
Модел. и анализ информ. систем. Т. 22, № 2 (2015) 248–258
©Mosin S. V., Zykin S. V., 2015

UDC 519.987

Truth Space Method for Caching Database Queries

Mosin S. V., Zykin S. V.

Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences,
Pevtsova str., 13, Omsk, 644043, Russia

e-mail: svmosin@gmail.com, szykin@mail.ru

received March 1, 2015

Keywords: relational databases, caching, truth space

We propose a new method of client-side data caching for relational databases
with a central server and distant clients. Data are loaded into the client cache based
on queries executed on the server. Every query has the corresponding DB table –
the result of the query execution. These queries have a special form called "universal
relational query" based on three fundamental Relational Algebra operations:
selection, projection and natural join. We have to mention that such a form is the
closest one to the natural language and the majority of database search queries can
be expressed in this way. Besides, this form allows us to analyze query correctness
by checking lossless join property. A subsequent query may be executed in a client’s
local cache if we can determine that the query result is entirely contained in the
cache. For this we compare truth spaces of the logical restrictions in a new user’s
query and the results of the queries execution in the cache. Such a comparison
can be performed analytically , without need in additional Database queries. This
method may be used to define lacking data in the cache and execute the query on
the server only for these data. To do this the analytical approach is also used, what
distinguishes our paper from the existing technologies. We propose four theorems
for testing the required conditions. The first and the third theorems conditions
allow us to define the existence of required data in cache. The second and the fourth
theorems state conditions to execute queries with cache only. The problem of cache
data actualizations is not discussed in this paper. However, it can be solved by
cataloging queries on the server and their serving by triggers in background mode.

The article is published in the author’s wording.

Introduction
In this paper we discuss the use of data views that are cached on the client’s computer.
We assume client-server environment with server based Relational Database (RDB). The
cache stores query results in order to provide maximum usage of saved data in subsequent
queries.

The purpose of this paper is to study the problem of building and using data views
on a client’s computer. This problem is similar to query optimization because it aims

248



Truth space method for caching database queries 249

to decrease the data transfer from a Database server. Cached data is actively used in
Database Management Systems (DBMS), but mostly it is only repeating use of data
written in cache, without any prior data analysis aimed to define any partial or combined
use. The DBMS can only avoid requesting blocks of data from external devices, while
serving the query, if they are present in the cache. So, only block numbers are analyzed,
not their information.

This paper is based on the results, obtained in [1]. We have removed a constraint
that limits the choice of attributes for Intermediate Data View (IDV) and also made
some generalizations on multiple IDVs case. The second section provides an overview
of publications on the subject of this paper. We have considered only those closest to
the problem at hand. In the end of this section we present an example to explain our
approach for solving the problem.

In the third section we provide a formalization of the problem. We also present
the approach for removing the uncertainties in database queries and present auxiliary
properties and definitions that are used later.

The main results are presented in Section 4. We research the possibility of using
cached results of previous queries when performing a new one. The results are presented
in the form of theorems.

One of the directions of further researches is combining this technology with efficient
data manipulations approaches. Those can be performed with a help of Graphical
Processors. GPUs gain serious attention for big data processing [2, 3, 4, 5]. Such processor
architectures have big potential in multitasking and can reach enormous speeds compared
to CPUs, especialy if the operations are performed similarly on different parts of data.

1. Existing solutions overview and comparison
One of the main research problems of queries optimization to database is the construction
of an optimal query plan. Queries are transformed without content analysis of the
database content and cache. In other cases, this information is taken into account for
calculation statistical estimations to improve physical access to data. These problems
are the subject of many studies, but they are outside of our approach.

A lot of publications are devoted to the problem of cache content management. For
example, the heuristic algorithms update the cache with regards to user data [6], storage
of important user queries in a cache [7], storage of the cached data on multiple servers
[8]. This paper solves the problem of the best use of a cache for execution of the user’s
queries. Cache content management and the best use of the cache are two complementary
problem.

