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Push-down automata with independent counters (PDACs) combine the power
of PDAs and Petri Nets. They were developed in [21, 15], as a tool of recogni-
tion of languages generated by Categorial Dependency Grammars (CDGs). CDGs
are classical categorial grammars extended by oriented polarized valencies. They
express both projective and non-projective dependencies between the words of a
sentence. PDAC is a usual PDA equipped with a finite number of counters. The
independence of counters means that their state has no effect on the choice of
an automaton move. In the first part of the paper we compare some variants of
PDACs and prove the equivalence of two variants of PDAs with independent coun-
ters: without syntactic and without semantic ε-loops. Some connections between
PDAC-languages and Petri Net languages are noticed. Then we show that PDACs
are equivalent to stack+bag push-down automata (SBPA) independently intro-
duced by Søgaard and that ε-acyclic SBPAs recognize exactly CDG-languages.

Multimodal Categorial Dependency Grammars (mmCDGs) were introduced in
[4] as an extension of GDGs that allows control of some intersections of depen-
dencies. The class of mmCDG-languages is rich enough and has good closure
properties, that it forms AFL. In the second part of the paper we extend PDACs
and introduce push-down automata with stacks of independent counters (PDASC).
PDASCs extend PDACs twofold: (i) each counter is a stack of integers and (ii)
there is a restriction function which allows to diminish a head of a counter only
if the heads of all dependent counters are zeros. Our main result says that these
PDASCs accept exactly the class of mmCDG-languages.

The article is published in the author’s wording.

1This work was sponsored by the Russian Foundation of Basic Research (Grants No. 13-01-00643
and 13-01-00382).
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Introduction

Push-down automata with independent counters (PDAC) are a natural extension of
push-down automata (PDA), the class of automata which recognizes context-free lan-
guages (see, e.g. [11, 20]). They were developed by the second author ([21, 15]) as a tool
for recognition of languages generated by Categorial Dependency Grammars (CDGs).
Because these automata combine PDAs with Petri Nets, we believe that they are an
interesting object of study by themselves.

Dependency grammars (DGs) are formal grammars assigning dependency trees (DTs)
to well-formed sentences. A DT of a sentence is a labeled arrows tree whose nodes are
the words of the sentence. A formal description of DGs and the DG syntax was defined
by Tesnière [17]. It is well-known that the DTs assigned to constituent structures by
context-free (cf-) grammars are always projective: the projections of words fill continu-
ous segments. Meanwhile, discontinuous non-projective dependencies are inevitable in
languages. They often mark communicative structure and special constructs encoding
complex semantic relations.

The necessity of treating non-projective dependencies in grammars led to many pro-
posals on extending cf-grammars and push-down automata. One of the best known is
the class of Tree Adjoining Grammars (TAGs) [13]. For this class Embedded Push-Down
Automata (EPDA) have been introduced in [18]. EPDAs recognize the class of Tree-
Adjoining Languages (TALs). EPDAs extend push-down automata (PDA) by replacing
the single push-down store used in PDAs with a stack of non-empty push-down stores.
TAGs and EPDAs can handle some non-projective dependencies. But their power is not
enough to recognize some languages with the intensive cross-serial dependencies. E.g., it
was recently shown in [18] that TALs do not include language MIX3 ⊂ {a, b, c}∗ contain-
ing all the words with equal numbers of the symbols a, b and c. A detailed comparison
of TAGs, EPDAs and many others extensions of cf-grammars and PDAs can be found
in [18, 12].

The Categorial Dependency Grammars (CDGs) were originally introduced by Dikov-
sky [6]. Their mathematical properties were studied by Dekhtyar, Dikovsky and Karlov
in [2, 3, 21]. They showed that the family of CDG-languages is closed under all AFL
operations, except for iteration2. Additionally, Karlov defined the class of Push-down
Automata with Independent Counters (PDAC) and proved that these automata ac-
cept exactly all CDG-languages [21]. PDA with independent counters is a usual PDA
equipped with a finite number of counters. The independence of counters means that
their state has no effect on the choice of an automaton move. An equivalent class of
Stack+Bag Push-down Automata was introduced by Søgaard independently [16].

In [7, 4] the multimodal extensions of CDGs (mmCDGs) were defined. They add to
CDGs cross prohibition functions which prevent from intersections of some dependencies
in DTs. It was shown that mmCDG-languages are closed under iteration, and their
expressive power and complexity were investigated.

At the same time, the problem of characterizing the mmCDG-languages by appro-
priately extending push-down automata remained open. In this paper we provide such a
characterization by defining Push-down Automata with Stacks of Independent Counters
(PDASC), and extension of PDAC. These automata are push-down automata equipped

2The closure under iteration still is unknown.
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with finite number of counter stacks. Cells of the stacks contain numbers which can be
increased or decreased. At the same time, the contents of the stacks do not influence
the selection of the automaton instruction. The automata recognize the words in the
language by emptying the stack and zeroing all the counter stacks. Our main result
states that PDASC accept exactly all mmCDG-languages.

The rest of this paper is organized as follows: in Section 2 we give definitions of CDGs
and mmCDGs and their languages. In Section 3 we consider some variants of PDACs
and prove the equivalence of two variants of PDACs with independent counters: without
syntactic and without semantic ε-loops. We also notice that PDAC-languages include all
intersections of cf-languges and Petri Net languages and that every PDAC-language can
be obtained by a homomorphism of the intersection of a cf-language with some special
Petri Net language. In Section 4 we show that PDACs are equivalent to stack+bag push-
down automata (SBPA) independently introduced by Søgaard and that ε-acyclic SBPA
recognize exactly CDG-languages. In Section 5 we introduce a new class of automata:
Push-down Automata with Stacks of Independent Counters (PDASCs) without empty
loops. PDASCs are illustrated by an automaton which accepts the language {anbncn}+.
In Section 6 we prove our main result which says that PDASCs accept exactly the class
of languages generated by mmCDGs.

1. CDG and mmCDG

Similarly to other categorial grammars [1], the categorial dependency grammars (CDG)
may be seen as assignments of dependency types to words. Every dependency type
assigned to a word w defines its possible local neighborhood in a grammatically correct
dependency structure. The neighborhood of w consists of the incoming dependency, i.e.
the dependency relation d through which w is subordinate to a word g, its governor, and
also of a sequence of outgoing dependencies, i.e. the dependency relations di through
which w governs subordinate words wi. In order to formalize the linguistic notion of the
syntactic type, we use the notion of the category. Let C be a nonempty finite set of
elementary categories (e.g. subject, predicate, complement). The elementary categories
can be iterated: for C ∈ C, C∗ means a corresponding iterated category. The set of all
iterated categories is denoted C∗. Elementary and iterated categories are combined in
base (local) categories with the constructors \ and /.

In CDGs and mmCDGs, the non-projective dependencies are expressed using so
called polarized valencies. Namely, in order that a word G may govern through a discon-
tinuous dependency d a word D that follows the word G somewhere in the sentence, G
should have a type declaring the positive valency↗ d, whereas its subordinate D should
have a type declaring the negative valency↘ d. Together these dual valencies define the
discontinuous right dependency d. Additionally, there is another pair of dual polarized
valencies ↖ d and ↙ d which defines the discontinuous left dependency d.

Definition 1 Let C be a set of elementary (dependency) categories. S ∈ C is the selected
category of sentences.

For each elementary category d the category d∗ is iterated.
Each elementary category or ε is base. If a category C is base and a category α is

elementary or iterated, then the categories [α\C] and [C/α] are also base. There are no
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other base categories. The set of base categories over C is denoted bCat(C).
Polarized valencies are expressions ↙d, ↘d, ↖d, ↗d, where d ∈ C. The set of

polarized valencies over C is denoted V (C). Strings θ ∈ Pot(C) = V (C)∗ are called
potentials.

A (general) category is either base category or has the form Cθ, where θ is a potential
and C is a base category. The set of general categories over C is denoted Cat(C).

CDG assigns to each word in its dictionary a finite set of categories.

