Moodea. u anaaus ungopm. cucmem. T.22; Ne2 (2015) 176-196
©Dekhtyar M. I., Karlov B. N., 2015

UDC 519.766:519.713.1

PDA with Independent Counters

Michael Dekhtyar, Boris Karlov !

Dept. of Computer Science, Tver State University,
Zhelyabova str., 33, Tver, Russia, 170000.

e-mail: Michael. Dekhtyar@tversu.ru, bnkarlov@gmail.com

recewwed February 15, 2015

Keywords: automata, formal grammars and languages, push-down automata with
independent counters, projective and non-projective dependency, categorial
dependency grammar, multimodal categorial dependency grammar, push-down
automata with stacks of independent counters.

Is dedicated to the memory of Alexzander Dikovsky (1945-2014)

Push-down automata with independent counters (PDACs) combine the power
of PDAs and Petri Nets. They were developed in [21, 15], as a tool of recogni-
tion of languages generated by Categorial Dependency Grammars (CDGs). CDGs
are classical categorial grammars extended by oriented polarized valencies. They
express both projective and non-projective dependencies between the words of a
sentence. PDAC is a usual PDA equipped with a finite number of counters. The
independence of counters means that their state has no effect on the choice of
an automaton move. In the first part of the paper we compare some variants of
PDACs and prove the equivalence of two variants of PDAs with independent coun-
ters: without syntactic and without semantic e-loops. Some connections between
PDAC-languages and Petri Net languages are noticed. Then we show that PDACs
are equivalent to stack+bag push-down automata (SBPA) independently intro-
duced by Sggaard and that e-acyclic SBPAs recognize exactly CDG-languages.

Multimodal Categorial Dependency Grammars (mmCDGs) were introduced in
[4] as an extension of GDGs that allows control of some intersections of depen-
dencies. The class of mmCDG-languages is rich enough and has good closure
properties, that it forms AFL. In the second part of the paper we extend PDACs
and introduce push-down automata with stacks of independent counters (PDASC).
PDASCs extend PDACs twofold: (i) each counter is a stack of integers and (ii)
there is a restriction function which allows to diminish a head of a counter only
if the heads of all dependent counters are zeros. Our main result says that these
PDASCs accept exactly the class of mmCDG-languages.

The article is published in the author’s wording.

IThis work was sponsored by the Russian Foundation of Basic Research (Grants No. 13-01-00643
and 13-01-00382).

176

PDA with Independent Counters 177

Introduction

Push-down automata with independent counters (PDAC) are a natural extension of
push-down automata (PDA), the class of automata which recognizes context-free lan-
guages (see, e.g. [11, 20]). They were developed by the second author ([21, 15]) as a tool
for recognition of languages generated by Categorial Dependency Grammars (CDGs).
Because these automata combine PDAs with Petri Nets, we believe that they are an
interesting object of study by themselves.

Dependency grammars (DGs) are formal grammars assigning dependency trees (DT's)
to well-formed sentences. A DT of a sentence is a labeled arrows tree whose nodes are
the words of the sentence. A formal description of DGs and the DG syntax was defined
by Tesniere [17]. It is well-known that the DTs assigned to constituent structures by
context-free (cf-) grammars are always projective: the projections of words fill continu-
ous segments. Meanwhile, discontinuous non-projective dependencies are inevitable in
languages. They often mark communicative structure and special constructs encoding
complex semantic relations.

The necessity of treating non-projective dependencies in grammars led to many pro-
posals on extending cf-grammars and push-down automata. One of the best known is
the class of Tree Adjoining Grammars (TAGs) [13]. For this class Embedded Push-Down
Automata (EPDA) have been introduced in [18]. EPDAs recognize the class of Tree-
Adjoining Languages (TALs). EPDAs extend push-down automata (PDA) by replacing
the single push-down store used in PDAs with a stack of non-empty push-down stores.
TAGs and EPDAs can handle some non-projective dependencies. But their power is not
enough to recognize some languages with the intensive cross-serial dependencies. E.g., it
was recently shown in [18] that TALs do not include language M1 X3 C {a,b, c}* contain-
ing all the words with equal numbers of the symbols a,b and ¢. A detailed comparison
of TAGs, EPDAs and many others extensions of cf-grammars and PDAs can be found
in [18, 12].

The Categorial Dependency Grammars (CDGs) were originally introduced by Dikov-
sky [6]. Their mathematical properties were studied by Dekhtyar, Dikovsky and Karlov
in [2, 3, 21]. They showed that the family of CDG-languages is closed under all AFL
operations, except for iteration?. Additionally, Karlov defined the class of Push-down
Automata with Independent Counters (PDAC) and proved that these automata ac-
cept exactly all CDG-languages [21]. PDA with independent counters is a usual PDA
equipped with a finite number of counters. The independence of counters means that
their state has no effect on the choice of an automaton move. An equivalent class of
Stack+Bag Push-down Automata was introduced by Sggaard independently [16].

In [7, 4] the multimodal extensions of CDGs (mmCDGs) were defined. They add to
CDGs cross prohibition functions which prevent from intersections of some dependencies
in DTs. It was shown that mmCDG-languages are closed under iteration, and their
expressive power and complexity were investigated.

At the same time, the problem of characterizing the mmCDG-languages by appro-
priately extending push-down automata remained open. In this paper we provide such a
characterization by defining Push-down Automata with Stacks of Independent Counters
(PDASC), and extension of PDAC. These automata are push-down automata equipped

2The closure under iteration still is unknown.

178 Modeauposanue u anarus ungpopmayuonnvir cucmem T.22, Ne2 (2015)

with finite number of counter stacks. Cells of the stacks contain numbers which can be
increased or decreased. At the same time, the contents of the stacks do not influence
the selection of the automaton instruction. The automata recognize the words in the
language by emptying the stack and zeroing all the counter stacks. Our main result
states that PDASC accept exactly all mmCDG-languages.

The rest of this paper is organized as follows: in Section 2 we give definitions of CDGs
and mmCDGs and their languages. In Section 3 we consider some variants of PDACs
and prove the equivalence of two variants of PDACs with independent counters: without
syntactic and without semantic e-loops. We also notice that PDAC-languages include all
intersections of cf-languges and Petri Net languages and that every PDAC-language can
be obtained by a homomorphism of the intersection of a cf-language with some special
Petri Net language. In Section 4 we show that PDACs are equivalent to stack+bag push-
down automata (SBPA) independently introduced by Sggaard and that e-acyclic SBPA
recognize exactly CDG-languages. In Section 5 we introduce a new class of automata:
Push-down Automata with Stacks of Independent Counters (PDASCs) without empty
loops. PDASCs are illustrated by an automaton which accepts the language {a™b™c"}*.
In Section 6 we prove our main result which says that PDASCs accept exactly the class
of languages generated by mmCDGs.

1. CDG and mmCDG

Similarly to other categorial grammars [1], the categorial dependency grammars (CDG)
may be seen as assignments of dependency types to words. Every dependency type
assigned to a word w defines its possible local neighborhood in a grammatically correct
dependency structure. The neighborhood of w consists of the incoming dependency, i.e.
the dependency relation d through which w is subordinate to a word g, its governor, and
also of a sequence of outgoing dependencies, i.e. the dependency relations d; through
which w governs subordinate words w;. In order to formalize the linguistic notion of the
syntactic type, we use the notion of the category. Let C be a nonempty finite set of
elementary categories (e.g. subject, predicate, complement). The elementary categories
can be iterated: for C' € C, C* means a corresponding iterated category. The set of all
iterated categories is denoted C*. Elementary and iterated categories are combined in
base (local) categories with the constructors \ and /.

In CDGs and mmCDGs, the non-projective dependencies are expressed using so
called polarized valencies. Namely, in order that a word G may govern through a discon-
tinuous dependency d a word D that follows the word G somewhere in the sentence, G
should have a type declaring the positive valency d, whereas its subordinate D should
have a type declaring the negative valency \, d. Together these dual valencies define the
discontinuous right dependency d. Additionally, there is another pair of dual polarized
valencies _d and " d which defines the discontinuous left dependency d.

Definition 1 Let C be a set of elementary (dependency) categories. S € C is the selected
category of sentences.

For each elementary category d the category d* is iterated.