The most similar to our work is paper [9]. The authors analyze conjunctive queries
on data domains with predicates in the form of arithmetical comparisons, and present
query computation algorithms using IDVs. In our paper, the special case of universal
relational query is considered. It is a query on the Database relations, not particular
domains. Although we had similar aims, the results obtained differ because of stated
factors. In particular, there is no need to create any algorithms of data selection in our
work, as they are replaced by Relational Algebra.

Another set of works describes processing scheme for event-driven continuous queries
[10, 11]. In the proposed approach, query result caching is introduced to achieve a flexible



250 Моделирование и анализ информационных систем Т.22, №2 (2015)

way to share common operators among queries activated by unpredictable events. When
a query is activated, an intermediate result generated for the query is stored into the
cache area if it is expected to be reused by other queries. When other queries including the
same operator are activated, they reuse the cached result if the cache includes reusable
data.

The work [12] proposes methodology for functionally decomposing complex queries
in terms of primitives so that multiple reuse sites are exposed to the query optimizer, to
increase the amount of reuse.

In [13, 14] queries are separated into subqueries that can yield results from cached
nodes. Then query result can be combined from several subqueries.

Using cloud storages one can afford a lot of computational resources for a short
time to execute complicated queries effectively on large data with a help of virtual
machine clusters [15, 16, 17, 18]. A set of reliable heuristic algorithms is used. Finally
the authors carry out a series of experiments that show that their optimizations speed
up the federated query evaluation process.

In papers [19], [20] similar to our problem is discussed. In this paper we make
correspondence between cache contents and predicates. Cached data usage problem is
resolved in terms of truth spaces. We compute the truth spaces of query results in the
cache. It allows us to define records in IDV that can be used to form a new view and
new SQL queries that will let us load missing data from Database server. The following
example demonstrates suggested approach.

Example 1. Let’s assume the following database schema fragment, which represents
the University Study plan:
R1 = Students (Stud_ID, Stud_Name,Group)
R2 = Schedule (Group,Room_ID,Course)
R3 = Progress (Stud_ID,Course, Score),
relation names are italic, Primary Key attributes are in bold. Assume that on he user’s
computer the following queries are cached:

Query 1: List of students studying physics, whose ID is bigger than 210:

P1 = πX1(σF1(R1 on R2)),

where πX1 – projection operation over the set of attributes X1 = {Stud_ID,
Stud_Name,Group,Course}, σ – selecting operation, F1 – logical formula: (Stud_ID >
210 & Course = Physics), on –natural join.

Query 2: Examination sheets of the group M10:

P2 = πX2(σF2(R1 on R3)),

where X2 = {Stud_ID,Group,Course, Score}, F2 – logical condition:
(Group = M10).

Let us assume that the user has requested information formalized with the following
query:

P ∗ = πX∗(σF ∗(R1 on R2 on R3)),

whereX∗ = {Stud_ID,Group, Score}, F ∗ – logical condition: (Stud_ID > 300 &Group =
M10 & Course = Physics).

Using the calculation and comparison of the truth domains P1, P2 and P ∗, we obtain
that the query can be executed in the cache: P ∗ = πX∗(σF3(P1 on P2)), where F3 – logical
condition: (Stud_ID > 300). Requesting the server in this case is not required.



Truth space method for caching database queries 251

2. Logical constraint definition and properties
To simplify domain computations we will consider logical formulas in Disjunctive Normal
Form (DNF). In general case formula F has the following form:

F = K1 ∨K2 ∨ · · · ∨Km, (1)

Ki = T1& T2 . . .& Tn, i = 1, . . . ,m, (2)

here Tj, j = 1, . . . , n – predicates, where expanded attribute names are specified. Ri.Aj

means attribute Aj in relation Ri. Those predicates can be:

• comparison operation Expr 1 θ Expr 2 , θ – comparison operator (θ ∈ {=, 6=, >
,<,≤,≥}), Expr i – type conformant expressions, defined in a space of expanded
attribute names and constants;

• operation Expr 1 [NOT ] BETWEEN Expr 2 AND Expr 3 (symbols inside square
brackets [∗] are optional);

• operation Expr [NOT ] IN S, here S - values list or subquery, having a set of
attribute Ri.Aj values as a result;

• operation Str 1 [NOT ] LIKE Str 2, here Str i – strings;

• operation Expr θ ALL/ANY S.