Definition 2 A categorial dependency grammar (CDG) is a system G = (W,C, S, λ),
where W is a finite set of words, C is a finite set of elementary categories containing
the selected name S (an axiom), λ, called lexicon, is a finite substitution on W such that
λ(a) ⊂ Cat(C) for each word a ∈ W.

If λ(a) = { γ1, . . . , γn }, then we write a 7→ γ1, . . . , γn.
CDG proofs are defined using the following calculus of dependency types 3.

Definition 3 Let Γ1,Γ2 be strings of categories Cat(C)∗, θ, θ1, θ2, θ3 be potentials, α be
local category from bCat(C).

Local dependency rules:
Ll : Γ1[C]θ1 [C\α]θ2Γ2 ` Γ1[α]θ1θ2Γ2,
where C ∈ C ∪ {ε}

Iterated dependency rules:
Il : Γ1[C]θ1 [C∗\α]θ2Γ2 ` Γ1[C

∗\α]θ1θ2Γ2

Il0 : Γ1[C
∗\α]θΓ2 ` Γ1[α]θΓ2,

where C ∈ C ∪ {ε}
Discontinuous dependency rules:
Dl. αP1(↙C)P (↖C)P2 ` αP1PP2 ,

where the potential (↙C)P (↖C) satisfies the following pairing rule FA (first available):

FA : P has no occurrences of ↙C,↖C.

Intuitively, the rules Ll (Lr) correspond to the classical elimination rules of catego-
rial grammars. Eliminating the argument subtype C they construct the (projective)
dependency C in which the governor is the word with the functional type and the sub-
ordinate is the word with the argument type. At the same time, they concatenate the
potentials of these types (if any). The rules Il, Il0 (Ir, Ir0) derive the iterated (projective)
dependencies. Il (Ir), analogous to the rule Ll (Lr), may derive k > 0 dependencies C
and Il0 (Ir0) corresponds to the case k = 0. Dl (Dr) creates discontinuous dependencies.
It pairs and eliminates dual valencies with name C satisfying the rule FA to create the
discontinuous dependency C.

When one of these rules is applied, an edge is added into the dependency structure.
This edge goes from the governor to the subordinate word and is labeled with the name
of the canceled category.

This calculus defines the immediate provability relation ` on the strings of categories.
Its transitive closure `∗ underlies the following definition of CDG-languages.

3We show left-oriented rules. The right-oriented rules are symmetrical.
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Definition 4 CDG G generates the language L(G), consisting of all words w = w1w2 . . .
wn ∈ W ∗, such that for some string of categories Γ ∈ λ(w) = λ(w1)λ(w2) . . . λ(wn) there
is a proof Γ `∗ S. Let L(CDG) be the class of all CDG-languages.

The following example shows a simple CDG that generates a non cf-language.

Example 1 Let CDG Gabc = ({a, b, c}, {S,A,B,C}, S, λabc) where λabc :
a 7→ [S/A]↗A, [S/B]↗A, [A/A]↗A, [A/B]↗A

b 7→ [B/B]↘A↗B, [B/C]↘A↗B

c 7→ [C/C]↘B, [C]↘B

This grammar generates language Labc = {anbncn | n ≥ 1}. Fig. 1 shows the cate-
gories assignment for the word a3b3c3 and the dependency structure of the word built by
Gabc.

[S/A]↗A [A/A]↗A [A/B]↗A [B/B]↘A↗B [B/B]↘A↗B[B/C]↘A↗B[C/C]↘B [C/C]↘B [C]↘B

a a a b b b c c c

A A
B

A

A

A

B B
C

B

B

B

C C

Fig. 1. Dependency structure for w = aaabbbccc

A number of properties of CDGs and languages of L(CDG) were established in
[2, 3, 21, 15]. Specifically, L(CDG) is closed under all Abstract Family of Languages
(AFL) [8] operations except iteration4. The notion of PDA with independent counters
was defined and it was shown that these automata accept exactly CDG-languages.

But it turned out that pairing rule FA can not prevent generation of some unwanted
dependencies, e.g. dependencies between two words of different sentences. So, in [4] a
new class of multimodal categorial dependency grammars (mmCDG) was introduced.
mmCDG extends CDG with a cross prohibition function π of type π : C → 2C. If
D ∈ π(C) and C ∈ π(D) then dependencies C and D should not intersect in the
dependency structures.

We adopt the definition of mmCDG from [4].

Definition 5 A multimodal categorial dependency grammar (mmCDG) is a system G =
(W,C, S, λ, π), where W,C, S and λ are as in CDGs, and π : C → 2C is a cross prohi-
bition function.

The function π should be symmetrical, i.e. if C ∈ π(D), then D ∈ π(C) for all C
and D from C.

The calculus of dependency types for mmCDG proofs includes rules Ll,Lr, Il, Ir, Il0, I
r
0

and discontinuous dependency rules of the form
DFAl

C:π(C)
: αθ1(↗C)θ(↘C)P2 ` αθ1θθ2 ,

4We believe that it is not closed. But it is still an open problem.
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where θ1(↗C)θ(↘C) satisfies the pairing rule FAC:π(C): θ has no occurrences of ↗C,
↘C and also of ↙A,↖A,↗A,↘A for all A ∈ π(C).

As in the case of CDG rules, DFAl
C:π(C)

(DFAr
C:π(C)

) derive non-projective dependencies.

They pair dual valencies C under the negative condition that the resulting discontinuous
dependency C does not intersect the discontinuous dependencies in the set π(C).

Let L(mmCDG) be the class of all mmCDG-languages.
In [4] it was shown that L(mmCDG) is closed under all AFL operations including

iteration. The following example shows how mmCDG can generated the iteration of the
language of Example 1.

Example 2 Let L1 = L+
abc = { anbncn | n > 0 }+. It is generated by the following

mmCDG G1({a, b, c}, {S,A,B,C}, S, λ1, π1), where λ1 :
a 7→ [S/A]↗C↗A, [S/B]↗C↗A, [A/A]↗A, [A/B]↗A

b 7→ [B/B]↘A↗B, [B/C]↘A↗B

c 7→ [C/C]↘B, [C]↘B↘C , [C/S]↘B↘C↗C

and π1(A) = {C }, π1(B) = {C }, π1(C) = {A,B }, π1(S) = ∅.

G1 extends Gabc of example 1 with a new pair of dual valencies ↗C,↘C which due
to the prohibition function π defends subwords of the form anbncn against the penetra-
tion of dependencies A and B from the adjacent words. It can be seen on Fig. 2 which
presents the dependency structure that G1 assigns to string w = aabbccabc.

[S/A]↗C↗A[A/B]↗A [B/B]↘A↗B[B/C]↘A↗B[C/C]↘B [C/S]↘B↘C[S/B]↗C↗A[B/C]↘A↗B[C]↘B↘C

a a b b c c a b c

C

A

A
B
A B B

C

B

C

C

S A
B

B
C

Fig. 2. Dependency structure for w = aabbccabc

Definition 6 Let π be a cross prohibition function, θ be a potential. A potential θ is
called balanced with respect to π, if its projection on every pair of dual polarized valencies
is a word of well-matched valencies, and there exists an order on the set of the correct
pairs such that they can be removed from potential without violating the restrictions of
π.

In other words, a potential θ is balanced with respect to π, if there is a proof aθ `∗ aε
which uses the rules DFAl

C:π(C)
and DFAr

C:π(C)
only.

It is easy to see that if the cross prohibition function of mmCDG G is empty, i.e.
π(C) = ∅ for all C ∈ C, then discontinuous dependency rules DFAl

C:π(C)
are transformed

into the First Available (FA-) principle and then G is a CDG.
In [4] we showed also that L(mmCDG) includes some non-semilinear languages and

that there is a mmCDG G such that the membership problem for L(G) is NP-complete.
At the same time, until this paper, no class of automata for accepting languages from
L(mmCDG) has been proposed.
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2. Push-down Automata with Independent

Counters

The notion of PDA with independent counters was introduced in [21, 15]. Informally,
the PDA with independent counters is a usual PDA equipped with a finite number of
counters. The independence of counters means that their state has no effect on the choice
of an automaton move.

Let Z be the set of all integers and N be the set of all nonnegative integers.