Fach elementary category or € is base. If a category C' is base and a category o is
elementary or iterated, then the categories [a\C| and [C'/a] are also base. There are no

PDA with Independent Counters 179

other base categories. The set of base categories over C' is denoted bCat(C).

Polarized valencies are expressions /d, \d, \.d, /d, where d € C. The set of
polarized valencies over C is denoted V(C). Strings 0 € Pot(C) = V(C)* are called
potentials.

A (general) category is either base category or has the form C°, where 6 is a potential
and C' is a base category. The set of general categories over C is denoted Cat(C).

CDG assigns to each word in its dictionary a finite set of categories.

Definition 2 A categorial dependency grammar (CDG) is a system G = (W, C, S,),
where W is a finite set of words, C is a finite set of elementary categories containing
the selected name S (an aziom), A, called lexicon, is a finite substitution on W such that

Aa) C Cat(C) for each word a € W.

If X(a) ={m,...,7 }, then we write a — ~1,...,Vn.
CDG proofs are defined using the following calculus of dependency types 3.

Definition 3 Let I';, 'y be strings of categories Cat(C)*, 0,01, 65,03 be potentials, « be
local category from bCat(C).
Local dependency rules:
L!': 1[0 [C\a]?%Ty F Ty [a]102Ty,
where C € CU {¢e}
Iterated dependency rules:
Il : F1[0]91 [C*\a]92F2 F Fl[C*\Oé]9192F2
I‘IJ . Fl[C*\oz]9F2 H Fl[a]efg,
where C' € CU {e}
Discontinuous dependency rules:
D! QP OPNOE: |- o PiPP2

where the potential (,/C)P(N\C) satisfies the following pairing rule FA (first available):
FA : P has no occurrences of /C,\C.

Intuitively, the rules L! (L*) correspond to the classical elimination rules of catego-
rial grammars. Eliminating the argument subtype C' they construct the (projective)
dependency C' in which the governor is the word with the functional type and the sub-
ordinate is the word with the argument type. At the same time, they concatenate the
potentials of these types (if any). The rules I', I, (I*, I3) derive the iterated (projective)
dependencies. I! (I*), analogous to the rule L! (L¥), may derive & > 0 dependencies C
and I}, (I§) corresponds to the case k = 0. D! (D¥) creates discontinuous dependencies.
It pairs and eliminates dual valencies with name C' satisfying the rule FA to create the
discontinuous dependency C.

When one of these rules is applied, an edge is added into the dependency structure.
This edge goes from the governor to the subordinate word and is labeled with the name
of the canceled category.

This calculus defines the immediate provability relation - on the strings of categories.
Its transitive closure -* underlies the following definition of CDG-languages.

3We show left-oriented rules. The right-oriented rules are symmetrical.

180 Modeauposanue u anarus ungpopmayuonnvir cucmem T.22, Ne2 (2015)

Definition 4 CDG G generates the language L(G), consisting of all words w = wyws, . ..
wy, € W*, such that for some string of categories I' € Mw) = A(wy)A(ws) ... A(w,) there
is a proof T'+* S. Let L(CDQG) be the class of all CDG-languages.

The following example shows a simple CDG that generates a non cf-language.

Example 1 Let CDG Gy = ({a,b,c}, {S, A, B,C}, S, Aape) where Agpe
a v [S/A]7,[S/B)™, [AJA]74, [A/ B

b [B/B]XP, [B/C]MAP

¢ [C/C2, (O]

This grammar generates language Lgp. = {a™b"c™ | n > 1}. Fig. 1 shows the cate-
gories assignment for the word a®b®c® and the dependency structure of the word built by

Gabc'

oA B
/// A /// \\\ B \\\
v -7 T-a z N - T~
’ e AN LN N \
// // ,'é~\ // B\\ // B \\ _ B - \\
Y B TN N N
/ / N / T TN
a a a b b c c c
[S/A174 [A/A) 74 (A/BI7A [B/BIASE (BB BB/CIASB /OB [c/e)E [0

Fig. 1. Dependency structure for w = aaabbbccc

A number of properties of CDGs and languages of L(CDG) were established in
(2, 3, 21, 15]. Specifically, L(C'DG) is closed under all Abstract Family of Languages
(AFL) [8] operations except iteration?. The notion of PDA with independent counters
was defined and it was shown that these automata accept exactly CDG-languages.

But it turned out that pairing rule FA can not prevent generation of some unwanted
dependencies, e.g. dependencies between two words of different sentences. So, in [4] a
new class of multimodal categorial dependency grammars (mmCDG) was introduced.
mmCDG extends CDG with a cross prohibition function 7 of type 7 : C — 2€. If
D € n(C) and C € w(D) then dependencies C' and D should not intersect in the
dependency structures.

We adopt the definition of mmCDG from [4].

Definition 5 A multimodal categorial dependency grammar (mmCDG) is a system G =
(W, C, S, \,), where W, C, S and X are as in CDGs, and 7 : C — 2€ is a cross prohi-
bition function.

The function m should be symmetrical, i.e. if C € n(D), then D € w(C) for all C
and D from C.

The calculus of dependency types for mmCDG proofs includes rules L', L*, T, I7, I}, T§,

and discontinuous dependency rules of the form

DFAZ : ael(/c)e(\C)Pz - a919927
C:w(C)

4We believe that it is not closed. But it is still an open problem.

PDA with Independent Counters 181

where 6,(,C)0(\,C) satisfies the pairing rule FAc.-(cy: 6 has no occurrences of C,
N\ and also of /A /NA, "ANA for all A € n(C).

As in the case of CDG rules, Dgar, o (DFAE:W(C)) derive non-projective dependencies.
They pair dual valencies C' under the negative condition that the resulting discontinuous
dependency C' does not intersect the discontinuous dependencies in the set w(C').

Let L(mmCDG) be the class of all mmCDG-languages.

In [4] it was shown that £(mmCDG) is closed under all AFL operations including
iteration. The following example shows how mmCDG can generated the iteration of the
language of Example 1.

Example 2 Let L1 = LY, = {a™"c" | n > 0}". It is generated by the following
mmCDG G1({a,b,c},{S, A, B,C}, S, A\, m1), where A\ :

a > [S/A]7C [S/B) O [AJA 2 [A) Bl

b [B/B]M/B [B/C|>M/B

¢ [C/CIP[CINE [OfS]ee

and m(A) ={C}, m(B)={C}, m(C)={A,B}, m(S)=0.

(G extends G of example 1 with a new pair of dual valencies C, \C' which due
to the prohibition function 7 defends subwords of the form a"b"c" against the penetra-
tion of dependencies A and B from the adjacent words. It can be seen on Fig. 2 which
presents the dependency structure that G, assigns to string w = aabbccabe.

-
PR P A Kel
e hIUhe RN LT T T T T
‘A A -n> B AN S < A_ B~
‘s - ’ N o NN T BT~ AN

///—\/ B \m//%mm” \//Q\\
V7 (/1 [i H N &
a a b b c c a b c

[S/A17C7A1A/B)7A B/ BB B/CIA R/ C)ME (€8] N8/ B 7O B /O A BIC)SENC

Fig. 2. Dependency structure for w = aabbccabe

Definition 6 Let m be a cross prohibition function, 6 be a potential. A potential 0 is
called balanced with respect to 7, if its projection on every pair of dual polarized valencies
is a word of well-matched valencies, and there exists an order on the set of the correct
pairs such that they can be removed from potential without violating the restrictions of
.

In other words, a potential # is balanced with respect to , if there is a proof a’ F* a°
which uses the rules DFAZC e and DFATC:#(C) only.
It is easy to see that if the cross prohibition function of mmCDG G is empty, i.e.

7(C) =0 for all C € C, then discontinuous dependency rules D, are transformed
FAG o)

into the First Available (FA-) principle and then G is a CDG.

In [4] we showed also that L(mmC DG) includes some non-semilinear languages and
that there is a mmC DG G such that the membership problem for L(G) is NP-complete.
At the same time, until this paper, no class of automata for accepting languages from

L(mmCDG) has been proposed.