Note 1. We assume logical formulas have no trivial conditions on attributes, for example,
Expr1 = Expr1 and those reduced to such form. In general, we assume that Ri.Al domain
is not fully contained in Tj(. . . , Ri.Al, . . . ) predicate truth space. Such conditions can be
removed from the formula without a change in the truth space (we will define it later).

Definition 1. Space of attributes contained in a formula show the dimension of the
formula and is denoted as 〈F 〉.

〈F 〉 = {RF
1 .A

F
1 , . . . , R

F
k .A

F
k }. (3)

Listed variants of operations don’t use every single SQL capability. For example, we
don’t use the EXISTS predicate, because it has no expanded attribute names in it. The
NULL predicate is used for another purpose in our paper.

During logical formula domain calculation, if we have some attribute having NULL
value on a tuple t, we then get UNKNOWN value for the whole formula, because SQL-
query results follow the Three-valued logic. It leads us to ambiguous interpretations
of results of both usual users and experienced programmers. To solve this problem we
suggest the following constraint: every attribute in F ∗ is supplied with a property “Use of
undefined value” with two mutually exclusive values: “Yes” or “No”. The reasoning behind
this property is the following: if it is assigned “Yes”, then we leave tuples with NULL
value for further consideration. Otherwise, having “No” in that property guarantees us
removing all such tuples.

Let’s write expression (1) for F in the following form: F (. . . , Tj, . . . ), here Tj –
predicates of expression (2). After the modification it will be the following:



252 Моделирование и анализ информационных систем Т.22, №2 (2015)

F (. . . , T ′j , . . . ) ∧i,j (Ri.Aj 6= NULL), here ∧i,j(Ri.Aj 6= NULL) – conjunction of all F
attributes,for which NULL is not allowed, and T ′j = (Tj ∨i,j (Ri.Aj = NULL)), here
∨i,j(Ri.Aj = NULL) – disjunction of all F attributes, for which NULL is allowed. Outer
brackets for T ′j predicate define operation priority. We can see that this logical formula
can only have TRUE and FALSE values when considering it in Three-valued logic. We
can also note that if tuples don’t have undefined values, the initial formula F will be
equivalent to the transformed one, so semantics of view P almost undistorted. For the
disclosure of the term "almost"we consider example. Assume F = R1.A2 > 3∨R3.A4 < 4.
Let tuple t for R1.A2 has value NULL, with a property “Use of undefined value” equal
to “Yes”, and R3.A4 value equal to 5, so value of R3.A4 < 4 is FALSE . Then transform
of formula F on tuple t will be equal TRUE , which is not obvious.

Hereafter we will assume all the F formulas to be transformed.
We consider set A = {(a1, . . . , an) | ai ∈ Dom(Ai), i = 1, . . . , n}, here Dom(Ai) –

is a domain of Ai. Cartesian product Dom(A1) × Dom(A2) × · · · × Dom(An) is an n-
dimensional space of all values for all Database attributes. Data constraints bound this
space to some set of points that represents a set of available Database states.

In our example with University Study plan, the A can be the following:

A = Dom(Stud_ID)×Dom(Stud_Name)×Dom(Group)×
Dom(Room_ID)×Dom(Course)×Dom(Score) = {205, 315, 461} × {Rachel
Davis, Noam Angrist,Cameron McCord} × {M10, M11} × {100, 101, 102,

103} × {Physics, Chemistry} × {70, 80, 90}

Obviously, without constraints this set represents more states than DB can have. For
example, each student has his/her own ID, whereas there are 3 corresponding IDs for
each student in A: {205, 315, 461} × {Rachel Davis,
Noam Angrist, Cameron McCord}.

Note 2. Dimension of formula F can be smaller than dimension of A. In this case, we
consider the equivalent form of the formula that has all other attributes taking any values
in their domains.

Looking back to our Example 1, we see that the formula in Query 1 contains only
two attributes: F1 = (Stud_ID > 210 & Course = Physics), in other words 〈F 〉 = 2.
The equivalent representation that we will use is the following:

F1 = (Stud_ID > 210 & Course = Physics & Stud_Name IN {Rachel Davis,
Noam Angrist, Cameron McCord} & Group IN {M10, M11} & Room_ID IN

{100, 101, 102, 103} & Score IN {70, 80, 90})

The motivation behind this transformation is to allow us comparing truth spaces of
formulas defined on different attributes.