Definition 7 A push-down automaton with independent counters (PDAC) is a 7-tuple
M = 〈Σ, Q,Γ, q0, z0, P, n〉, where Σ is an input alphabet, Q is an alphabet of states, Γ is
a stack alphabet, q0 ∈ Q is an initial state, z0 ∈ Γ is an initial symbol of the stack, P is
a set of rules, n is a number of counters.
The rules are of the form 〈q, a, z, 〈q′, α, v̄〉〉, where q, q′ ∈ Q, a ∈ Σ∪{ ε }, z ∈ Γ, α ∈ Γ∗,
v̄ = (v1, . . . , vn) ∈ Zn is a vector of integers.

Informally speaking, this is a push-down automaton additionally augmented with a
finite number of counters. It uses its stack to check the elimination of local categories,
and the counters correspond to different types of valencies.

Definition 8 A configuration of PDAC M = 〈Σ, Q,Γ, q0, z0, P, n〉 is a quadruple 〈q, w,
γ, ū〉, where q ∈ Q, w ∈ Σ∗, γ ∈ Γ∗, ū = (u1, . . . , un) ∈ Nn is a vector of nonnegative
integers.
We define a one-step transition: 〈q, w, γ, ū〉 `1M 〈q′, w′, γ′, ū′〉 iff there exists a rule 〈q, a, z,
〈q′, α, v̄〉〉 ∈ P such that the following three conditions are satisfied:
1) w = aw′,
2) γ = zγ′′, γ′ = αγ′′,
3) ū′ = ū+ v̄.
If γ = ε or some component of ū′ is negative, then the step cannot be made.
The relations `nM of n-steps derivations of M and `∗M of derivations of M are defined
as usual.

In fact, the numbers in the counters are the numbers of currently unpaired left valen-
cies. The positive numbers in the rules correspond to the left valencies, and the negative
numbers correspond to the right valencies. The automaton works like a push-down au-
tomaton. Additionally it changes the values of the counters on every step, but the step
itself is not influenced by these values, which means that the counters are independent.

The language accepted by the push-down automaton with independent counters M
can be defined by emptying the stack and zeroing the counters.

Definition 9 The word w is accepted by PDAC M iff there exists q ∈ Q such that
〈q0, w, z0, (0, . . . , 0)〉 `∗M 〈q, ε, ε, (0, . . . , 0)〉.

The language L(M) accepted by PDAC M is the set of all the words accepted by the
automaton.
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In general, it is possible that the automaton performs ε-instructions in a cycle and
changes the counters. In this case it can increase the counters by an unbounded amount
without reading new symbols. But all potentials in the CDGs have finite length. One
can propose two kinds of restrictions to avoid such empty loops. The first definition is
syntactical and was used in [15].

Definition 10 We say that PDAC M has a syntactic ε-loop if there exists a sequence
of states q1, . . . qk (k > 1) such that 〈qi, ε, zi, 〈qi+1, γi, v̄i〉〉 ∈ P for 1 ≤ i < k, 〈qk, ε, zk,
〈q1, γk, v̄k〉〉 ∈ P and for some i ∈ [1, k] v̄i 6= (0, 0, . . . , 0).

The second one is semantical and follows Søgaard of [16].

Definition 11 We say that the PDAC M has a semantic ε-loop if for some q ∈ Q,
α, β ∈ Γ∗, and vectors ū, v̄ there is a derivation of M 〈q, ε, α, ū〉 `+ 〈q, ε, β, v̄〉 that
consists only of ε-instructions and at least one of these instructions changes at least one
counter.

It is easy to see that if the automaton has no syntactic ε-loops, then it has no semantic
ε-loops. The inverse assertion does not hold. E.g. if the automaton has the instructions
〈q, ε, a, 〈q1, a, ū〉〉, 〈q1, ε, b, 〈q, b, v̄〉〉, then they form a syntactic ε-loop, but there are no
semantic loops because of different stack symbols.

Nevertheless, the following assertion holds.

Theorem 1 For every PDAC without semantic ε-loops there exists an equivalent PDAC
without syntactic ε-loops.

Proof. Let us consider an arbitrary PDAC without semantic ε-loops M = 〈Σ, Q, Z,
q0, z0, P, n〉. We may suppose that the initial state q0 cannot be revisited by the automa-
ton. We build an auxiliary graph G = (V,E), where
V = { 〈q, ε, z, 〈q′, γ, v̄〉〉 | 〈q, ε, z, 〈q′, γ, v̄〉〉 ∈ P }, E = { (〈q, ε, z, 〈q′, γ, v̄〉〉, 〈q′, ε, z′,
〈q′′, γ′, v̄′〉〉) | 〈q, ε, z, 〈q′, γ, v̄〉〉, 〈q′, ε, z′, 〈q′′, γ′, v̄′〉〉 ∈ V }.

Let p1, p2, . . . , pk be all simple cycles in G. The amount k of such cycles is finite.
Let pi = 〈q1, ε, z1, 〈q2, γ1, v̄1〉〉, . . . , 〈qm, ε, zm, 〈q1, γm, v̄m〉〉 be one of these cycles. We add
m − 1 new states (i, q2), (i, q3), . . . , (i, qm). These states are different for every cycle.
We remove all instructions of the cycle pi from the set of instructions, and we add the
following instructions:
〈q1, ε, z1, 〈(i, q2), γ1, v̄1〉〉,
〈(i, q2), ε, z2, 〈(i, q3), γ2, v̄2〉〉,
. . .
〈(i, qm−1), ε, zm−1, 〈(i, qm), γm−1, v̄m−1〉〉.
Besides, for every instruction 〈qj, a, z, 〈q, γ, v̄〉〉, where a ∈ Σ, qj is one of the states from
pi, 2 ≤ j ≤ m, we add a new instruction 〈(i, qj), a, z, 〈q, γ, v̄〉〉. Let us denote the new
automaton M ′.

Obviously, M ′ has no syntactic ε-loops. When M ′ begins to perform a sequence
of ε-instructions, it remembers the ε-path in the states. If it reaches the state (i, qm),
it cannot return to q1 closing the loop, because the last ε-instruction of the cycle was
removed. But M could neither move to q1 due to absence of semantic ε-loops. If M
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“chooses” not to perform the loop, but to read a symbol in the state qj, M
′ may “forget”

the path which leads it to qj and continue working exactly like M . Thus, L(M) = L(M ′).
2

Let L(PDAC) be the class of languages accepted by push-down automata with in-
dependent counters and without (syntactic or semantic) empty loops.

Another way is to define acceptance by final state and final counter states. Let push-
down automaton with independent counters and final states (PDACF) M = 〈Σ, Q,Γ,
q0, z0, P, n, F, Cf〉 be PDAC extended with a set of final states F ⊂ Q and a finite set of
accepted counter states Cf ⊂ Nn.

Definition 12 The word w is accepted by PDACF M by means of the terminal states
if 〈q0, w, z0, (0, . . . , 0)〉 `∗M 〈q′, ε, γ, ū〉 for some state q′ ∈ F , counters states ū ∈ Cf and
any stack string γ.
The language LF (M) accepted by PDACF M is the set of all the words accepted by the
automaton.

Let LF (PDACF ) be the class of languages accepted by PDACF without empty loops.
As in the case of PDAs, it can be shown that definitions 9 and 12 are equivalent.

Proposition 1 L(PDAC) = LF (PDACF ).

In [15] it was proved that the classes L(CDG) and L(PDAC) are “almost” equal.

Theorem 2 1) L(PDAC) ⊆ L(CDG).
2) If L ∈ L(PDAC), then L− { ε } ∈ L(CDG).

Now we list some properties of L(PDAC) which follows from theorem 2 and the results
obtained in the papers [2, 3, 21, 15]:

• L(PDAC) includes all cf-languages and some non cf- and non TAG-languages;

• let W = {a1, a2, . . . , an}, then languages Ln = {ak1ak2 . . . akn | k > 0}(n ≥ 1) and
MIXn = {w ∈ W+ | |w|a1 = |w|a2 = . . . = |w|an} are in L(PDAC);

• the parsing problem for L(PDAC) in the general case is NP-complete;

• for languages accepted by PDACs with bounded numbers of counters there is a
parsing algorithm that has polynomial complexity;

• L(PDAC) is closed under union, concatenation, intersection with regular lan-
guages, ε-free homomorphisms, and inverses of homomorphisms.