182 Modeauposanue u anarus ungpopmayuonnvir cucmem T.22, Ne2 (2015)

2. Push-down Automata with Independent
Counters

The notion of PDA with independent counters was introduced in [21, 15]. Informally,
the PDA with independent counters is a usual PDA equipped with a finite number of
counters. The independence of counters means that their state has no effect on the choice
of an automaton move.

Let Z be the set of all integers and N be the set of all nonnegative integers.

Definition 7 A push-down automaton with independent counters (PDAC) is a 7-tuple
M = (3,Q,T,qo, 20, P,n), where ¥ is an input alphabet, Q is an alphabet of states, T is
a stack alphabet, qo € Q) is an initial state, zy € ' is an initial symbol of the stack, P is
a set of rules, n is a number of counters.

The rules are of the form {(q,a, z,{¢,a,0)), where ¢,¢ € Q,a € XU{e}, z€ T, a €',
U= (vi,...,u,) € Z™ is a vector of integers.

Informally speaking, this is a push-down automaton additionally augmented with a
finite number of counters. It uses its stack to check the elimination of local categories,
and the counters correspond to different types of valencies.

Definition 8 A configuration of PDAC M = (£,Q, T, qo, 20, P,n) is a quadruple (g, w,
v, u), where ¢ € Q, w € ¥, v € I', & = (uq,...,u,) € N™ is a vector of nonnegative
integers.

We define a one-step transition: {q,w,y,u) Fi; (¢, w', ', ') iff there exists a rule {q,a, z,
(¢, c,0)) € P such that the following three conditions are satisfied:

1) w=aw,
2)y=27", 7" =ay",
3)uw =u+0.

If v =€ or some component of u' is negative, then the step cannot be made.
The relations =y, of n-steps derivations of M and =}, of derivations of M are defined
as usual.

In fact, the numbers in the counters are the numbers of currently unpaired left valen-
cies. The positive numbers in the rules correspond to the left valencies, and the negative
numbers correspond to the right valencies. The automaton works like a push-down au-
tomaton. Additionally it changes the values of the counters on every step, but the step
itself is not influenced by these values, which means that the counters are independent.

The language accepted by the push-down automaton with independent counters M
can be defined by emptying the stack and zeroing the counters.

Definition 9 The word w s accepted by PDAC M iff there exists ¢ € Q) such that
{(qo, w, 20, (0,...,0)) F3; (q,¢,¢,(0,...,0)).

The language L(M) accepted by PDAC M 1is the set of all the words accepted by the
automaton.

PDA with Independent Counters 183

In general, it is possible that the automaton performs e-instructions in a cycle and
changes the counters. In this case it can increase the counters by an unbounded amount
without reading new symbols. But all potentials in the CDGs have finite length. One
can propose two kinds of restrictions to avoid such empty loops. The first definition is
syntactical and was used in [15].

Definition 10 We say that PDAC M has a syntactic e-loop if there exists a sequence
of states qi,...qx (k > 1) such that {(q;, €, zi, {qi+1,7i, Vi)) € P for 1 <i <k, {qx, €, 2k,
(q1, 7k, U)) € P and for some i € [1,k] v; # (0,0,...,0).

The second one is semantical and follows Sggaard of [16].

Definition 11 We say that the PDAC M has a semantic e-loop if for some q € Q,
o, € T*, and vectors u,v there is a derivation of M {(q,e,a,u) F+ (q,&,0,0) that
consists only of e-instructions and at least one of these instructions changes at least one
counter.

It is easy to see that if the automaton has no syntactic e-loops, then it has no semantic
e-loops. The inverse assertion does not hold. E.g. if the automaton has the instructions
(q,€,a,{q1,a,)), {q1,,b,{q,b,v)), then they form a syntactic e-loop, but there are no
semantic loops because of different stack symbols.

Nevertheless, the following assertion holds.

Theorem 1 For every PDAC without semantic -loops there exists an equivalent PDAC
without syntactic e-loops.

Proof. Let us consider an arbitrary PDAC without semantic e-loops M = (2, Q, Z,
o, 20, P,n). We may suppose that the initial state ¢y cannot be revisited by the automa-
ton. We build an auxiliary graph G = (V, E), where

V= {{¢.e.2,(¢,7.0) | (¢,6,2,(¢,7,0)) € P}, E = {({g,€,2, (¢,7.0)),(¢,e,7,
(@00 1 g8, 2,{d v, 0)), (¢ 6,2, {¢", 7/, ")) €V }.

Let p1,pa,...,pr be all simple cycles in G. The amount k£ of such cycles is finite.
Let p; = (g1, €, 21, (@2, Y1, U1))s - - - s {Qms €, Zm, (q1, Y, Um)) be one of these cycles. We add
m — 1 new states (i,q2), (4,43), --., (i,qm). These states are different for every cycle.
We remove all instructions of the cycle p; from the set of instructions, and we add the
following instructions:

(1,8, 21, (i, q2), 71, 01)),
<<i7 QQ)v €, 22, <(Z7 Q3>7 V2, 1_)2>>7

(4, @m—1) €, 2m—1, {4, @m) s Ym—1, Vm—1))-

Besides, for every instruction (g;, a, z, (¢,7, 7)), where a € X, ¢, is one of the states from
pi, 2 < j < m, we add a new instruction ((¢,q;), a, z, (¢,7,7)). Let us denote the new
automaton M’.

Obviously, M’ has no syntactic e-loops. When M’ begins to perform a sequence
of e-instructions, it remembers the e-path in the states. If it reaches the state (i, qn),
it cannot return to ¢; closing the loop, because the last e-instruction of the cycle was
removed. But M could neither move to ¢; due to absence of semantic e-loops. If M

184 Modeauposanue u anarus ungpopmayuonnvir cucmem T.22, Ne2 (2015)

“chooses” not to perform the loop, but to read a symbol in the state ¢;, M’ may “forget”
the path which leads it to ¢; and continue working exactly like M. Thus, L(M) = L(M’).
O

Let L(PDAC) be the class of languages accepted by push-down automata with in-
dependent counters and without (syntactic or semantic) empty loops.

Another way is to define acceptance by final state and final counter states. Let push-
down automaton with independent counters and final states (PDACF) M = (¥,Q,T,
o, 20, P,n, F,Cy) be PDAC extended with a set of final states F' C () and a finite set of
accepted counter states C'y C N".

Definition 12 The word w is accepted by PDACFE M by means of the terminal states
if {qo,w, 20, (0,...,0)) 3 (d',e,7v,q) for some state ¢’ € F, counters states u € Cy and
any stack string .

The language LF (M) accepted by PDACF M s the set of all the words accepted by the
automaton.

Let Lr(PDACF) be the class of languages accepted by PDACF without empty loops.
As in the case of PDAs, it can be shown that definitions 9 and 12 are equivalent.

Proposition 1 L(PDAC) = Lp(PDACF).
In [15] it was proved that the classes L(C'DG) and L(PDAC) are “almost” equal.

Theorem 2 1) L(PDAC) C L(CDG).
2) If L € L(PDAC), then L — {£} € L(CDG).

Now we list some properties of L(PDAC) which follows from theorem 2 and the results
obtained in the papers [2, 3, 21, 15]:

e L(PDAC) includes all cf-languages and some non cf- and non TAG-languages;

o let W = {ay,ay,...,a,}, then languages L, = {afas...ak | k > 0}(n > 1) and
MIX, ={we W |[|w|y = |w|e, =... = |w|a,} are in LIPDAC);

e the parsing problem for L(PDAC) in the general case is NP-complete;

e for languages accepted by PDACs with bounded numbers of counters there is a
parsing algorithm that has polynomial complexity;

e L(PDAC) is closed under union, concatenation, intersection with regular lan-
guages, e-free homomorphisms, and inverses of homomorphisms.

If PDAC does not use its stack, then it turns into a counter automaton without
e-loops. A direct comparison shows that this class of counter automata is equivalent to
the class of prompt Weak Counter Automata (WCA) defined by Hack in the well-known
report [10]. Theorem 9.12 of the report says that the languages generated by prompt
WCA are the family of Petri Net languages Lo ° completed by . Therefore, L(PDAC)
includes all cf-languages as well as all Petri Net languages from L. It can be shown that
L(PDAC) also includes the intersection of these classes.

5Ly is the class of all e-free languages obtained as the set of all terminal label sequences of a e-free
Labelled Petri Net.