Definition 2. Truth space of logical formula F , defined by (1), (2), (3), is a set M(F ) =
{a ∈ A | F (a) = TRUE}.



Truth space method for caching database queries 253

So, the truth space of our formula F1 will be the following subset of A: M(F ) =
{(315, Rachel Davis, M10, 100, Physics, 70), (315, Noam Angrist, M10, 100, Physics,
70), . . . (461, Cameron McCord, M10, 100, Physics, 90)}

M(F ) for a given formula F , written in DNF, is nothing but a union of Truth spaces of
distinct conjunctive clauses. Truth space of a single conjunctive clause is an intersection
of Truth spaces of it’s predicates.

Note 3. The complexity of Expr , S and Str predicates is defined by the software’s ability
to compute Truth spaces of formulas, as it is shown in example 1.

Definition 3. Given a logical formula F , defined by (1), (2), (3), the projection of F
on the X attribute set is a logical formula F [X], 〈F [X]〉 = X, that has all its predicates
with RF

i .A
F
i /∈ X replaced with trivial predicate TRUE .

So, the projection of F1 on the attribute set X = {Stud_ID} will be F1[Stud_ID] =
(Stud_ID > 210 & TRUE) = (Stud_ID > 210)

Statement 1 (Inclusion property). ∀X ⊆ 〈F 〉 M(F ) ⊆M(F [X])

Proof. If X = 〈F 〉, then F = F [X] and M(F ) =M(F [X]). Assume X ⊂ 〈F 〉. Consider
arbitrary point a ∈ M(F ), i.e. F (a) = TRUE . F to F [X] transformation is made by
replacing Tj predicates that contain Aj ∈ 〈F 〉 attribute, such that Aj /∈ X with TRUE
value. We get F ([X]) = TRUE according to (1) and (2). Therefore, a ∈M(F [X]).

This property of logical formulas is used while building new data view from given
IDVs.

3. Intermediate Data View properties research
We denote saved IDVs as P={P1, P2, . . . , Pm}, here Pv is an IDV, Pv = πXv(σFv(R

v
1 on

Rv
2 on · · · on Rv

s(v))), s(v) – amount of relations in Database that were used while building
Pv, πXv – projection on Xv attributes, σFv – selection with Fv logical formula. Eventually
we need to get the following view:

P ∗ = πX∗(σF ∗(R
∗
1 on R∗2 on · · · on R∗l ))

Let’s study the problem of building data view P ∗ using existing Pv IDVs.

Theorem 1. P ∗ ⊆ πX∗(σF ∗[Xv ](Pv)), if:
a) X∗ ⊆ Xv

b) {Rv
1, . . . , R

v
s(v)} ⊆ {R∗1, . . . , R∗l }

c) M(F ∗) ⊆M(Fv).

Proof. Let t∗ be any tuple in P ∗. We need to show that t∗ ∈ πX∗(Pv). From condition
t∗ ∈ P ∗, there is the tuple t′ ∈ R∗1 on R∗2 on . . . on R∗l and t∗ = t′[X∗]. There may be
several such tuples. We will choose the one that satisfies F ∗(t′) = TRUE. This tuple
exists indeed, because otherwise t∗ would not be in P ∗. Thus, there are tuples t∗i ∈ R∗i :

t∗i = t′[〈R∗i 〉], i = 1, . . . , l, (4)



254 Моделирование и анализ информационных систем Т.22, №2 (2015)

and for any pair i and j, such that 〈R∗i 〉 ∩ 〈R∗j 〉 6= ∅, equality is held:

t∗i [〈R∗i 〉 ∩ 〈R∗j 〉] = t′i[〈R∗i 〉 ∩ 〈R∗j 〉], i, j = 1, . . . , l, (5)

Whereas conditions (4) and (5) are held for the whole set of relations {R∗1, . . . , R∗l },
they are true for any its subset also, including {Rv

1, . . . , R
v
s(v)}. Hence, after joining tuples

t∗i from relations Rv
j we get a tuple t′′, such that t′′ = t′[〈ons(v)

i=1R
v
i 〉]. Equality t′′[X∗] =

t′[X∗] = t∗ follows from a) and Xv ⊆ 〈ons(v)
i=1R

v
i 〉.

