Laurent series of the general solution of equation studied. In the case when there
are three arbitrary constants in the Laurent series we have the necessary condition
for integrable nonlinear differential equation. As this takes place we can obtain three
arbitrary constants in the expansion: two arbitrary coefficients in (13) and constant z0
which can be added to the variable z.

Considering results of the expansion for solution in the Laurent series we can draw
conclusions regarding exact solutions.

The aim of this work is to analyze equation (10) and to find its exact solutions using
the logistic function.

1. Painlevé analysis and exact solution of equation at
m = 1 and n = 1

Let us consider equation (10) at m = 1 and n = 1. This equation was derived for
description of survace waves in a convecting fluids [47–49]. Using the traveling wave
solution we can write equation (10) in the form:

k4wzzz + σ k3wzz + k2wz − δ k2wwz +
α k

2
w2 + ω w + C1 = 0. (14)

Without loss of the generality let us take the value of parameter δ = 6 in equation
(14).

Substituting w from (11) into the equation with the leading members

k2wzzz − 6wwz = 0 (15)

we find the values a0 and p: (a0, p)=(2 k2, 2). The general solution of equation (14) has
the pole of the second order.

Substituting

w =
2 k2

z2
+ b zj−2 (16)
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into equation (15) we obtain the Fuchs indices in the form

j1 = −1, j2 = 4, j3 = 6. (17)

The index j1 = −1 corresponds the arbitrary constant z0, but for the further
consideration we have to substitute the expansion of the solution in the Laurent series
in the form

w =
2 k2

z2
+
a1
z

+ a2 + a3 z + a4 z
2 + a5 z

3 + a6 z
4 + . . . (18)

into equation (14). Equating expressions at different powers of z to zero, we have the
following system of equations:

a1 = −
k

15
(α + 6σ) , (19)

a2 =
23ασ

900
− σ2

150
+

α2

225
+

1

6
, (20)

a3 =
ω

6 k2
− 16α2σ

3375 k
− ασ2

1500 k
− 7α3

9000 k
− α

36 k
− σ3

750 k
, (21)

k (α + σ)
(
α3k + 6α2kσ + 36α k + 216ω

)
= 0, (22)

a5 = −
ασ2

2700 k3
+

53α2σ

16200 k3
+

α3

1800 k3
+

C1

6 k4
+

11σ a4
15 k

+

+
2α a4
5 k

+
ω

36 k4
+

α

432 k3
+

11ασ4

90000 k3
+

53ω ασ

2700 k4
+

+
4781α3σ2

9720000 k3
+

167α5

12150000 k3
− σ5

112500 k3
− ω σ2

450 k4
+

+
ω α2

300 k4
+

α2σ3

45000 k3
+

799α4σ

4860000 k3
,

(23)

763α6

24300000
+

1957

27000

ω α2σ

k
+

17

3
k2a4 ασ +

461

2250

αω σ2

k
− 7

250

ω σ3

k
+

+
7αC1

15 k
+

169

162000
α4 + 8 k2a4 σ

2 +
4241

8100000
α5σ +

97

75000
ασ5−

− ω α

30 k
+

169

27000

ω α3

k
+

8α2σ4

16875
+

14059

4860000
α4σ2 + k2a4 α

2+

+
3σ ω

10 k
+

9σ C1

5 k
+

461

13500
α2σ2 − 7

1500
ασ3 − ω2

3 k2
+
ασ

40
−

− α2

360
− σ6

9375
+

1957

162000
α3σ +

8639

1620000
α3σ3 = 0.

(24)
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Considering system of equations (19) — (24) one can see that equation (14) does
not pass the Painlevé test because (22) and (24) are not identically equal to zero. One
can note that the coefficient a4 can be an arbitrary constant. In this case we can obtain
the exact solution with two arbitrary constants. In another case we can find the exact
solution which is expressed via the equation of the first order and has only one arbitrary
constant. In this case we can find the dependence ω on parameters of equation (14) in
the form

ω = −α
3k

216
− α2kσ

36
− α k

6
. (25)

Substituting (25) into (24) we obtain an equation with the coefficient a4 and the
parameters of equation (14). One can find from this equation the coefficient a4 or
parameter C1 or other parameters. So, there is the expansion of solution (14) in the
Laurent series but with only one or two arbitrary constants.