PDA with Independent Counters 185

Proposition 2 Let L; be a cf-language and Ly be a Petri Net language from Ly. Then
L=LNLy e L(PDAC).

On the other hand, it follows from the results of [21] that for every L € L(PDAC)
there exist a cf-language L, a Petri Net language P € £y and a homomorphism ¢ such
that L = ¢(L; N P).

In fact, for some n P is the language P, of words in the alphabet of n pairs of
parentheses, whose projections on any single pair of parentheses are well-matched. It is
easy to see that P, can be recognized by our counter automaton with n counters.

3. PDAC and stack+bag push-down automata

In the paper [16] A. Sggaard introduced a stack+bag push-down automaton (SBPA) as a
6-tuple P = (X, Q, T, qo, F, §) where ¥ is an input alphabet, @ is an alphabet of states, "
is a stack alphabet, gy € () is the initial state, F' C @ is the set of the terminal states, and
5 CQx (SU{e}) x (NU{el) x Q@ x (T7Ue}) {7, s Wubat [s+ 70 € Dy > 0}
is a finite set of transitions, where {...}ss is a bag or a multiset, i.e. {{v1,..., W} |
Yy Yn € I',n > 0} is the set of multisets over elements of T

A configuration of SBPA has the form (g, w,v,v) € Q x Z* X T* X {{71, ..., Y}t |
Yy Yn € Tyn > 0}, where ¢ is the state the SBPA is currently in, w is the input
string still to be processed, v is the contents of the stack, and ' is the contents of the
bag. The derivability relation is the transitive, reflexive closure (F*) of the following
binary relation F over the class of all configurations, where

L (g, 2w, z7,7) b (¢, w,av,7') if (¢, 0u) € 6(q,2,2) (pop z from stack, push «
to stack),

2. (¢, zw, zv,v) F (¢ ,w, v,/ UY) if (¢,e,a') € §(q,x, z) (pop z from stack, push o
to bag),

3. (g 2w, v, {2} Ur) F (¢ w,av,7) if (¢, 0nr) € 0(q, 2, 2) (pop 2z from bag, push
a to stack),

4. (qa TWw, 7, {Z}M U P)/) - (q/7w77aa, U 7/) if (q/7€7al) S 5<an7z> (pOp z from baga
push « to bag)

withz € XU{e}, zeTU{e},aeT* and &/ € {{7,. .-, Vutm |71, , " €T,n >0},
A SBPA S recognizes the language:
L(S) ={w | (qo,w,e,0n) H* (q,8,2,00) Nq € F}.
The languages that can be recognized by SBPAs are called stack+bag push-down
languages.
When comparing the definitions of SBPA and PDAC, one cannot help but notice their
similarity. In Theorems 3 and 4 we show that these classes of automata are equivalent.

Theorem 3 For every SBPA one can effectively construct an equivalent PDAC.

Proof. Let S = (X,Q,T",qo, F,0) be a SBPA. Let I' = { 2,..., 2, } and zg € I" be a new
stack symbol. We build a PDAC M = (3, Q',T'U{ 20 }, qo, P, k). Here @)’ is a new set of

186 Modeauposanue u anarus ungpopmayuonnvir cucmem T.22, Ne2 (2015)

states. It contains () and some new states which will be defined later. The number of
counters k is |['|.

1) Let (¢/,a,0n) € 0(q,,2). This instruction can be performed in two ways. The
automaton may replace the top of stack z; by the word «, or it may remove z from the
bag and push « into the stack. We add the following instruction in P.

<Q> Ty Zi, <q,’ «, 0>>

(q,z,u,{q,au,(0,...,0,—1,0,...,0))) for every u € I'U{ zo } (here —1 is on i-th place)
The first instruction corresponds to the point 1 of definition of derivability relation for
SBPA . and the second one corresponds to the point 3.

2) Let (¢/,e,d') € d(q,x, z;). The first way to perform the instruction is to pop z; from
the stack and add o' to the bag, the second way is to remove z; from the bag and add
o' there. Let © be a vector such that v; is the number of elements z; in the bag o
(7=1,...,|I']). We add the following instructions to P.

<Q7 T, Zi, <q/7 &, @>>

(q,z,u,{q",u,(0,...,0,—1,0,...,0))) for every u € T U {29} (—1 is on i-th place)

q" e, u, (¢, u,v)) for every u € U {29 }

Here ¢” is a new state, different for every instruction.

For every state ¢ € F we add the instruction (g, ¢, 20, {(q,¢,0)). O

Theorem 4 For every PDAC one can effectively construct an equivalent SBPA.

Proof. Let M = (X,Q, T, qo, 20, P, k) be a PDAC with k counters. Let T' = {t1,...,t }
be a set of new stack symbols, a and z{, be new stack symbols, ¢| and ¢y be new states.
We build a SBPA S = (£,Q", ZUT U{a,z} q),{qr},9). Here Q' contains Q, g, ¢y,
and some other states which are described later.

Let the automaton M has an instruction (q,z,z, (¢, a, (v1,...,v%))). We divide the
vector ¥ in two vectors o and v7: v = 0" + v, where

7 K3

+_{vi, ifv;, >0 __{vi, ifv; <0

v = . v, = .
0, otherwise ’ 0, otherwise

The vector o1 describes the increase of the counters, and #~ describes their decrease.
Let i1, ...,7; be the numbers of nonzero coordinate of the vector v~, and ji, ..., j., be
k

the numbers of nonzero coordinates of the vector o7, r(s) = |vs|, r = >_ |v;|. Let A be

a bag containing ¢, v} times for 1 < s < k.
We add the following instructions to 9:
d(q,x z) (q1,az,03) (move to ¢; and push into the stack a special symbol a),
5(q) (qQagv(bM)v 5(q2>5ati1) = (QZ%E;@M)v R
5(gr Zl),s ti) = (@r(in)+1, €, D) (decrease ii-th counter by r(i1)),
5(% (i1)+15 € tzz) (QT(21)+27 g, Q)M) cey
5(%« (i) (ia)s € Jtiy) = (qr(u Fr(in)+15 € Dar) (decrease io-th counter by r(is)),

(Qr (i1)+-~+r(i—1)+15 &> t”) = (qr(i1)+---+r(il,1)+2757mM)a ceey

Qr(ir)+-tr(iy), € bi q",¢,0u) (decrease 7;-th counter by r(7;)),
1) 1) !

(¢,e,a) = (q” g, A) (increase the remaining counters),

(q’ £, z) (¢',a,0p) (replace z with «).

S S S

PDA with Independent Counters 187

These instructions model correctly one instruction of the automaton S, because the
symbols from I' U { @ } never appear in the bag, and the symbols from 7' never appear
in the stack. Besides, we add several additional instructions:
8(qh, €, ¢) = (qo, 202, Dar) (put the symbols zgz) on the bottom of the stack and prepare
for modelling),
3(q,¢€, zy) = (qf,,0n) for every ¢ € @ (the automaton M emptied the stack; empty the
stack, move to ¢y). O

In [16] the following class of SPBAs without semantical e-cycles is considered.

Definition 13 A SBPA S is called e-acyclic if it is impossible to apply a transition of
the form 6(q,e,...) more than once without reading an element from the input string

first.

So, if S is a e-acyclic SBPA then it has not the cycles of e-derivations of the form
(¢,e,0,A) FF (q,¢, 8, B).

Let L(SBPA) be the class of languages accepted by e-acyclic stack+bag push-down
automata. It is not difficult to see that the constructions of the theorems 3 and 4
transform e-acyclic SBPA into PDA with independent counters without e-loops, and
vice versa. Then from theorem 4 we obtain the following corollary.

Corollary 1 For every language L € ¥* the following equivalences hold:
Le L(SBPA)< Le LIPDAC) < L—{ec} € LI(CDG).

4. Push-down Automata with Stacks of Independent
Counters

In this section we introduce Push-down Automata with Stacks of Independent Counters
(PDASCs) without empty loops and prove that they accept exactly the class L(mmCDG)
of languages generated by mmCDGs. PDASCs extend PDACs twofold: each counter is
a stack of integers and there is a restriction function which allows to diminish a head of
a counter only if the heads of all dependent counters are zeros.