Condition F ∗(t′) = TRUE and statement 1 imply the truth of the projection F ∗[Xv]
on a tuple t′, and consequently on t′′, as the formula is defined at common attributes
of these tuples. Furthermore, according to condition c), we have Fv(t

′) = TRUE ⇒
Fv(t

′′) = TRUE . It means t∗ = t′′[X∗] ∈ πX∗(Pv). The theorem has been proven.

The conditions given in the aforementioned theorem guarantee the data to build P ∗
to be contained in Pv IDV. However, there can be excess tuples that make F ∗ take TRUE
value. They appear because there are some relations in R∗1 on R∗2 on · · · on R∗l that aren’t
presented in Rv

1 on Rv
2 on · · · on Rv

s(v) and will be deleted if we join those missing relations.
Using Truth spaces of logical formulas we can query DBMS to get a minimal required
data set to define excess tuples.

In the next theorem we describe the case of coinciding relation sets.

Theorem 2. P ∗ = πX∗(σF ∗(Pv)), if:
a) X∗ ⊆ Xv

b) {Rv
1, . . . , R

v
s(v)} = {R∗1, . . . , R∗l }

c) M(F ∗) ⊆M(Fv)
d) 〈F ∗〉 ⊆ Xv.

Proof. Conditions of the theorem are a special case of theorem 1, so inclusion P ∗ ⊆
πX∗(σF ∗(Pv)) is considered to be proven. It is necessary to show that πX∗(σF ∗(Pv)) ⊆ P ∗.
Assume tuple tv ∈ πX∗(σF ∗(Pv)). Let’s show that tv ∈ P ∗. From definition of tuple tv, it
follows that there is tuple t′ ∈ Rv

1 on Rv
2 on . . . on Rv

s(v) and tv = t′[X∗], Fv(t
′) = TRUE ,

F ∗(t′) = TRUE . According to the commutativity of natural join, Rv
1 on Rv

2 on . . . on
Rv

s(v) = R∗1 on R∗2 on . . . on R∗l . Therefore, t′ ∈ R∗1 on R∗2 on . . . on R∗l . Hence, tv ∈ P ∗. The
theorem has been proven.

It is possible to use several IDVs to build a resulting representation. First, let’s
consider the following simple property of natural join.

Statement 2. Assume <1 = R1 on · · · on Rk - natural join of some k relations. Also
assume <2 = R1 on · · · on Rk on Rk+1 on · · · on Rn. Then <2[〈onk

i=1 Ri〉] ⊆ <1

Proof. It is so indeed, because joining additional relations to <1 can only remove some
tuples that were presented there. After the projection, we will get the same relation <1

if no tuples were deleted or some subset otherwise. The order of joins doesn’t matter
because of commutativity of this operation.

Theorem 3. P ∗ ⊆ πX∗(σF ∗[X](P1 on · · · on Pn)), where X =
n⋃

v=1

Xv if:

a) X∗ ⊆ X



Truth space method for caching database queries 255

b)
n⋃

v=1

{Rv
1, . . . , R

v
s(v)} = {R′1, . . . , R′s′} ⊆ {R∗1, . . . , R∗l }

c) M(F ∗) ⊆M(Fv), v = 1, . . . , n.

Proof. Again, we will choose an arbitrary tuple t∗ ∈ P ∗ and show that t∗ ∈ πX∗(σF ∗[X](onn
v=1

Pv)). By analogy to theorem 1, the tuples t′, t′′ = t′[〈ons′
i=1R

′
i〉] are built. Note that

n⋃
v=1

Xv ⊆ ons′
i=1〈R′i〉, hence t′′[X∗] = t′[X∗] = t∗. The further reasonings also apply to

all IDVs. We get F ∗[X](t′′) = TRUE and Fv(t
′′) = TRUE , v = 1, . . . , n. Considering

statement 2, we have t′′[〈ons(v)
i=1 R

v
i 〉] ∈ Rv

1 on · · · on Rv
s(v), v = 1, . . . , n⇒ t′′[Xv] ∈ Pv, v =

1, . . . , n ⇒ t′′[
n⋃

v=1

Xv] ∈ P1 on · · · on Pn. It means that t∗ = t′′[X∗] ∈ πX∗(σF ∗[X](P1 on

· · · on Pn)). The theorem has been proven.