We use the method of the logistic function [23] for finding the exact solution of
equation (14). For this purpose we look for the solution of equation (14) in the form

w = A0 + A1Q(z) + A2Q(z)
2, (26)

where A0, A1 and A2 are coefficients which are found at comparison with the Laurent
series of the solution for equation (14), Q(z) is the function in the form

Q(z) =
1

1 + e−z+z0
, (27)

z0 is an arbitrary constant.
The solutions w(z) of equation (14) can be written in the form

w1(z) =
1

6
+

13ασ

900
− σ2

25
+

19α2

5400
+

(
α2

450
+

2ασ

75
+

2σ2

25

)
Q(z)2, (28)

and
w2(z) =

1

6
+

37ασ

900
+
σ2

25
+

31α2

5400
−
(
α2

225
+

4ασ

75
+

4σ2

25

)
Q(z)+

+

(
α2

450
+

2ασ

75
+

2σ2

25

)
Q(z)2,

(29)

where z can be written as

z1,2 = ∓
(α + 6σ)

30
x ± α

6480
(α + 6σ)

(
6ασ + 36 + α2

)
t. (30)

Solutions w1(z) and w2(z) satisfy equation (14) at additional condition

C1 = −
α (α + 6σ)

1749600000

(
19α2 + 900 + 78ασ − 216σ2

) (
31α2 + 900 + 222ασ + 216σ2

)
.

(31)
There also is a solution expressed via the Weierstrass function. This solution of

equation (14) can be written as

w(z) =
1

6
+ 2 k2 ℘(z, g2, g3), (32)
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where
z = k x− α k

6
t, σ = −α

6
, g2 =

1

12 k4
− 6C1

α k5
. (33)

So, we have found the solution of equation (14) with two arbitrary constants k and
g3 as we predicted before. This solution is realized at condition on parameters α and
σ. In the case of arbitrary parameters α and σ we have obtained the only solitary wave
solutions (28) and (29) in the form of kinks.

2. Painlevé analysis and exact solution of equation at
m = 2 and n = 1

Let us consider equation (7) at m = 2 and n = 1. In this case this the equation takes
the form

ut + αuux − δ (u2 ux)x + uxx + σ uxxx + uxxxx = 0. (34)

Using the traveling wave solutions in the form

u(x, t) = w(z), z = k x+ ω t, (35)

After integrating we have the nonlinear differential equation in the form

k4wzzz + k3 σ wzz + k2wz − δ k2wwz +
α k

2
w2 + ω w + C1 = 0, (36)

where C1 is a constant of integration.
Let us apply the Painlevé test to study (36). The equation with the leading members

in this case is found from equation (36) and takes the form

k4wzzz − 6 k2wwz = 0. (37)

The first step of the Painlevé test is the determination of the first member of the
expansion for solution in the Laurent series. Substituting

w =
a0
zp

(38)

into equation with the leading members (37) we have two values (a0, p) = (k, 1) and
(a0, p) = (−k, 1).

The second step of the Painlevé test is the determination of the Fuchs indices of the
expansion of the solution. With this aim we substitute

w = ±k
z
+ b zj−1 (39)

into the equation with the leading members (37) again. As a result we have

j = −1, j = 3, j = 4. (40)

At the third step of the Painlevé analysis of equation (36) we have to check the
arbitrary constants at the expansion of the solution in the Laurent series. We substitute

w = ± k
z
+ a1 + a2 z + a3 z

2 + a4 z
3 + . . . (41)
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into equation (36). We obtain the following system of equations:

a1 = ∓
σ

6
, (42)

a2 = ∓
σ2

36 k
± 1

6 k
− α

12 k
, (43)

ω ∓ α kσ

6
= 0, (44)

C1 + 4σ k3a3 −
α kσ2

18
+
kα

4
∓ kα2

8
= 0. (45)

Equation (36) would be integrable if equations (44) and (45) are identically equal to zero
but as we can see they are not. The equation is equal to zero in the case of

ω = ± α k σ
6

(46)

Let us look for the exact solutions of equation (36) using the method of the logistic
function. We search the solution in the form

w = A0 + A1Q(z), (47)

where Q(z) is the logistic function

Q(z) =
1

1 + e−z+z0
. (48)

Here z0 is an arbitrary constant.
Taking into account the value ω from (44) we have the following solutions:

w1,2 = −
σ

6
∓ m1

6
(1− 2Q(z)) , z =

m1

3

(
±x ± ασ

6
t
)
,

m1 =
√
18− 3σ2 − 9α,

(49)

at the additional condition

C
(1)
1 = ∓ αm

1/2
1

216

(
4σ2 − 18 + 9α

)
. (50)

and two other solutions in the form

w3,4 =
σ

6
± m2

6
(1− 2Q(z)) , z =

m2

3

(
±x∓ ασ

6
t
)
,

m2 =
√
18− 3σ2 + 9α,

(51)

at the additional condition

C
(2)
1 = ± αm

1/2
2

216

(
4σ2 − 18− 9α

)
. (52)