If PDAC does not use its stack, then it turns into a counter automaton without
ε-loops. A direct comparison shows that this class of counter automata is equivalent to
the class of prompt Weak Counter Automata (WCA) defined by Hack in the well-known
report [10]. Theorem 9.12 of the report says that the languages generated by prompt
WCA are the family of Petri Net languages L0

5 completed by ε. Therefore, L(PDAC)
includes all cf-languages as well as all Petri Net languages from L0. It can be shown that
L(PDAC) also includes the intersection of these classes.

5L0 is the class of all ε-free languages obtained as the set of all terminal label sequences of a ε-free
Labelled Petri Net.
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Proposition 2 Let L1 be a cf-language and L2 be a Petri Net language from L0. Then
L = L1 ∩ L2 ∈ L(PDAC).

On the other hand, it follows from the results of [21] that for every L ∈ L(PDAC)
there exist a cf-language L1, a Petri Net language P ∈ L0 and a homomorphism φ such
that L = φ(L1 ∩ P ).

In fact, for some n P is the language Pn of words in the alphabet of n pairs of
parentheses, whose projections on any single pair of parentheses are well-matched. It is
easy to see that Pn can be recognized by our counter automaton with n counters.

3. PDAC and stack+bag push-down automata

In the paper [16] A. Søgaard introduced a stack+bag push-down automaton (SBPA) as a
6-tuple P = 〈Σ, Q,Γ, q0, F, δ〉 where Σ is an input alphabet, Q is an alphabet of states, Γ
is a stack alphabet, q0 ∈ Q is the initial state, F ⊆ Q is the set of the terminal states, and
δ ⊆ Q× (Σ∪{ε})× (Γ∪{ε})×Q× (Γ∗ ∪{ε})×{{γ1, . . . , γn}M | γ1, . . . , γn ∈ Γ, n ≥ 0}
is a finite set of transitions, where {. . .}M is a bag or a multiset, i.e. {{γ1, . . . , γn}M |
γ1, . . . , γn ∈ Γ, n ≥ 0} is the set of multisets over elements of Γ.

A configuration of SBPA has the form (q, w, γ, γ′) ∈ Q×Σ∗ × Γ∗ × {{γ1, . . . , γn}M |
γ1, . . . , γn ∈ Γ, n ≥ 0}, where q is the state the SBPA is currently in, w is the input
string still to be processed, γ is the contents of the stack, and γ′ is the contents of the
bag. The derivability relation is the transitive, reflexive closure (`∗) of the following
binary relation ` over the class of all configurations, where

1. (q, xw, zγ, γ′) ` (q′, w, αγ, γ′) if (q′, α, ∅M) ∈ δ(q, x, z) (pop z from stack, push α
to stack),

2. (q, xw, zγ, γ′) ` (q′, w, γ, α′ ∪ γ′) if (q′, ε, α′) ∈ δ(q, x, z) (pop z from stack, push α′

to bag),

3. (q, xw, γ, {z} ∪ γ′) ` (q′, w, αγ, γ′) if (q′, α, ∅M) ∈ δ(q, x, z) (pop z from bag, push
α to stack),

4. (q, xw, γ, {z}M ∪ γ′) ` (q′, w, γ, α′ ∪ γ′) if (q′, ε, α′) ∈ δ(q, x, z) (pop z from bag,
push α′ to bag)

with x ∈ Σ ∪ {ε}, z ∈ Γ ∪ {ε}, α ∈ Γ∗, and α′ ∈ {{γ1, . . . , γn}M | γ1, . . . , γn ∈ Γ, n ≥ 0}.
A SBPA S recognizes the language:

L(S) = {w | (q0, w, ε, ∅M) `∗ (q, ε, ε, ∅M) ∧ q ∈ F}.
The languages that can be recognized by SBPAs are called stack+bag push-down

languages.
When comparing the definitions of SBPA and PDAC, one cannot help but notice their

similarity. In Theorems 3 and 4 we show that these classes of automata are equivalent.

Theorem 3 For every SBPA one can effectively construct an equivalent PDAC.

Proof. Let S = 〈Σ, Q,Γ, q0, F, δ〉 be a SBPA. Let Γ = { z1, . . . , zk } and z0 6∈ Γ be a new
stack symbol. We build a PDAC M = 〈Σ, Q′,Γ∪{ z0 }, q0, P, k〉. Here Q′ is a new set of
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states. It contains Q and some new states which will be defined later. The number of
counters k is |Γ|.
1) Let (q′, α, ∅M) ∈ δ(q, x, zi). This instruction can be performed in two ways. The
automaton may replace the top of stack zi by the word α, or it may remove z from the
bag and push α into the stack. We add the following instruction in P .
〈q, x, zi, 〈q′, α, 0̄〉〉
〈q, x, u, 〈q′, αu, (0, . . . , 0,−1, 0, . . . , 0)〉〉 for every u ∈ Γ∪{ z0 } (here −1 is on i-th place)
The first instruction corresponds to the point 1 of definition of derivability relation for
SBPA, and the second one corresponds to the point 3.
2) Let (q′, ε, α′) ∈ δ(q, x, zi). The first way to perform the instruction is to pop zi from
the stack and add α′ to the bag, the second way is to remove zi from the bag and add
α′ there. Let v̄ be a vector such that vj is the number of elements zj in the bag α′

(j = 1, . . . , |Γ|). We add the following instructions to P .
〈q, x, zi, 〈q′, ε, v̄〉〉
〈q, x, u, 〈q′′, u, (0, . . . , 0,−1, 0, . . . , 0)〉〉 for every u ∈ Γ ∪ { z0 } (−1 is on i-th place)
q′′, ε, u, 〈q′, u, v̄〉〉 for every u ∈ Γ ∪ { z0 }
Here q′′ is a new state, different for every instruction.
For every state q ∈ F we add the instruction 〈q, ε, z0, 〈q, ε, 0̄〉〉. 2

Theorem 4 For every PDAC one can effectively construct an equivalent SBPA.

Proof. Let M = 〈Σ, Q,Γ, q0, z0, P, k〉 be a PDAC with k counters. Let T = { t1, . . . , tk }
be a set of new stack symbols, a and z′0 be new stack symbols, q′0 and qf be new states.
We build a SBPA S = 〈Σ, Q′, Z ∪ T ∪ { a, z′0 }, q′0, { qf }, δ〉. Here Q′ contains Q, q′0, qf ,
and some other states which are described later.
Let the automaton M has an instruction 〈q, x, z, 〈q′, α, (v1, . . . , vk)〉〉. We divide the
vector v̄ in two vectors v̄+ and v̄−: v̄ = v̄+ + v̄−, where

v+i =

{
vi, if vi > 0
0, otherwise

, v−i =

{
vi, if vi < 0
0, otherwise

.

The vector v̄+ describes the increase of the counters, and v̄− describes their decrease.
Let i1, . . . , il be the numbers of nonzero coordinate of the vector v̄−, and j1, . . . , jm be

the numbers of nonzero coordinates of the vector v̄+, r(s) = |vs|, r =
k∑
i=1

|v−i |. Let A be

a bag containing ts v
+
s times for 1 ≤ s ≤ k.