Just like in the previous case, there are some additional conditions that allow us to
get precise data presentation from IDVs.

Theorem 4. P ∗ = πX∗(σF ∗(P1 on · · · on Pn)), where X =
n⋃

v=1

Xv if:

a) X∗ ⊆ X, Xv ⊇ 〈ons(v)
i=1 R

v
i 〉 ∩ (

n⋃
w=1
w 6=v

〈ons(w)
i=1 Rw

i 〉), v = 1, . . . , n

b)
n⋃

v=1

{Rv
1, . . . , R

v
s(v)} = {R′1, . . . , R′s′} = {R∗1, . . . , R∗l }

c) M(F ∗) ⊆M(Fv), v = 1, . . . , n
d) 〈F ∗〉 ⊆ X.

Proof. Conditions of the theorem are a special case of theorem 3, so inclusion P ∗ ⊆
πX∗(onn

v=1 Pv) is considered to be proved. It is necessary to show, that πX∗(σF ∗(onn
v=1

Pv)) ⊆ P ∗. Assume tuple t ∈ πX∗(σF ∗(onn
v=1 Pv)). Let’s show, that t ∈ P ∗. Denote

σF ∗(ons(v)
i=1 R

v
i ) as P ′v, so Pv = πXv(P

′
v). Using the property of the projection operation and

condition a), we have P1 on · · · on Pn = πX1(P
′
1) on · · · on πXn(P

′
n) = πX(P

′
1 on · · · on P ′n).

Thus, according to the definition of tuple t, there is a tuple t′ ∈ R′1 on . . . on R′s′ ,
such that t = t′[X∗], F ∗(t′) = TRUE . According to the commutativity of natural join,
R′1 on . . . on R′s = R∗1 on . . . on R∗l , hence, t′ ∈ R∗1 on . . . on R∗l . Therefore t ∈ P ∗. The
theorem has been proven.

The conditions listed above aren’t exceptional in any case. Many applications require
repeat of data entry with slight modifications. For example, applications that work with
multidimensional data. Hypercube dimensions do not change often, so that we can create
new hypercubes from IDVs without frequent interaction with the database.

4. Conclusion
The approach suggested in this paper is a theoretical base for a system interacting with
Relational Database. Such system will be capable of defining cached data availability
when executing consecutive queries. This solution is fresh and wasn’t used before. The
conditions stated in the theorems don’t require hitting Database to be checked. Results
obtained allow us to analitycally define data missing in cache and query only this data.



256 Моделирование и анализ информационных систем Т.22, №2 (2015)

The proposed solution will be used in dynamic building of multidimensional data.
Multidimensional data building systems that use redundant data often face the problem
of updating it. It is sometimes solved by the periodic updating of the hypercube contents.
A similar method can be used to update the views Pv. To reduce the update time it might
be a good practice to use the change log on the database server and update only those
views that have original data changed. However, those dimensions don’t change often.

References
[1] Zykin S., Poluyanov A., “Multidimensional data building using intermediate

representations”, Administration problems, 5 (2013), 54–59.

[2] Owens J. D. et al., “A survey of general-purpose computation on graphics
hardware”, Computer Graphics Forum, 26, 2007, 80–113, http://www.blackwell-
synergy.com/doi/pdf/10.1111/j.1467-8659.2007.01012.x.

[3] Bakkum P., Skadron K., “Accelerating sql database operations on a
gpu with cuda”, GPGPU, ACM, 425 (2010), 94–103, http://dblp.uni-
trier.de/db/conf/asplos/gpgpu2010.html.