Exact solutions (49) and (51) are the solitary wave solutions in the form of kinks.
We can look for the periodic solutions of equation (36) if we apply the method

developed in works [50–52].
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3. Painlevé analysis and exact solutions of the
equation at m = 2 and n = 2

Let us consider equation (10) at m = 2 and n = 2. In this case the nonlinear differential
equation takes the form

k4wzzz + k3 σ wzz + k2wz − 6 k2wwz +
α

3
w3 + ω w + C1 = 0. (53)

The general solution of equation (53) has the pole of the first order because
substituting w = a0

zp
we have two values (a0, p) = (k, 1) and (a0, p) = (−k, 1).

The Fuchs indices correspond to the previous case:

j1 = −1, j2 = 3, j3 = 4. (54)

Substituting (41) into equation (53) we obtain the system of equations in the form

a1 = ∓
( α
36
α +

σ

6

)
, (55)

a2 = ∓
(
σ α

54 k
+

5α2

1296 k
+

1

6 k
− σ2

36 k

)
, (56)

±
(
ω k +

α2k2σ

36
+
α3k2

216
+
α k2

6

)
= 0, (57)

C1 +
4α k3a3

3
+ 4σ k3a3±

±
(
α kσ3

81
− α k σ

18
− α3 k σ

486
− α2kσ2

324
− 7α4k

34992
− α2 k

108

)
= 0.

(58)

One can see that equation (53) does not pass the Painlevé test because equations
(57) and (58) are not equal to zero. We notece that there is the expansion of the general
solution of equation (53) in the Laurent series, but we have only unique arbitrary constant
in this expansion. From equation (57) we can find the dependence ω in the form:

ω = −α
2kσ

36
− α3k

216
− α k

6
. (59)

In this case the coefficient a3 of solution for equation (53) can be taken as an arbitrary
coefficient. From equation (58) one can also find the condition for the constant C1.

The exact solutions of equation (53) can be found using the formula:

w = B0 +B1Q(z), (60)

where B0 and B1 are constant coefficients found from the Laurent series.
As a result we have the solution in the form

w1,2 = −
α

36
− σ

6
∓ m1

36
± m1

18
Q(z),

z = ±m1

18
x∓ m1 α

3888

(
6σ α+ α2 + 36

)
t,

(61)
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where m1 takes the form

m1 =
√
15α2 + 72σ α− 108σ2 + 648. (62)

Solution (61) satisfies equation (53) at the additional condition

C
(1,2)
1 = ± αm1

629856
(α + 6σ)

(
7α2 + 30σ α− 72σ2 + 324

)
. (63)

The two other solutions of equation (53) can be written as

w3,4 =
α

36
+
σ

6
± m2

36
∓ m2

18
Q(z),

z = ±m2

18
x∓ m2 α

3888

(
6σ α+ α2 + 36

)
t,

(64)

where m2 takes the form

m2 =
√
15α2 + 72σ α− 108σ2 + 648. (65)

Solution (61) satisfies equation (53) at additional condition

C
(3,4)
1 = ∓ αm2

629856
(α + 6σ)

(
7α2 + 30σ α− 72σ2 + 324

)
. (66)

These solutions of equation (53) are the solitary wave solutions in the form of kinks.
Let us note that we can obtain the periodic solutions of equation (53) if we apply the
method developed in papers [50–52].

4. Painlevé analysis and exact solutions of the
equation at m = 1 and n = 3

Let us study the existence of the exact solution of equation (10) at m = 1 and n = 3. It
takes the form

k4wzzz + k3 σ wzz + k2wz − 6 k2wwz + 6 k w4 + ω w + C1 = 0, (67)

Substituting
w =

a0
zp

(68)

into equation (67) we have p = 1 and

a0 = k, a1,2 = −
k

2
± i k

√
3

2
. (69)

The general solution of equation (67) has the pole of the first order. Substituting
w = a0

z
+ b zj−1 into the equation with the leading members in the form

k4wzzz + 6 k w4 = 0, (70)
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we have the following Fuchs indices:

j1 = −1, j2,3 =
7

2
+
i

2

√
23. (71)