Definition 14 A Push-down Automaton with Stacks of independent Counters (PDASC)
is an octuple M = (W, Q, qv, Z, 29,0, 7, P), where

e W is a finite set of input (terminal) symbols,

Q@ s a finite set of states, qo € Q) is the start state,

Z 1s a finite set of stack symbols, and zy € Z is the initial stack symbol,

n € N is the number of counter stacks,

.....

[)
3
~
J—‘
3
—
[\

3
-
3

3

.
(V)
=}
3
»
~
3
~.
(@)
~
~.
lw)
3
=
3
()
~
.
S
g
.
~
V)
>=
lw)
I~
o~
QL
fpl
D
V)
E
D
~
3
.
(@)
=}
\:\n
.N.
@
<

y € w(x), then x € w(y) for all x and y,

P is a set of instructions of the form (q,a,z,(¢,,(i,7))), where ¢,¢ € Q, a €
Wu{e}, z€ Z, a € Z*%, i is a natural number from 1 to n (a current counter
stack), j € {—1,0,1} defines an execution mode.

188 Modeauposanue u anarus ungpopmayuonnvir cucmem T.22, Ne2 (2015)

If y € w(x), then we call the counters z and y independent.

The configuration of the PDASC M is the quadruple (g, w,~y, v), where g € @ is the
current state, w € W* is the part of input which is yet to be recognized, v € Z is the top
of the stack, v is a vector of length n whose components are stacks of natural numbers,
ie. ve (NT)~.

Definition 15 Let M = (W, Q, qo, Z, z9,n, 7, P) be a PDASC. The transition relation
F on the set of all configurations of M is defined as follows :
(q,w,v,v) F ¢, w' v, V") iff there exists an instruction {(q,a,z,{¢,,(i,7))) € P such
that w = aw' (a € W U{e}), v = 26, v = af for some 3, and v’ is defined in the
following way. Let v = (01,...,04,), v = (d1,...,00).
1)Ifj=0, thev="1'.
2) If j =1, then o} is obtained from o; by increasing the top element of o; by one, and
for k # i o), = oy, if the counters i and k are independent, otherwise o), is obtained form
o by pushing zero into oy.
3) If j = —1, then the top elements of all counters dependent on the i-th counter must be
equal to zero, and the top element of the i-th counter must be positive. If at least one of
these conditions does not hold, then the instruction cannot be applied. If both conditions
hold, then o} is obtained from o; by subtracting one from the top element of o;, for every
k # i such that the counters i and k are independent o), = oy, and for every k # i such
that the counters i and k are dependent oy, is obtained from oy, by popping its top zero
element.

Let =% be the reflexive transitive closure of .

Note that empty transitions, i.e. transitions that do not read an input symbol, are
allowed (a € W U {e}). However, we forbid empty loops.

Let M = (W,Q, qo, Z, z0,n, 7, P) be a PDASC. We call it a PDASC without empty
loops if there are no states qi,...,q € @ such that P contains the instructions (g, ¢, 2;,
(Git1, i, (Jiy k;))) for @ < 1 and an instruction (g, €, z;, {(q1, aq, (Ji, k1))). In what follows
we consider only PDASC without empty loops.

We call the vector of the form (N*)", whose components are stacks of natural num-
bers, a configuration of counter stacks. Let vg = (0;0;...;0) denote the configuration of
the counter stacks whose components are n stacks containing one zero each.

Definition 16 The PDASC M accepts the word w iff {qo,w, z0,v0) F* (¢, €,&,v0) for
some state ¢ € Q.
Let L(M) be the set of all words accepted by the PDASC M.

The following example shows how the restriction function of PDASC helps accept
the iteration of non cf-languages.

Example 3 Let us consider the language Ly = { a"b"c™ | n. > 0}" from example 1. It is
accepted by the following PDASC My = ({a,b,c¢},{ g0, q1, 42,493,494 }» 90, { 20,0 }, 20,2, T,
P). Program P consists of the following instructions:
<qO7‘E ZO7<QI7207(171)>> <QQ70 Z07<Q37'ZO=<))>>
<q a, 20a<q17aZ07(1 0)>> <Q3,C Zo,<Q3,Zo,())>>
<q 7<q17aaa(1’ <q € ZOv<q ()>>
<q <Q2a 7(2a1 <Q37€ Zo,<q0,2’0,())>>
<q2,b a, (q2,¢,(2,1

— —

PDA with Independent Counters 189

The restriction function: ©(1) = {2}, 7(2) ={1}

The following execution shows how M; accepts string w = aabbccabe. Note that all
stacks are increased from right to left and two stacks of counters ci,cy are shown as
(c1;¢2).

(g0, w, 20, (0;0)) - <CI1
(g1, bbecabe, aazy, (1;
(g3, cabe, zo,(101,
(g1, abe, 2z, (1;0,0)
<Q375 ZO?(’0)>

w, 20, (1;0,0)) F (g1, abbccabe, azy, (1;0,0)) F

00)) F (g2, bccabe, azg, (0,151, 0)) F (g, ccabe, 2o, (0,0,1;2,0)) F
) (g3, abe, 20, (1;0,0)) = (qo, abe, 20, (0;0))

= {qu, be, azo, (150, 0)> - (g2, ¢, 20, (0,15 1,0))

(q4,¢,¢,(0;0))

5. PDASCs and mmCDGs

We are now ready to establish the relationships between push-down automata with stacks
of independent counters and mmCDG languages.

It is not hard to see that for every mmCDG G one can efficiently construct an
equivalent mmCDG G’ whose categories do not contain polarized valencies with the left
polarities , and _. Therefore we assume that all the grammars which we consider
below do not have such polarities.

We associate with a potential § some counter stacks configuration ¢(6) as follows.

Definition 17 Let G = (W,C, S, A\,) be a mmCDG, and C = {Ay,..., A }). We
define an auziliary PDASC M(C,7) = (C,{q},q,{ 20}, 20,7, 7', P) as follows.

1) €n') iff Ay € 7(Ay)

2) For every i we include in P an instruction {(q, /* A;, 20, {q, 20, (i, 1))) and an instruc-
tion (q, \ Ai, 20, (¢, 20, (i, —1))).

For a potential 0 let ¢(0) be a counter configuration such that {q,0, zo, vo) F* {q, €, 20, ¢(0)).

In fact, ¢(f) is the counter configuration which is obtained from 6 if we treat every
valency ' A; as a command to increase the i-th counter, and every valency \ A4; as a
command to decrease the i-th counter.

Lemma 1 i) ¢(0) is defined iff there exists a potential 6 such that 00" is balanced.
ii) The potential 0 is balanced iff ¢(0) = vy.

This lemma is proved by the straight induction on the length of 6.
The following definition proposes a transformation of mmCDGs into cf-grammars
with the similar derivations.

Definition 18 Let G = (W, C, S, \,) be a mmCDG. We denote the cf-grammar G' =
(3,N,S,R) as CF(G), where:
Y={w’|w~ [a]’ €6 for somea} ;
N s the set of all local subcategories from § ;
R s defined in the following way:
[a] > w’ e Rewr[a]? €6 [A*\a] — [A][A*\a] € R & [A*\a] € N
[a] = [A][A\a] € R < [A\o] € N la] = [a/A*] € R < [a/A* e N
[a] = [a/A][A] € R < [a/A] € N [a/A*] = [a/A*][A] € R < [a/A*] € N
[a] = [A"\a] € R < [A"\a] € N

190 Modeauposanue u anarus ungpopmayuonnvir cucmem T.22, Ne2 (2015)

If the categories in GG have no potentials, this construction simply transforms a clas-
sical categorial grammar into an equivalent cf-grammar ([1]).
The following assertion relates the derivations of G and CF(G).

Lemma 2 Let G be a mmCDG, G' = CF(G), a € N. Then a =%, af*...al» € ¥
iff there exist categories v = ' € 8(ar), ..., = ol € §(ay) such that vy ...y, F5
afi-n,

Corollary 2 Let G be a mmCDG, G' = CF(G). Then w; ... w, € L(G) iff wi ... w’
€ L(G") for some 0y ...,0, and the potential 0; .. .0, is balanced.