[4] Govindaraju N. K. et al., “Fast computation of database operations using
graphics processors”, SIGMOD Conference, ACM, 2004, 215–226, http://dblp.uni-
trier.de/db/conf/sigmod/sigmod2004.html.

[5] He B. et al., “Relational joins on graphics processors”, ACM, 2008, 511–524,
http://dblp.uni-trier.de/db/conf/sigmod/sigmod2008.html.

[6] Park C.-S., Kim M.-H., Lee Y.-J., “Usability-based caching of query results in olap
systems”, Journal of Systems and Software, 68:2 (2003), 103–119.

[7] Baralis E., Paraboschi S., Teniente E., “Materialized views selection in a multidimensional
database”, Proceedings of the 23rd International Conference on Very Large Data Bases,
VLDB ’97, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997, 156–165,
http://dl.acm.org/citation.cfm?id=645923.671019.

[8] Kalnis P., Papadias D., “Proxy-server architectures for olap.”, ACM, 2001, 367–378.

[9] Afrati F. N., Li C., Mitra P., “Rewriting queries using views in the presence of arithmetic
comparisons”, Theor. Comput. Sci., 368:1–2 (2006), 88–123.

[10] Watanabe Y., Kitagawa H., “Query result caching for multiple event-
driven continuous queries”, Inf. Syst., 35:1 (2010), 94–110, http://dblp.uni-
trier.de/db/journals/is/is35.html#WatanabeK10.

[11] Yates D. J. et al., “Data quality and query cost in pervasive sensing
systems”, IEEE Computer Society, 2008, 195–205, http://dblp.uni-
trier.de/db/conf/percom/percom2008.html#YatesNKS08.

[12] Andrade H. et al., “Active semantic caching to optimize multidimensional data analysis
in parallel and distributed environments”, Parallel Computing, 33:7–8 (2007), 497–520,
http://dblp.uni-trier.de/db/journals/pc/pc33.html#AndradeKSS07.

[13] Mershad K. W., Artail H., “Codisc: Collaborative and distributed semantic caching for
maximizing cache effectiveness in wireless networks”, J. Parallel Distrib. Comput., 71:3
(2011), 495–511, http://dblp.uni-trier.de/db/journals/jpdc/jpdc71.html#MershadA11.

[14] Noor Abbani H. A., “Protecting data flow anonymity in mobile ad hoc networks that
employ cooperative caching”, Ad Hoc Networks, 26 (2015), 69–87.

[15] Tansel Dokeroglu A. C., Ali Bayir Murat, “Robust heuristic algorithms for exploiting the
common tasks of relational cloud database queries”, Applied Soft Computing.

[16] Beran P. P. et al., “A multi-staged blackboard query optimization framework for world-
spanning distributed database resources”, ICCS, 4, Procedia Computer Science (2011),
156–165, http://dblp.uni-trier.de/db/journals/procedia/procedia4.html#BeranMSV11.

http://www.blackwell-synergy.com/doi/pdf/10.1111/j.1467-8659.2007.01012.x
http://www.blackwell-synergy.com/doi/pdf/10.1111/j.1467-8659.2007.01012.x
http://dblp.uni-trier.de/db/conf/asplos/gpgpu2010.html
http://dblp.uni-trier.de/db/conf/asplos/gpgpu2010.html
http://dblp.uni-trier.de/db/conf/sigmod/sigmod2004.html
http://dblp.uni-trier.de/db/conf/sigmod/sigmod2004.html
http://dblp.uni-trier.de/db/conf/sigmod/sigmod2008.html
http://dl.acm.org/citation.cfm?id=645923.671019
http://dblp.uni-trier.de/db/journals/is/is35.html#WatanabeK10
http://dblp.uni-trier.de/db/journals/is/is35.html#WatanabeK10
http://dblp.uni-trier.de/db/conf/percom/percom2008.html#YatesNKS08
http://dblp.uni-trier.de/db/conf/percom/percom2008.html#YatesNKS08
http://dblp.uni-trier.de/db/journals/pc/pc33.html#AndradeKSS07
http://dblp.uni-trier.de/db/journals/jpdc/jpdc71.html#MershadA11
http://dblp.uni-trier.de/db/journals/procedia/procedia4.html#BeranMSV11


Truth space method for caching database queries 257

[17] Meij E. et al., “Mapping queries to the linking open data cloud: A case
study using dbpedia”, J. Web Sem., 9:4 (2011), 418–433, http://dblp.uni-
trier.de/db/journals/ws/ws9.html#MeijBHHR11.