We add the following instructions to δ:
δ(q, x, z) = (q1, az, ∅M) (move to q1 and push into the stack a special symbol a),
δ(q1, ε, ti1) = (q2, ε, ∅M), δ(q2, ε, ti1) = (q3, ε, ∅M), . . . ,
δ(qr(i1), ε, ti1) = (qr(i1)+1, ε, ∅M) (decrease i1-th counter by r(i1)),
δ(qr(i1)+1, ε, ti2) = (qr(i1)+2, ε, ∅M), . . . ,
δ(qr(i1)+r(i2), ε, ti2) = (qr(i1)+r(i2)+1, ε, ∅M) (decrease i2-th counter by r(i2)),
. . .
δ(qr(i1)+···+r(il−1)+1, ε, til) = (qr(i1)+···+r(il−1)+2, ε, ∅M), . . . ,
δ(qr(i1)+···+r(il), ε, til) = (q′′, ε, ∅M) (decrease il-th counter by r(il)),
δ(q′, ε, a) = (q′′, ε, A) (increase the remaining counters),
δ(q′′, ε, z) = (q′, α, ∅M) (replace z with α).
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These instructions model correctly one instruction of the automaton S, because the
symbols from Γ ∪ { a } never appear in the bag, and the symbols from T never appear
in the stack. Besides, we add several additional instructions:
δ(q′0, ε, ε) = (q0, z0z

′
0, ∅M) (put the symbols z0z

′
0 on the bottom of the stack and prepare

for modelling),
δ(q, ε, z′0) = (qf , ε, ∅M) for every q ∈ Q (the automaton M emptied the stack; empty the
stack, move to qf ). 2

In [16] the following class of SPBAs without semantical ε-cycles is considered.

Definition 13 A SBPA S is called ε-acyclic if it is impossible to apply a transition of
the form δ(q, ε, . . .) more than once without reading an element from the input string
first.

So, if S is a ε-acyclic SBPA then it has not the cycles of ε-derivations of the form
〈q, ε, α,A〉 `+ 〈q, ε, β, B〉.

Let L(SBPA) be the class of languages accepted by ε-acyclic stack+bag push-down
automata. It is not difficult to see that the constructions of the theorems 3 and 4
transform ε-acyclic SBPA into PDA with independent counters without ε-loops, and
vice versa. Then from theorem 4 we obtain the following corollary.

Corollary 1 For every language L ∈ Σ∗ the following equivalences hold:
L ∈ L(SBPA)⇔ L ∈ L(PDAC)⇔ L− { ε } ∈ L(CDG).

4. Push-down Automata with Stacks of Independent

Counters

In this section we introduce Push-down Automata with Stacks of Independent Counters
(PDASCs) without empty loops and prove that they accept exactly the class L(mmCDG)
of languages generated by mmCDGs. PDASCs extend PDACs twofold: each counter is
a stack of integers and there is a restriction function which allows to diminish a head of
a counter only if the heads of all dependent counters are zeros.

Definition 14 A Push-down Automaton with Stacks of independent Counters (PDASC)
is an octuple M = 〈W,Q, q0, Z, z0, n, π, P 〉, where

• W is a finite set of input (terminal) symbols,

• Q is a finite set of states, q0 ∈ Q is the start state,

• Z is a finite set of stack symbols, and z0 ∈ Z is the initial stack symbol,

• n ∈ N is the number of counter stacks,

• π : { 1, . . . , n } → 2{ 1,...,n } is a restriction function, it should be symmetrical, i.e. if
y ∈ π(x), then x ∈ π(y) for all x and y,

• P is a set of instructions of the form 〈q, a, z, 〈q′, α, (i, j)〉〉, where q, q′ ∈ Q, a ∈
W ∪ { ε }, z ∈ Z, α ∈ Z∗, i is a natural number from 1 to n (a current counter
stack), j ∈ {−1, 0, 1 } defines an execution mode.
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If y 6∈ π(x), then we call the counters x and y independent.
The configuration of the PDASC M is the quadruple 〈q, w, γ, v〉, where q ∈ Q is the

current state, w ∈ W ∗ is the part of input which is yet to be recognized, γ ∈ Z is the top
of the stack, v is a vector of length n whose components are stacks of natural numbers,
i.e. v ∈ (N+)n.

Definition 15 Let M = 〈W,Q, q0, Z, z0, n, π, P 〉 be a PDASC. The transition relation
` on the set of all configurations of M is defined as follows :
〈q, w, γ, v〉 ` 〈q′, w′, γ′, v′〉 iff there exists an instruction 〈q, a, z, 〈q′, α, (i, j)〉〉 ∈ P such
that w = aw′ (a ∈ W ∪ {ε}), γ = zβ, γ′ = αβ for some β, and v′ is defined in the
following way. Let v = (σ1, . . . , σn), v′ = (σ′1, . . . , σ

′
n).

1) If j = 0, the v = v′.
2) If j = 1, then σ′i is obtained from σi by increasing the top element of σi by one, and
for k 6= i σ′k = σk if the counters i and k are independent, otherwise σ′k is obtained form
σk by pushing zero into σk.
3) If j = −1, then the top elements of all counters dependent on the i-th counter must be
equal to zero, and the top element of the i-th counter must be positive. If at least one of
these conditions does not hold, then the instruction cannot be applied. If both conditions
hold, then σ′i is obtained from σi by subtracting one from the top element of σi, for every
k 6= i such that the counters i and k are independent σ′k = σk, and for every k 6= i such
that the counters i and k are dependent σ′k is obtained from σk by popping its top zero
element.

Let `∗ be the reflexive transitive closure of `.

Note that empty transitions, i.e. transitions that do not read an input symbol, are
allowed (a ∈ W ∪ {ε}). However, we forbid empty loops.

Let M = 〈W,Q, q0, Z, z0, n, π, P 〉 be a PDASC. We call it a PDASC without empty
loops if there are no states q1, . . . , ql ∈ Q such that P contains the instructions 〈qi, ε, zi,
〈qi+1, αi, (ji, ki)〉〉 for i < l and an instruction 〈ql, ε, zl, 〈q1, αl, (jl, kl)〉〉. In what follows
we consider only PDASC without empty loops.

We call the vector of the form (N+)n, whose components are stacks of natural num-
bers, a configuration of counter stacks. Let v0 = (0; 0; . . . ; 0) denote the configuration of
the counter stacks whose components are n stacks containing one zero each.

Definition 16 The PDASC M accepts the word w iff 〈q0, w, z0, v0〉 `∗ 〈q′, ε, ε, v0〉 for
some state q′ ∈ Q.
Let L(M) be the set of all words accepted by the PDASC M .

The following example shows how the restriction function of PDASC helps accept
the iteration of non cf-languages.

Example 3 Let us consider the language L1 = { anbncn | n > 0 }+ from example 1. It is
accepted by the following PDASC M1 = 〈{ a, b, c }, { q0, q1, q2, q3, q4 }, q0, { z0, a }, z0, 2, π,
P 〉. Program P consists of the following instructions:
〈q0, ε, z0, 〈q1, z0, (1, 1)〉〉 〈q2, c, z0, 〈q3, z0, (2,−1)〉〉
〈q1, a, z0, 〈q1, az0, (1, 0)〉〉 〈q3, c, z0, 〈q3, z0, (2,−1)〉〉
〈q1, a, a, 〈q1, aa, (1, 0)〉〉 〈q3, ε, z0, 〈q4, ε, (1,−1)〉〉
〈q1, b, a, 〈q2, ε, (2, 1)〉〉 〈q3, ε, z0, 〈q0, z0, (1,−1)〉〉
〈q2, b, a, 〈q2, ε, (2, 1)〉〉
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The restriction function: π(1) = { 2 }, π(2) = { 1 }

The following execution shows how M1 accepts string w = aabbccabc. Note that all
stacks are increased from right to left and two stacks of counters c1, c2 are shown as
(c1; c2).
〈q0, w, z0, (0; 0)〉 ` 〈q1, w, z0, (1; 0, 0)〉 ` 〈q1, abbccabc, az0, (1; 0, 0)〉 `
〈q1, bbccabc, aaz0, (1; 00)〉 ` 〈q2, bccabc, az0, (0, 1; 1, 0)〉 ` 〈q2, ccabc, z0, (0, 0, 1; 2, 0)〉 `
〈q3, cabc, z0, (0, 1; 1, 0)〉 ` 〈q3, abc, z0, (1; 0, 0)〉 ` 〈q0, abc, z0, (0; 0)〉 `
〈q1, abc, z0, (1; 0, 0)〉 ` 〈q1, bc, az0, (1; 0, 0)〉 ` 〈q2, c, z0, (0, 1; 1, 0)〉 `
〈q3, ε, z0, (1; 0, 0)〉 ` 〈q4, ε, ε, (0; 0)〉

5. PDASCs and mmCDGs

We are now ready to establish the relationships between push-down automata with stacks
of independent counters and mmCDG languages.