Both the lemma and the corollary are proved exactly as Lemma 1 and Corollary 1
n [15].

Theorem 5 For every mmCDG G one can effectively construct a PDASC without empty
loops M such that L(G) = L(M).

Proof. Let G = (W,C, S, A\, m) be a mmCDG, C ={Ay,..., A, }. We transform it into
an auxiliary cf-grammar G’ = CF(G) = (X, N, S, R) (Definition 18). By Corollary 2
ar...a, € L(G) iff S =%, af* ... a’ and the potential 6, ...#, is balanced with respect
tom. Let G” = (X, N', S, R') be a cf-grammar in Greibach normal form [9] and equivalent
to G'. Now we construct a PDASC M = (W,Q,q,C,S,r, 7', P). The function 7’ is
defined as follows: j € 7'(7) iff A; € w(A4;).

Let p: A = a’°B,...B, € R, where 0 = ;A ...pA;,, pi € {7, \/} are polarities.
Then we include into @) new states ¢7,...,q/, and we include into P the following set of
instructions.

<Q7 & A7 <Qf7 A (Zla jl)>>7

<Qf7€7Av <QQ7 (Z2a]2)>>7

<q20_17 &, Aa <q{)7 A7 (il7jl)>>7
(@ a,A,{(q,By...B, (1,0))).
Here jk =1 lfpk :/‘, and ,]k =—1 ifpk :\‘
The following lemma relates derivations of G with computations of M.

Lemma 3 i) If S =7, al coalZy ... Zy and 0 = 0y ...0, is prefix of some balanced
potential, then {(q,a ...a,w,S,vo) b3, (g, w, Zy ... Zp, c(0)).

i) Letafi eXforl<i<nand0=0,...0,. If (q,a;...a,w,S,v0) B3, (q,w, Z1 ... Zp,
c(0)), then 6 is a prefiv of some balanced potential and S =5, af* ...a% 7, ... Z,,.

Proof. i) Induction on the length j of the derivation in G”.

Base case. j = 0. By deﬁnition (g, w, S, v0) Y, {q,w, S, vp).

Inductive step. Let S :>G~ al ...a?j Zy ... Zs, then by the inductive hypothesis there
is a derivation (q,a; ...a;a; 1w, S, vo) Fiy (¢, aj1w, Zy ... Zs, c(0)), where 6 = 6, ...0;.
After this, the rule p: Z; — a9]+1Bl . B; was used. First of all, the automaton per-
forms the instructions (g, e, Zl, <Q1> Zy, (11, 91)))s s (@456, Z1,(q], Z, (01, 5i))). They
do not change the stack, and they add the potential 6;;, to the stacks of counters. Then
the instruction (¢}, a, Z1,(q, By ... By, (i,0))) is applied. The resulting configuration is
<q, w, Bl e BtZQ . Zs, C<98j+1)>'

PDA with Independent Counters 191

ii) Induction on the number j of steps of the automaton M.

Base case. j = 0. There are no steps. By definition S =%, S.

Inductive step. Let (q,aq...a;a;qw,S,v0) Fiy (¢, ajw, Zy ... Zs, c(6)), then by the
inductive hypothesis S =¢. afl .. .a?j Zi...Zs and 0p...0; is a prefix of a balanced
potential. First, let us assume that after this the automaton uses an e-instruction
(q,e,71,{(q}, Z1,(i1,71))). Then the sequence of e-instructions that follow the first one
is unambiguously defined, since the new states are different for every rule of the gram-
mar G”. When the automaton reaches a state ¢/, it uses an instruction of the form
(¢0,a,Z1,{q, By ... By, (i,0))). This sequence of instructions was obtained from the rule

p: 2 — a?fll By ... B;. By construction the change of the stacks of counters corresponds
to the potential 6;,,. Thus, we get the configuration (¢, w, By ... BiZs ... Zs,c(00;11)).
Since the automaton was able to perform the instructions, the potential ¢, ...6;,; is a

prefix of some balanced potential. Also S =7, afl o a?f:f By...BZy...Z,. O
It follows from Corollary 1 and this lemma that the following five statements are
equivalent.
1) a...a, € L(G)
2) S =%, af" .. a?" and the potential 6, .. .0, is balanced.
3) S =%, af' ... a?" and the potential 6; .. .0, is balanced.
4) (q,ay...an, S,v0) 3y {q,€,€,v0)
5)ay...a, € L(M)
Therefore, L(M) = L(G). O
Now we prove the converse.
The following definition presents a transformation of cf-grammars into

mmCDGs with the similar derivations.

Definition 19 Let G' = (X, N, S, R) be a cf-grammar in Greibach normal form, where
the elements of ¥ are of the form w’. We denote by mmCDG(G',7t) the mmCDG
G = (W,N,S,\,), where W = {w | w’ € ¥ for some 0} and § is defined in the
following way:

w— (X ede X —»uw’ €R,

w— [X/Y]ed e X - uw’Y €R,

w— [X/Z)Y)ed e X -uw'YZ eR.

If G has no potentials, then mmCDG(G) is simply a categorial grammar equivalent
to G [1].
The following assertion relates the derivations of G’ and CF(G).

Lemma 4 Let G = mmCDG(G',x). Then X =%, af'...al» € S iff there evist

n
01...6n

categories v = o' € §(ay), ... Yn = " € 6(ay) such that vy ... v, F [X]
Corollary 3 Let G' be a cf-grammar in Greibach normal form, m be a cross prohibition
function, G = mmCDG(G', 7). Then w; ... w, € L(G) iff w" ... w' € L(G") for some
01,...,0, and the potential 01 ...0, is balanced with respect to 7.

These two assertions are proved along the lines of Lemma 2 and Corollary 2 in [15].

Theorem 6 For every PDASC without empty loops M one can effectively construct a
mmCDG G such that L(G) = L(M)\ {¢}.

192 Modeauposanue u anarus ungpopmayuonnvir cucmem T.22, Ne2 (2015)

Proof. Let M = (W,Q,q, Z, 20, k, 7, P) be a PDASC without empty loops. The
transformation of the automaton into a grammar is performed in several stages.

1) We construct an auxiliary graph G = (V, E), where V' is a set of all e-instructions
of M, and the edge connects two instructions if and only if these two instructions can be
performed one after another, i.e. E contains all edges of the form ({(q,¢, 2, (¢, @, (3, 7))),
(q,e,2/,(¢",a,(,7"))). Since M has no empty loops, the graph G is acyclic. Hence, the
set of all paths in this graph is finite. Now for every e-path r we define corresponding
potential §(r). The i-th valency of 6(r) is , A; if the i-th instruction of r has form
of (5,1), it is N\, A; if the i-th instruction is of the form (j,—1), and e, otherwise.
We call the e-path r complete if no e-instructions can be applied immediately before
or after it. More precisely, this means that if the first instruction from r is of the
form (p, e, z1, (p1, a1, (i1,71)) and the last one is of the form (gs,¢, 22, (¢, ag, (i2, j2))),
then there are no instructions of the form (p/, e, z, (p, a, (i,7))) or {(q,¢, z, (¢, o, (3, 7))).
Now we rename the states of M in such a way that no two complete e-paths from G
had common states. In order to do this, we remove all e-instructions from P, and for
every instruction (p, €, z, (q, «, (i, 7))) in the [-th complete path we add a new instruction
(p',e,2,{¢",a, (i,))), where the states p', ¢’ are unique for all paths. If the state ¢! is now
the first state of [-th e-path, then for every instruction (p, a, z, (¢, @, (4, j))) (a #) we add
an instruction (p, a, z, {(¢', a, (i, 7))). If the state p' is the last state of I-th e-path, then for
every instruction (p, a, z, (¢, a, (i, 7))) (a # €) we add an instruction (p', a, z, (¢, @, (4, §))).
As the result, we get the new automaton M; = (W, Q1, qo, Z, 20, k, 7w, P1). It is easy to
see that M, is equivalent to M.

2) Now we duplicate all the states of M;. Let Q, = {q | ¢ € Q1 } be a set of copies,
Q2 = Q,UQ,. For every a € WU{ e} and for every instruction (p, a, z, (¢, a, (i, §))) € P,
we include into P; this instruction and its copy, obtained from original by replacing states
by their copies, i.e. the instruction (p, a, z, (g, «, (i,7))). If a € W, then we also include
an instruction (p,a, z, (¢, a, (4,7))). Let My = (W, Q2, qo, Z, 20, k, 7, P2). On every step
M, “knows” whether it has already read the first symbol of the word or not. It is easy
to see that L(My) = L(M,).