Using the expansion of solution in the Laurent series

w =
k

z
+ a1 + a2 z + a3 z

2 + . . . (72)

into equation (67) we obtain the coefficients in the form

a1 = −
σ

12
− 1

4
, (73)

a2 =
1

96 k
− σ

24 k
− σ2

96 k
, (74)

a3 = −
5σ2

384 k2
− ω

24 k3
− 5σ

384 k2
− 7σ3

3456 k2
+

3

128 k2
, (75)

a4 =
71

4608 k3
− C1

30 k4
− ω σ

360 k4
− 49σ4

207360 k3
− ω

40 k4
−

− 17σ2

2304 k3
− σ3

384 k3
+

7σ

5760 k3
,

(76)

and so on.
We have the expansion of the solution in the Laurent series but there is only one

arbitrary constant z0 in this series. So we have the solution with one arbitrary constant.
This solution also can be found using the logistic function.

For example using the expression

w = B0 +B1Q(z) (77)

and substituting it into equation (67) we have

w1,2(z) = −
m1

8
− 1

4
− σ

12
+
m1

4
Q(z), (78)

where
z =

m1

4
x− (σ + 3) (7σ2 + 24σ − 27) (σ2 − 1 + 4 σ)

288m1

t,

m1 =
√
2− 8σ − 2σ2.

(79)

Solution (78) satisfies equation (67) at the additional condition for the constant C1

C1 =
1

9216

(σ2 − 21) (11σ2 + 48σ + 9) (−1 + 4 σ + σ2)√
2− 8σ − 2σ2

. (80)

Other solutions depend on complex parameters.
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5. Painlevé analysis and exact solutions of the
equation at m = 2 and n = 3

Now let us consider equation (10) at m = 2 and n = 3. Using the traveling wave solution,
equation (10) at α = 4 and δ = 5 takes the form

k4wzzz + σ k3wzz + k2wz − 5 k2w2wz + k w4 + ω w + C1 = 0. (81)

Equation with the leading members can be written as the following

k4wzzz − 5 k2w2wz + k w4 = 0. (82)

Substituting (11) into (82) we obtain that there is three branches of solutions with
the pole of the first order and values

a
(1)
0 = k, a

(2,3)
0 = (±

√
3− 3) k. (83)

Let us consider the expansion of the solution with a(1)0 . Substituting expression (12)
into (82) we have the following Fuchs indices

l1 = −1, j2,3 =
7

2
± i
√
3

2
(84)

We have obtained that equation (81) does not pass the Painlevé test. However, there
is the expansion of solution in the Laurent series. We have

a1 = −
σ

7
, (85)

a2 =
1

9 k
− 11σ2

441 k
, (86)

a3 = −
8σ3

1029 k2
+

σ

21 k2
− ω

4 k3
, (87)

a4 = −
2

81 k3
− 38σ2

2835 k3
+

3083σ4

972405 k3
+

4ω σ

35 k4
− C1

5 k4
(88)

and so on.
We see that there is only one arbitrary constant in the expansion of solution in the

Laurent series. So, we can obtain the exact solution which can be found using the logistic
function.

We have the following solutions:

w1,2(z) = −
σ

7
∓ 1

21

√
147− 33σ2 (1− 2Q(z)), (89)

where
z = k x+ ω t, k1,2 = ±

2

21

√
147− 33σ2,

ω =
k

1372

(
1029 k3 + 196σ k2 + 308 kσ2 + 16σ3 − 1372 k

)
.

(90)

The other solutions of equation (81) are more cumbersome so let us not present them in
this work.
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6. Conclusion

In this paper we have considered the generalized Kuramoto – Sivashinsky equation
(7) using the Painlevé analysis for nonlinear ordinary differential equations. We have
obtained that the whole class of equations is not integrable but the expansion of solution
for these equations in the Laurent series contains one or two arbitrary constants and as
a consequence can have exact solutions. Using the logistic function as the new variable
we have found exact solutions for all versions of these KurSivEq equations.
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Метод логистической функции
для нахождения аналитических решений

нелинейных дифференциальных уравнений

Кудряшов Н.А.

Национальный Исследовательский Ядерный Университет МИФИ
115409 Россия, г. Москва, Каширское шоссе, 31

Ключевые слова: логистическая функция, нелинейная волна, нелинейное
обыкновенное дифференциальное уравнение, тест Пенлеве, точное решение

Для нахождения точных решений нелинейных дифференциальных уравнений
используется метод логистической функции. Применение метода иллюстрируется
на примере нелинейного обыкновенного дифференциального уравнения четвертого
порядка. Представлены аналитические решения, полученные с помощью этого ме-
тода. Как оказалось, эти решения выражаются через экспоненциальные функции.
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