It is not hard to see that for every mmCDG G one can efficiently construct an
equivalent mmCDG G′ whose categories do not contain polarized valencies with the left
polarities ↙ and ↖. Therefore we assume that all the grammars which we consider
below do not have such polarities.

We associate with a potential θ some counter stacks configuration c(θ) as follows.

Definition 17 Let G = 〈W,C, S, λ, π〉 be a mmCDG, and C = {A1, . . . , Ar }). We
define an auxiliary PDASC M(C, π) = 〈C, { q }, q, { z0 }, z0, r, π′, P 〉 as follows.
1) j ∈ π′(i) iff Aj ∈ π(Ai)
2) For every i we include in P an instruction 〈q,↗Ai, z0, 〈q, z0, (i, 1)〉〉 and an instruc-
tion 〈q,↘Ai, z0, 〈q, z0, (i,−1)〉〉.
For a potential θ let c(θ) be a counter configuration such that 〈q, θ, z0, v0〉 `∗ 〈q, ε, z0, c(θ)〉.

In fact, c(θ) is the counter configuration which is obtained from θ if we treat every
valency ↗Ai as a command to increase the i-th counter, and every valency ↘Ai as a
command to decrease the i-th counter.

Lemma 1 i) c(θ) is defined iff there exists a potential θ′ such that θθ′ is balanced.
ii) The potential θ is balanced iff c(θ) = v0.

This lemma is proved by the straight induction on the length of θ.
The following definition proposes a transformation of mmCDGs into cf-grammars

with the similar derivations.

Definition 18 Let G = 〈W,C, S, λ, π〉 be a mmCDG. We denote the cf-grammar G′ =
〈Σ, N, S,R〉 as CF (G), where:
Σ = {wθ | w 7→ [α]θ ∈ δ for some α } ;
N is the set of all local subcategories from δ ;
R is defined in the following way:
[α]→ wθ ∈ R⇔ w 7→ [α]θ ∈ δ [A∗\α]→ [A][A∗\α] ∈ R⇔ [A∗\α] ∈ N
[α]→ [A][A\α] ∈ R⇔ [A\α] ∈ N [α]→ [α/A∗] ∈ R⇔ [α/A∗] ∈ N
[α]→ [α/A][A] ∈ R⇔ [α/A] ∈ N [α/A∗]→ [α/A∗][A] ∈ R⇔ [α/A∗] ∈ N
[α]→ [A∗\α] ∈ R⇔ [A∗\α] ∈ N
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If the categories in G have no potentials, this construction simply transforms a clas-
sical categorial grammar into an equivalent cf-grammar ([1]).

The following assertion relates the derivations of G and CF (G).

Lemma 2 Let G be a mmCDG, G′ = CF (G), α ∈ N . Then α ⇒∗G′ a
θ1
1 . . . aθnn ∈ Σ∗

iff there exist categories γ1 = αθ11 ∈ δ(a1), . . . , γn = αθnn ∈ δ(an) such that γ1 . . . γn `∗G
αθ1...θn.

Corollary 2 Let G be a mmCDG, G′ = CF (G). Then w1 . . . wn ∈ L(G) iff wθ11 . . . wθnn
∈ L(G′) for some θ1 . . . , θn and the potential θ1 . . . θn is balanced.

Both the lemma and the corollary are proved exactly as Lemma 1 and Corollary 1
in [15].

Theorem 5 For every mmCDG G one can effectively construct a PDASC without empty
loops M such that L(G) = L(M).

Proof. Let G = 〈W,C, S, λ, π〉 be a mmCDG, C = {A1, . . . , Ar }. We transform it into
an auxiliary cf-grammar G′ = CF (G) = 〈Σ, N, S,R〉 (Definition 18). By Corollary 2
a1 . . . an ∈ L(G) iff S ⇒∗G′ a

θ1
1 . . . aθnn and the potential θ1 . . . θn is balanced with respect

to π. Let G′′ = 〈Σ, N ′, S, R′〉 be a cf-grammar in Greibach normal form [9] and equivalent
to G′. Now we construct a PDASC M = 〈W,Q, q,C, S, r, π′, P 〉. The function π′ is
defined as follows: j ∈ π′(i) iff Aj ∈ π(Ai).
Let ρ : A → aθB1 . . . Bt ∈ R′, where θ = p1Ai1 . . . plAil , pi ∈ {↗,↘} are polarities.
Then we include into Q new states qρ1 , . . . , q

ρ
l , and we include into P the following set of

instructions.
〈q, ε, A, 〈qρ1 , A, (i1, j1)〉〉,
〈qρ1 , ε, A, 〈q

ρ
2 , A, (i2, j2)〉〉,

. . .
〈qρl−1, ε, A, 〈q

ρ
l , A, (il, jl)〉〉,

〈qρl , a, A, 〈q, B1 . . . Bt, (i, 0)〉〉.
Here jk = 1 if pk =↗, and jk = −1 if pk =↘.

The following lemma relates derivations of G′′ with computations of M .

Lemma 3 i) If S ⇒∗G′′ a
θ1
1 . . . aθnn Z1 . . . Zm and θ = θ1 . . . θn is prefix of some balanced

potential, then 〈q, a1 . . . anw, S, v0〉 `∗M 〈q, w, Z1 . . . Zm, c(θ)〉.
ii) Let aθii ∈ Σ for 1 ≤ i ≤ n and θ = θ1 . . . θn. If 〈q, a1 . . . anw, S, v0〉 `∗M 〈q, w, Z1 . . . Zm,
c(θ)〉, then θ is a prefix of some balanced potential and S ⇒∗G′′ a

θ1
1 . . . aθnn Z1 . . . Zm.

Proof. i) Induction on the length j of the derivation in G′′.
Base case. j = 0. By definition 〈q, w, S, v0〉 `0M 〈q, w, S, v0〉.
Inductive step. Let S ⇒j

G′′ a
θ1
1 . . . a

θj
j Z1 . . . Zs, then by the inductive hypothesis there

is a derivation 〈q, a1 . . . ajaj+1w, S, v0〉 `∗M 〈q, aj+1w,Z1 . . . Zs, c(θ)〉, where θ = θ1 . . . θj.

After this, the rule ρ : Z1 → a
θj+1

j+1 B1 . . . Bt was used. First of all, the automaton per-
forms the instructions 〈q, ε, Z1, 〈qρ1 , Z1, (i1, j1)〉〉, . . . , 〈qρl−1, ε, Z1, 〈qρl , Z1, (il, jl)〉〉. They
do not change the stack, and they add the potential θj+1 to the stacks of counters. Then
the instruction 〈qρl , a, Z1, 〈q, B1 . . . Bt, (i, 0)〉〉 is applied. The resulting configuration is
〈q, w,B1 . . . BtZ2 . . . Zs, c(θθj+1)〉.
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ii) Induction on the number j of steps of the automaton M .
Base case. j = 0. There are no steps. By definition S ⇒0

G′′ S.
Inductive step. Let 〈q, a1 . . . ajaj+1w, S, v0〉 `∗M 〈q, aj+1w,Z1 . . . Zs, c(θ)〉, then by the

inductive hypothesis S ⇒∗G′′ a
θ1
1 . . . a

θj
j Z1 . . . Zs and θ1 . . . θj is a prefix of a balanced

potential. First, let us assume that after this the automaton uses an ε-instruction
〈q, ε, Z1, 〈qρ1 , Z1, (i1, j1)〉〉. Then the sequence of ε-instructions that follow the first one
is unambiguously defined, since the new states are different for every rule of the gram-
mar G′′. When the automaton reaches a state qρl , it uses an instruction of the form
〈qρl , a, Z1, 〈q, B1 . . . Bt, (i, 0)〉〉. This sequence of instructions was obtained from the rule

ρ : Z1 → a
θj+1

j+1 B1 . . . Bt. By construction the change of the stacks of counters corresponds
to the potential θj+1. Thus, we get the configuration 〈q, w,B1 . . . BtZ2 . . . Zs, c(θθj+1)〉.
Since the automaton was able to perform the instructions, the potential θ1 . . . θj+1 is a

prefix of some balanced potential. Also S ⇒∗G′′ a
θ1
1 . . . a

θj+1

j+1 B1 . . . BtZ2 . . . Zs. 2

It follows from Corollary 1 and this lemma that the following five statements are
equivalent.
1) a1 . . . an ∈ L(G)
2) S ⇒∗G′ a

θ1
1 . . . aθ

n

n and the potential θ1 . . . θn is balanced.
3) S ⇒∗G′′ a

θ1
1 . . . aθ

n

n and the potential θ1 . . . θn is balanced.
4) 〈q, a1 . . . an, S, v0〉 `∗M 〈q, ε, ε, v0〉
5) a1 . . . an ∈ L(M)
Therefore, L(M) = L(G). 2

Now we prove the converse.
The following definition presents a transformation of cf-grammars into

mmCDGs with the similar derivations.