3)Let 1 <i<k,je{—1,0,1}. Then 6(i,j) denotes S A; if j = 1, it denotes \ A;
if j = —1, and it denotes € otherwise. Now we can construct an auxiliary cf-grammar
Gi1=(A,N,S, R).

A includes all the symbols of the form a’ appearing below in the rules of R.

N ={[q¢zq] | ¢.¢ € Q2,2 € Z}U{S}. R contains the following rules.

a) Let (p,e,2,(q,21...2,(i,§))) be an instruction, p,g € Q,. Then we include into R
the rules [pzq;| — [Gz1q1][q122q2] - - - [@—120q¢] Tor all qq, ..., q € Q.

Let (p,e,2,{(q,21...2(7,7))) be an instruction, p,q € ;. Then we include into R the
rules [pzq/] — [gz1q1][q122G2] - - - [@i-120q4] for all qu, ..., g € Q.

b) Let (p,a, z,(q, 21 ...z, (i,7))) be an instruction, p,q € @y, a € W. Let r be a e-path
whose first instruction has g as its first state. Then we include into R the rules

[pzq] — a0 [G21q1) 1222 - - - [qe—120q4) for all qu, ..., q; € Q2-_

c) Let (p,a,z,(q,z1...2,(i,7))) be an instruction, p € Q1, § € @)y, a € W. Let r be a
e-path ending with the state p, and let 7’ be a e-path beginning with g. Then we include
into R the rules [pzq,] — a®M0@D0) G2 g1][qr 2040 - - - [—120q] for all g1, ..., q € Qo.

d) We include into R the rules S — [goz0q] for every ¢ € Q5.

Lemma 5 i) Let (qo,ax...an, 20,v0) Fhy, (¢,6,21...2,v) and no e-step can be made

PDA with Independent Counters 193

fromq. Then [qoz0q:] =¢, a . alr gz - - [g—12q) for some By, ... 0, qu, ...,
q, and c(6y...6,) =v.

ii) Let [qo20q:] =, a' .. a%qzq] .. [qe-1zq) be the left derivation in Gy. Suppose
that c(6y ...0,) is defined and there are not e-instructions starting with g, i.e. instruc-

tions of the form (q,€,z,(...)). Then (qo,a1...an, 20,v0) Fiy, (¢,6,21. .. 2,¢(01...6y)).

Proof. First of all let us notice that without the potentials these two assertions are
the same as for standard transformation of a push-down automaton into an equivalent
cf-grammar. Therefore it is enough to prove only the part of the assertions considering
the counters and the potentials.

i) Induction on n.

Base case. Let n = 1. Then the automaton performs e-instructions of some com-
plete e-path r beginning with ¢y and ending with ¢;, then it performs an instruction
(1,01, 2, {q2, v, (i, 7))), and finally it performs e-instructions of some complete e-path 7’
beginning with ¢ and ending with ¢q. The rules of GG; corresponding to e-instructions have
empty potentials, and the rule for a; has by construction a potential § = 6(r)0(i, 7)0(r").
We see that ¢(6) = v.

Inductive step. Suppose that there is a derivation of M: (qo,a; ... apan11, 20,v0) Fiy
(q1, ans1, Byv1) By (g8, 21 ... 2z, v). After reaching state ¢; the automaton performs an
instruction {(qi, any1, 21, (g2, @, (1, 7))), and then it performs the e-instructions of some
complete e-path r beginning with ¢, and ending with ¢q. By construction the rule corre-
sponding to the first instruction has the symbol a,; with the potential 6(i, j)0(r), and
the rules corresponding to e-instructions have no potentials. Then the total potential is
0 =01...0,0(i,5)0(r), and ¢(0) = c(0; ...60,0(i,7)0(r)) = v because c(0; ...60,) = v; by
induction hypothesis.

ii) Induction on 7.

Base case. 1f n = 1, then the derivation begins with rules without terminal sym-
bols corresponding to some complete e-path r, then it contains a rule of the form
pzqi] — afl l[gz1q1][q12242] - - - [@—12:q:], and then it ends with the rules corresponding

to some complete e-path r’. Let (p, ay, 21, (¢, «, (i, 7))) be an instruction. Then by con-
struction 0 = 0(r)0(i, j)0(r'). Therefore, ¢(0) = v.

Inductive step. Let [pzq,] =5, af'...al& =% al' .. .affai’fff’, where £,& € NT. After
obtaining a?l ...a’ some rule of the form A — ai’jfn is applied, where n € N*, and
then the derivation uses rules without terminal symbols corresponding to some complete
e-path r. The first rule corresponds to some instruction (¢, a,11, 21, (¢", @, (i,7))). Then
by construction 6,1 = (i, 7)0(r). Having read the symbols a4, ..., a,, the automaton
gets the counter stacks configuration vy = ¢(6; ...#6,) (by induction hypothesis). After
reading a,1 the automaton gets the counter stacks configuration ¢(6; ...60,41). O

Lemma 6 i) Let (qo,a1...an, 20,%) iy, (¢,€,6,0) and no e-step can be made from
state q. Then [qoz0q] =, alr .. al for some by,... .00, qu,...q, and c(fy ...60,) = v.
ii) Let [qozoq] =4, ai'...al" be the left derivation in Gy. Suppose that c(6;...0,) is
defined and there are not e-instructions starting with q, i.e. instructions of the form
(q,€,2,(...)). Then (qo, a1 ...an, 20,v0) iy, (q,€,6,¢(01...0,)).

Like in previous lemma, the assertion without stacks is proved in standard way. In
order to get the statements concerning potentials and counters, one should use the proof
similar to the one in the previous lemma, but consider the final step of derivation.

194 Modeauposanue u anarus ungpopmayuonnvir cucmem T.22, Ne2 (2015)

Now, let G5 be a cf-grammar in Greibach normal form and equivalent to G;. Let
G = mmCDG(Gy, ') (Definition 19). Then it follows from corollary 3 and lemmas 1
and 6 that the following statements are equivalent.
1)ay...a, € L(M)

2) (qo, @1 ... an, 20,v0) Fiy (q,€,€,v9) for some q € Qo

3) S =a [@x4q] =§, a?l ...al for some 0y, ...,0, such that c(6;...0,) = v
4) S =¢, a ... al~ for some 6y, ..., 6, such that c(f;...60,) = vo

5) ai...a, € L(G)

Therefore, L(G) = L(M). O
Theorems 5 and 6 lead to the following

Corollary 4 1) L(mmCDG) C L(PDASC).
2) If L € L(PDASC), then L — { £} € L(mmCDG).

Now all properties of L(mmCDG) established in [4] hold also for L(PDASC). Es-
pecially, L(PDASC) is closed under union, concatenation, iteration, intersection with
regular languages, e-free homomorphisms, and inverses of homomorphisms, i.e. all AFL
operations [8], it includes some non-semilinear languages, there is NP-complete language

G € L(PDASC).

References

[1] Bar-Hillel Y., Gaifman H., Shamir E., “On categorial and phrase structure grammars”,
Bull. Res. Council Israel, 9F (1960), 1-16.

[2] Dekhtyar M., Dikovsky A., “Categorial dependency grammars”, Proc. of Int. Conf. on
Categorial Grammars, 2004, 76-91.

[3] Dekhtyar M., Dikovsky A., “Generalized categorial dependency grammars”, Pillars of

Compute Science: Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His
85th Birthday, LNCS, 4800, 2008, 230-255.

[4] Dekhtyar M., Dikovsky A., Karlov B., “Iterated dependencies and Kleene iteration”, Proc.
of the 15th Conference on Formal Grammar (FG 2010), LNCS, 7395, Copenhagen, Den-
mark, 2012, 66-81.

[5] Dikovsky A., “Grammars for local and long dependencies”, In Proc. of the Intern. Conf.
ACL’2001, 2001, 156-163.