[18] Aranda C. B. et al., “Federating queries in sparql 1.1: Syntax, semantics
and evaluation”, J. Web Sem., 18:1 (2013), 1–17, http://dblp.uni-
trier.de/db/journals/ws/ws18.html#ArandaACP13.

[19] Keller A. M., Basu J., “A predicate-based caching scheme for client-server database
architectures”, VLDB J., 5:1 (1996), 35–47.

[20] Shim J., Scheuermann P., Vingralek R., “Dynamic caching of query results for decision
support systems”, SSDBM, 1999, 254–263.

http://dblp.uni-trier.de/db/journals/ws/ws9.html#MeijBHHR11
http://dblp.uni-trier.de/db/journals/ws/ws9.html#MeijBHHR11
http://dblp.uni-trier.de/db/journals/ws/ws18.html#ArandaACP13
http://dblp.uni-trier.de/db/journals/ws/ws18.html#ArandaACP13


258 Моделирование и анализ информационных систем Т.22, №2 (2015)

Кэширование запросов к реляционной базе данных
с использованием областей истинности

Мосин С.В., Зыкин С.В.
Федеральное государственное бюджетное учреждение науки Институт математики
им. С.Л. Соболева Сибирского отделения Российской академии наук (Омский филиал)

644043, Россия, г. Омск, ул. Певцова, 13,

Ключевые слова: реляционная база данных, кэш, область истинности

В данной статье предлагается новый метод кэширования запросов к реляционной
базе данных для систем с центральным сервером и распределенными клиентами.
Данные загружаются в клиентский кэш, основываясь на запросах, выполненных на
сервере БД. Каждому запросу ставится в соответствие таблица – результат выпол-
нения запроса. Эти запросы имеют специальный вид, называемый "универсальный
реляционный запрос", основанный на трех базисных операциях реляционной алгеб-
ры: селекции, проекции, естественном соединении (natural join). Следует отметить,
что такая форма запроса наиболее близка к естественному языку и большинство
запросов может быть записано в этом виде. Кроме того, эта форма записи позволя-
ет анализировать корректность запроса, проверяя свойство соединения без потери
информации (СБПИ). Последовательные запросы могут исполняться на клиенте,
используя кэш, если удастся определить, что результаты искомого запроса полно-
стью содержатся в кэше. Для осуществления такой проверки анализируются об-
ласти истинности логических ограничений искомого запроса и запросов, результа-
ты которых уже содержатся в кэше. Требуемые операции могут быть проведены
аналитически, без необходимости дополнительных запросов к базе банных. Пред-
ложенный метод может быть использован для определения недостающих в кэше
данных и последующего запроса только на эти данные. Для этого также использу-
ются аналитические вычисления, что является принципиальным отличием данной
статьи от существующих технологий. Для этой цели в статье представлено четыре
теоремы. В первой и третьей теореме получены условия, позволяющие определить
наличие необходимых данных, а во второй и четвертой получены условия вычис-
ления данных только с использованием кэша. Проблема актуализации данных не
затрагивается в этой статье. Однако она может быть решена путем учета запросов
на сервере и обновлении данных при помощи триггеров.

Статья публикуется в авторской редакции.

Сведения об авторах:
Мосин Сергей Владимирович,

Федеральное государственне бюджетное учреждение науки Институт математики
им. С.Л. Соболева Сибирского отделения Российской академии наук (Омский

филиал), аспирант, ORCID 0000-0001-5459-5853
Зыкин Сергей Владимирович,

Федеральное государственне бюджетное учреждение науки Институт математики
им. С.Л. Соболева Сибирского отделения Российской академии наук (Омский

филиал), д-р техн. наук, профессор, ORCID 0000-0002-0576-2149


	Existing solutions overview and comparison
	Logical constraint definition and properties
	Intermediate Data View properties research
	Conclusion
	References