Definition 19 Let G′ = 〈Σ, N, S,R〉 be a cf-grammar in Greibach normal form, where
the elements of Σ are of the form wθ. We denote by mmCDG(G′, π) the mmCDG
G = 〈W,N, S, λ, π〉, where W = {w | wθ ∈ Σ for some θ } and δ is defined in the
following way:
w 7→ [X]θ ∈ δ ⇔ X → wθ ∈ R,
w 7→ [X/Y ]θ ∈ δ ⇔ X → wθY ∈ R,
w 7→ [X/Z/Y ]θ ∈ δ ⇔ X → wθY Z ∈ R.

If G has no potentials, then mmCDG(G) is simply a categorial grammar equivalent
to G [1].

The following assertion relates the derivations of G′ and CF (G).

Lemma 4 Let G = mmCDG(G′, π). Then X ⇒∗G′ a
θ1
1 . . . aθnn ∈ Σ∗ iff there exist

categories γ1 = αθ11 ∈ δ(a1), . . . γn = αθnn ∈ δ(an) such that γ1 . . . γn `∗G [X]θ1...θn.

Corollary 3 Let G′ be a cf-grammar in Greibach normal form, π be a cross prohibition
function, G = mmCDG(G′, π). Then w1 . . . wn ∈ L(G) iff wθ11 . . . wθnn ∈ L(G′) for some
θ1, . . . , θn and the potential θ1 . . . θn is balanced with respect to π.

These two assertions are proved along the lines of Lemma 2 and Corollary 2 in [15].

Theorem 6 For every PDASC without empty loops M one can effectively construct a
mmCDG G such that L(G) = L(M) \ { ε }.
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Proof. Let M = 〈W,Q, q0, Z, z0, k, π, P 〉 be a PDASC without empty loops. The
transformation of the automaton into a grammar is performed in several stages.

1) We construct an auxiliary graph G = (V,E), where V is a set of all ε-instructions
of M , and the edge connects two instructions if and only if these two instructions can be
performed one after another, i.e. E contains all edges of the form (〈q, ε, z, 〈q′, α, (i, j)〉〉,
〈q′, ε, z′, 〈q′′, α′, (i′, j′)〉〉). Since M has no empty loops, the graph G is acyclic. Hence, the
set of all paths in this graph is finite. Now for every ε-path r we define corresponding
potential θ(r). The i-th valency of θ(r) is ↗ Aj if the i-th instruction of r has form
of (j, 1), it is ↘ Aj if the i-th instruction is of the form (j,−1), and ε, otherwise.
We call the ε-path r complete if no ε-instructions can be applied immediately before
or after it. More precisely, this means that if the first instruction from r is of the
form 〈p, ε, z1, 〈p1, α1, (i1, j1)〉 and the last one is of the form 〈q2, ε, z2, 〈q, α2, (i2, j2)〉〉,
then there are no instructions of the form 〈p′, ε, z, 〈p, α, (i, j)〉〉 or 〈q, ε, z, 〈q′, α, (i, j)〉〉.
Now we rename the states of M in such a way that no two complete ε-paths from G
had common states. In order to do this, we remove all ε-instructions from P , and for
every instruction 〈p, ε, z, 〈q, α, (i, j)〉〉 in the l-th complete path we add a new instruction
〈pl, ε, z, 〈ql, α, (i, j)〉〉, where the states pl, ql are unique for all paths. If the state ql is now
the first state of l-th ε-path, then for every instruction 〈p, a, z, 〈q, α, (i, j)〉〉 (a 6= ε) we add
an instruction 〈p, a, z, 〈ql, α, (i, j)〉〉. If the state pl is the last state of l-th ε-path, then for
every instruction 〈p, a, z, 〈q, α, (i, j)〉〉 (a 6= ε) we add an instruction 〈pl, a, z, 〈q, α, (i, j)〉〉.
As the result, we get the new automaton M1 = 〈W,Q1, q0, Z, z0, k, π, P1〉. It is easy to
see that M1 is equivalent to M .

2) Now we duplicate all the states of M1. Let Q1 = { q | q ∈ Q1 } be a set of copies,
Q2 = Q1∪Q1. For every a ∈ W ∪{ ε } and for every instruction 〈p, a, z, 〈q, α, (i, j)〉〉 ∈ P1

we include into P2 this instruction and its copy, obtained from original by replacing states
by their copies, i.e. the instruction 〈p, a, z, 〈q, α, (i, j)〉〉. If a ∈ W , then we also include
an instruction 〈p, a, z, 〈q, α, (i, j)〉〉. Let M2 = 〈W,Q2, q0, Z, z0, k, π, P2〉. On every step
M2 “knows” whether it has already read the first symbol of the word or not. It is easy
to see that L(M2) = L(M1).

3) Let 1 ≤ i ≤ k, j ∈ {−1, 0, 1 }. Then θ(i, j) denotes ↗Ai if j = 1, it denotes ↘Ai
if j = −1, and it denotes ε otherwise. Now we can construct an auxiliary cf-grammar
G1 = 〈∆, N, S,R〉.
∆ includes all the symbols of the form aθ appearing below in the rules of R.
N = { [qzq′] | q, q′ ∈ Q2, z ∈ Z } ∪ {S }. R contains the following rules.
a) Let 〈p, ε, z, 〈q, z1 . . . zt, (i, j)〉〉 be an instruction, p, q ∈ Q1. Then we include into R
the rules [pzqt]→ [qz1q1][q1z2q2] . . . [qt−1ztqt] for all q1, . . . , qt ∈ Q2.
Let 〈p, ε, z, 〈q, z1 . . . zt, (i, j)〉〉 be an instruction, p, q ∈ Q1. Then we include into R the
rules [pzqt]→ [qz1q1][q1z2q2] . . . [qt−1ztqt] for all q1, . . . , qt ∈ Q2.
b) Let 〈p, a, z, 〈q, z1 . . . zt, (i, j)〉〉 be an instruction, p, q ∈ Q1, a ∈ W . Let r be a ε-path
whose first instruction has q as its first state. Then we include into R the rules
[pzqt]→ aθ(i,j)θ(r)[qz1q1][q1z2q2] . . . [qt−1ztqt] for all q1, . . . , qt ∈ Q2.
c) Let 〈p, a, z, 〈q, z1 . . . zt, (i, j)〉〉 be an instruction, p ∈ Q1, q ∈ Q1, a ∈ W . Let r be a
ε-path ending with the state p, and let r′ be a ε-path beginning with q. Then we include
into R the rules [pzqt]→ aθ(r)θ(i,j)θ(r

′)[qz1q1][q1z2q2] . . . [qt−1ztqt] for all q1, . . . , qt ∈ Q2.
d) We include into R the rules S → [q0z0q] for every q ∈ Q2.