[6] Dikovsky A., “Dependencies as categories”, Proc. of Workshop Recent Advances in De-
pendency Grammars”. In conjunction with COLING 2004, 2004, 90-97.

[7] Dikovsky A., “Proc. of the 12th Conference on Formal Grammar”, 2007, 1-12.

[8] Ginsburg S., Greibach S., “Abstract families of languages”, Mem. Amer. Math. Soc., 1969,
Ne87, 1-32.

[9] Greibach S., “A new normal-form theorem for context-free phrase structure grammars”,
Journal of the ACM, 12 (1965), 42-52.

[10] Hack M., “Petri Net Languages”, MIT, Lab. for Computer Science, Technical Report 159,
1976.

[11] Hopcroft J., Ullman J., Introduction to Automata Theory, Languages and Computation,
Addison-Wesley, 1979.

[12] Kallmeyer L., Parsing Beyond Context-Free Grammars, Cognitive Technologies, Springer-
Verlag, Berlin Heidelberg, 2010.

[13] Joshi A., Levy L., Takahashi M., “Tree adjunct grammar”, Journal of Computer and
System Sciences, 1975, Ne10(1), 136-163.

PDA with Independent Counters 195

[14] Kanazawa M., Salvati S., “Mix is not a tree-adjoining language”, The 50th Annual Meeting
of the Association for Computational Linguistics, Proceedings of the Conference: Long
Papers, 1, Jeju Island, Korea, 2012, 666-674.

[15] Karlov B., “Abstract automata and a normal form for categorial dependency grammars”,
Proc. of the 7th International Conference on Logical Aspects of Computational Linguistics
(LACL 2012), LNCS, 7351, Nantes, France, 2012, 86-102.

[16] Sogaard A., “A linear time extension of deterministic push-down automata”, Proc. of the
17th Nordic Conference of Computational Linguistics NODALIDA 2009, NEALT Pro-
ceedings Series, 4, eds. K. Jokinen, E. Bick, 2009, 182-189.

[17] Tesniere L., Eléments de syntaze structurale. Librairie C, Klincksieck, Paris, 1959.

[18] Vijay-Shanker K., A Study of Tree Adjoining Grammars, Ph.D. thesis, University of Penn-
sylvania, 1987.

[19] Vijay-Shanker K., Weir D.J., “The equivalence of four extensions of context-free gram-
mars”, Mathematical Systems Theory, 1994, Ne27(6), 511-546.

[20] Gladkiy A.V., Formalnye grammatiki i yazyki, Nauka, Moskva, 1973, (in Russian).

[21] Karlov B. N., “Normalnye formy i avtomaty dlya kategorialnykh grammatik zavisimostey”,
Vestnik Tverskogo gosudarstvennogo universiteta, “Prikladnaya matematika”, 2008, 23—43,
(in Russian).

MII-aBTOMaTBhl C HE3ABUCUMbBIMU CUYETYNKAMMN

Hextaps M. U., Kapios B. H.

Tsepcroti 2ocydapcmeenobili YHUGEPCUMEM,
170000 Poccusa, 2. Teepo, ya. 2Keasbosa, 33

KumodeBble ciioBa: aBToMaThl, (hOpMaJIbHBIE TPAMMATHKU U SI3bIKHM, MAara3uHHbIE
aBTOMATHl C HE3ABUCUMBIMH CUETINKAMU, ITPOEKTUBHAS U HENTPOEKTUBHAS 3aBUCUMOCTb,
KaTeropuaJibHasg rpaMMaTHKa 3aBUCAMOCTeN, MyIbTUMO/IadbHad KaTeropuaabHasd
rpaMMaTHiKa 3aBUCUMOCTeN, Mara3suHHble aBTOMATHI CO CTEKaAMU HE3aBUCUMBIX
CUETINKOB

Marasunnble apromarsbl ¢ HesaBucuMbiMu cuérankamu (MITHC) obbeaunsiior Bo3-
moxkaoctn MII-apromaros u cereit [lerpu. Onu 6bun tpeIozKeHsl B padorax [21, 15]
KaK CPEJICTBO JIJIsI PACIO3HABAHUS S3BIKOB, IMOPOXK/IAEMbIX KATEIOPUAJbHBIMU I'DaMMa-
tukamn 3asucumocteil (KI'3). KI'3 mpezcrasisior coboil Kaaccudeckue KaTeropuaib-
Hble TPAaMMATHUKU, PACHIHPEHHbIE OPUEHTHPOBAHHBIMU TIOJISIPU30BAHHBIMI BaJI€HTHOCTSI-
Mu. OHU TIO3BOJIIOT BBIPA3UTh KaK MPOEKTUBHbBIE, TAK M HEIIPOEKTUBHBIE 3aBUCUMOCTHI
Mexk Iy ciaoBamu npeioxkenusi. MIIHC — sro obbranbiit MII-aBTomat, K KOTOpOMY 10~
6aBJIEHO KOHEYHOE YUCJIO CYETINKOB. HezaBucuMocTh CYETIMKOB O3HAYAET, YTO UX CO-
JIEPKUMOE He BIUSET Ha BLIOOD OUePEIHOTO JIeficTBUs aBToMaTa. B epBoit yactu crarbu
MBI CpaBHUBAEM HECKOJILKO BapuanTos omnpejenenns MITHC u nokasbiBaem 9KBUBaJICHT-
nocthb JByx BapuantoB MIIHC: 6e3 cunTakcmueckux IyCTBIX ITUKJIOB M 0€3 CeMaHTU-
YECKMX IYCTBIX IMUKJI0B. OTMedaeM TakxKe HekoTopble cBst3u Mex 1y MITHC-s3bikamvu
u s3eikamu cereit [lerpu. Mer nmokazeiBaem, aro MITHC sksuBasienTabr crek+63r MII-
asromaram (CBMIIA), npemmoxennsim mHezasucumo Céraapiom (Sggaard), u 9To
CBMIIA 6e3 mycrsix nukjos pacrnosnaior B TouHoctu KI'3-s3biku. Mynbrumonaibibe

196 Modeauposanue u anarus ungpopmayuonnvir cucmem T.22, Ne2 (2015)

KaTeropuasbible rpaMmmaTuky 3asucumocteit (MMKI'3) Obn BBesiensr B [4] Kak pacim-
penns KI'3, o3Bosisioniue ypaBisTh IepecevdeHnsiMI HEKOTOPBIX 3aBucumocteit. Kiacc
MMKI'3-s3bIKOB 0CcTaTOIHO GOTAT M 00/1a/]a€T MHOTUMHU CBOMCTBaAMU 3aMKHYTOCTH, B
YACTHOCTH, OH 0Opa3yeT abCTpaKTHOe CeMeNCTBO sI3bIKOB. BO BTOpOil YacTu cTaTbhbU MbI
pacmupsiem MITHC u onpenesisiem MII-aBromMarsl co cTekaMu HE3aBUCUMBIX CUETINKOB
(MIICHC). 910 pacmmpenue nBosikoe: (1) KazK/Iplit CIETINK IIPEJICTABISET CTEK HATY-
paJsibHBIX unces u (2) mobasisiercs: hYHKINS, KOTOPasi O3BOJISET YMEHBIIIATh YHUCJIO HA
BEpIIIHE CTEKA CYETINKA, TOJTHKO €CJIM BEPIIUHBI BCEX CBI3AHHBIX C HUM CUYETIMKOB PaB-
ubl Hys10. Harm ocnosro#t pesysnbrar yrep:kaer, uro MIICHC momyckator B TouHOCTH
kiacc MMKI'3-sa3b1k0B.

CBeneHus 06 aBTOpax:
Hextapp Muxana Mocudosud,
TBepckoit rocyrapcTBEHHDBIN YHUBEPCHUTET,
I-p dus.-mar. Hayk, goueHt, kojg ORCID 0000-0002-2609-4397,
Kapaos Bopuc HukosnaeBuy,
TBepckoit Tocy1apCcTBEHHDBIN YHUBEPCUTET,

kaH1. ¢us.-mar. Hayk, kog ORCID 0000-0002-4340-2435

	CDG and mmCDG
	Push-down Automata with Independent Counters
	PDAC and stack+bag push-down automata
	Push-down Automata with Stacks of Independent Counters
	PDASCs and mmCDGs
	References