Lemma 5 i) Let 〈q0, a1 . . . an, z0, v0〉 `∗M2
〈q, ε, z1 . . . zt, v〉 and no ε-step can be made
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from q. Then [q0z0qt]⇒∗G1
aθ11 . . . aθnn [qz1q1][q1z2q2] . . . [qt−1ztqt] for some θ1, . . . , θn, q1, . . . ,

qt, and c(θ1 . . . θn) = v.
ii) Let [q0z0qt] ⇒∗G1

aθ11 . . . aθnn [qz1q1] . . . [qt−1ztqt] be the left derivation in G1. Suppose
that c(θ1 . . . θn) is defined and there are not ε-instructions starting with q, i.e. instruc-
tions of the form 〈q, ε, z, 〈. . .〉〉. Then 〈q0, a1 . . . an, z0, v0〉 `∗M2

〈q, ε, z1 . . . zt, c(θ1 . . . θn)〉.

Proof. First of all let us notice that without the potentials these two assertions are
the same as for standard transformation of a push-down automaton into an equivalent
cf-grammar. Therefore it is enough to prove only the part of the assertions considering
the counters and the potentials.
i) Induction on n.
Base case. Let n = 1. Then the automaton performs ε-instructions of some com-
plete ε-path r beginning with q0 and ending with q1, then it performs an instruction
〈q1, a1, z, 〈q2, α, (i, j)〉〉, and finally it performs ε-instructions of some complete ε-path r′

beginning with q2 and ending with q. The rules ofG1 corresponding to ε-instructions have
empty potentials, and the rule for a1 has by construction a potential θ = θ(r)θ(i, j)θ(r′).
We see that c(θ) = v.
Inductive step. Suppose that there is a derivation of M : 〈q0, a1 . . . anan+1, z0, v0〉 `∗M
〈q1, an+1, β, v1〉 `∗M 〈q, ε, z1 . . . zt, v〉. After reaching state q1 the automaton performs an
instruction 〈q1, an+1, z1, 〈q2, α, (i, j)〉〉, and then it performs the ε-instructions of some
complete ε-path r beginning with q2 and ending with q. By construction the rule corre-
sponding to the first instruction has the symbol an+1 with the potential θ(i, j)θ(r), and
the rules corresponding to ε-instructions have no potentials. Then the total potential is
θ = θ1 . . . θnθ(i, j)θ(r), and c(θ) = c(θ1 . . . θnθ(i, j)θ(r)) = v because c(θ1 . . . θn) = v1 by
induction hypothesis.
ii) Induction on n.
Base case. If n = 1, then the derivation begins with rules without terminal sym-
bols corresponding to some complete ε-path r, then it contains a rule of the form
[pzqt] → aθ11 [qz1q1][q1z2q2] . . . [qt−1ztqt], and then it ends with the rules corresponding
to some complete ε-path r′. Let 〈p, a1, z1, 〈q, α, (i, j)〉〉 be an instruction. Then by con-
struction θ = θ(r)θ(i, j)θ(r′). Therefore, c(θ) = v.

Inductive step. Let [pzqt]⇒∗G1
aθ11 . . . aθnn ξ ⇒∗G1

aθ11 . . . aθnn a
θn+1

n+1 ξ
′, where ξ, ξ′ ∈ N+. After

obtaining aθ11 . . . aθnn some rule of the form A → a
θn+1

n+1 η is applied, where η ∈ N∗, and
then the derivation uses rules without terminal symbols corresponding to some complete
ε-path r. The first rule corresponds to some instruction 〈q′, an+1, z1, 〈q′′, α, (i, j)〉〉. Then
by construction θn+1 = θ(i, j)θ(r). Having read the symbols a1, . . . , an, the automaton
gets the counter stacks configuration v1 = c(θ1 . . . θn) (by induction hypothesis). After
reading an+1 the automaton gets the counter stacks configuration c(θ1 . . . θn+1). 2

Lemma 6 i) Let 〈q0, a1 . . . an, z0, v0〉 `∗M2
〈q, ε, ε, v〉 and no ε-step can be made from

state q. Then [q0z0q]⇒∗G1
aθ11 . . . aθnn for some θ1, . . . , θn, q1, . . . qt, and c(θ1 . . . θn) = v.

ii) Let [q0z0q] ⇒∗G1
aθ11 . . . aθnn be the left derivation in G1. Suppose that c(θ1 . . . θn) is

defined and there are not ε-instructions starting with q, i.e. instructions of the form
〈q, ε, z, 〈. . .〉〉. Then 〈q0, a1 . . . an, z0, v0〉 `∗M2

〈q, ε, ε, c(θ1 . . . θn)〉.
Like in previous lemma, the assertion without stacks is proved in standard way. In
order to get the statements concerning potentials and counters, one should use the proof
similar to the one in the previous lemma, but consider the final step of derivation.
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Now, let G2 be a cf-grammar in Greibach normal form and equivalent to G1. Let
G = mmCDG(G2, π

′) (Definition 19). Then it follows from corollary 3 and lemmas 1
and 6 that the following statements are equivalent.
1) a1 . . . an ∈ L(M)
2) 〈q0, a1 . . . an, z0, v0〉 `∗M 〈q, ε, ε, v0〉 for some q ∈ Q2

3) S ⇒G1 [q0z0q]⇒∗G1
aθ11 . . . aθnn for some θ1, . . . , θn such that c(θ1 . . . θn) = v0

4) S ⇒∗G2
aθ11 . . . aθnn for some θ1, . . . , θn such that c(θ1 . . . θn) = v0

5) a1 . . . an ∈ L(G)
Therefore, L(G) = L(M). 2

Theorems 5 and 6 lead to the following

Corollary 4 1) L(mmCDG) ⊆ L(PDASC).
2) If L ∈ L(PDASC), then L− { ε } ∈ L(mmCDG).

Now all properties of L(mmCDG) established in [4] hold also for L(PDASC). Es-
pecially, L(PDASC) is closed under union, concatenation, iteration, intersection with
regular languages, ε-free homomorphisms, and inverses of homomorphisms, i.e. all AFL
operations [8], it includes some non-semilinear languages, there is NP-complete language
G ∈ L(PDASC).
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МП-автоматы с независимыми счётчиками

Дехтярь М. И., Карлов Б. Н.

Тверской государственный университет
170000 Россия, г. Тверь, ул. Желябова, 33

Ключевые слова: автоматы, формальные грамматики и языки, магазинные
автоматы с независимыми счётчиками, проективная и непроективная зависимость,

категориальная грамматика зависимостей, мультимодальная категориальная
грамматика зависимостей, магазинные автоматы со стеками независимых

счётчиков

Магазинные автоматы с независимыми счётчиками (МПНС) объединяют воз-
можности МП-автоматов и сетей Петри. Они были предложены в работах [21, 15]
как средство для распознавания языков, порождаемых категориальными грамма-
тиками зависимостей (КГЗ). КГЗ представляют собой классические категориаль-
ные грамматики, расширенные ориентированными поляризованными валентностя-
ми. Они позволяют выразить как проективные, так и непроективные зависимости
между словами предложения. МПНС — это обычный МП-автомат, к которому до-
бавлено конечное число счётчиков. Независимость счётчиков означает, что их со-
держимое не влияет на выбор очередного действия автомата. В первой части статьи
мы сравниваем несколько вариантов определения МПНС и доказываем эквивалент-
ность двух вариантов МПНС: без синтаксических пустых циклов и без семанти-
ческих пустых циклов. Отмечаем также некоторые связи между МПНС-языками
и языками сетей Петри. Мы показываем, что МПНС эквивалентны стек+бэг МП-
автоматам (СБМПА), предложенным независимо Сёгаардом (Søgaard), и что
СБМПА без пустых циклов распознают в точности КГЗ-языки. Мультимодальные
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категориальные грамматики зависимостей (ммКГЗ) были введены в [4] как расши-
рения КГЗ, позволяющие управлять пересечениями некоторых зависимостей. Класс
ммКГЗ-языков достаточно богат и обладает многими свойствами замкнутости, в
частности, он образует абстрактное семейство языков. Во второй части статьи мы
расширяем МПНС и определяем МП-автоматы со стеками независимых счётчиков
(МПСНС). Это расширение двоякое: (1) каждый счётчик представляет стек нату-
ральных чисел и (2) добавляется функция, которая позволяет уменьшать число на
вершине стека счётчика, только если вершины всех связанных с ним счётчиков рав-
ны нулю. Наш основной результат утверждает, что МПСНС допускают в точности
класс ммКГЗ-языков.
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