
Модел. и анализ информ. систем. Т.22, №2 (2015) 259–277
©Petrov A.N., Roublev V. S., 2015

UDC 519.682;681.324.06

Completeness of the Dynamics of the Attributes
Values of Data in the Database DIM

Petrov A.N., Roublev V. S.

P.G. Demidov Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150000, Russia

e-mail: axel_petroff@mail.ru, roublev@mail.ru

received March 20, 2015

Keywords: object DBMS, dynamics data, description completeness

This paper is devoted to justifying the possibility of DBMS DIM usage and its
interaction mechanism as an algorithmically complete implementation of an object-
dynamic model. An extension for a staticOD-model by including sets of algorithmic
procedures which modify values of object attributes and also create, remove and
modify objects themselves is considered. To ensure the possibility of modifying DIM
DB data in a way equivalent to OD-model modifications, interaction and history
relations between DIM objects are considered. To minimize the dependence from
concrete language constructions, which describe OD-model algorithmic procedures,
the reduction to the universal form – Turing machine is performed. A way to
create a Turing machine equivalent to OD.MT in terms of DIM, where a special
set of PL/ODQL procedures is used as a control unit and a functional table
is proposed. Later, a mechanism to form a memory tape of such DIM.MT by
encoding information about DIM object, and their subsequent decoding back to
DIM objects is described. The process of work of such a machine is modelled by
using an endless cycle of executing some PL/ODQL procedures of reading and
writing objects from / to the memory tape. Basing on the earlier proved theorem
about the static completeness of data representation in DIM, at the end of the
paper the proof on the completeness of representation of the Objects attributes
values dynamics is considered.

The article is published in the author’s wording.

Introduction
Due to the fact that existing DBMS technologies are not technically or conceptually
perfect ([1]–[6]), a tryout to innovate a new objective approach to DB engineering was
taken by our research group. During a number of years was made a lot of work on
this concept, which includes ability not only to modify objects data, but also to change
object types and relations between objects (i.e. dynamic DB scheme engineering). In
addition to this ability were identified 6 base relations between objects: inheritance,
inclusion, inner inheritance, inner inclusion, history, interaction which can completely

259

260 Моделирование и анализ информационных систем Т.22, №2 (2015)

describe all kinds of sophisticated relations between objects. This DB concept was called
a Dynamic Informational Model or DIM. Also was introduced a specialized objective
query language ODQL ([7]–[10]) and some other programming languages that fit all the
needs to manipulate data in DIM.

The introduction on the new DB technology requires strong grounding on data
description completeness and data dynamics completeness. The last one was connected
with exact domain description, or rather with mathematic model creation, which was
called OD-model.

The previous paper [11] was devoted to proving static completeness of data description
in DBMS DIM. Wherein the OD-model was not extended to describe algorithmic
procedures related to data changing dynamics. Such a domain description was quite
enough to be able to build a projection from OD-model to DIM for any static data slice
(at arbitrary moment of time), which can adequately reflect properties of the objects
from OD-model and links between those objects.

This paper acts as a continuation of [11] and it is devoted the proof of DBMS DIM
objects attribute dynamics completeness. According to this, now it is possible to split
the proof into 3 steps:

first, to refine OD-model description in the field of algorithmic procedures designed to
modify data;

second, to describe interaction relations and history relations, which are the fundament-
al data management mechanism in DBMS DIM and temporal links mechanism for
data in DBMS DIM;

third, it is necessary to build a projection between OD-model algorithmic procedure
into DIM interaction, which will conserve all the properties for projection between
two static data splices: before algorithmic procedure call and after this call was
finished.

1. OD-model extension

Previously, in [11] OD-model was described as

(O,A,A(o), V (o), Lp, Lo, Lf , ALf
(ojl), VLf

(ojl), F, T),

where
O – a finite set of objects,
A =

⋃
oAo – a finite set of objects attributes with their types (each element is a pair

(a, V a) – attribute, type of attribute),
A(o) – a function to retrieve cortege of object’s o attributes,
V (o) – a function to retrieve cortege of object o attributes values (the order of the

values matches to the order of object attributes in the cortege A(o)),
Lp =

⋃
j∈Lp
{lpj = {o, o1}} – a set of simple links between objects,

Lo – a set of objects-links (O ∩ Lo = ∅),
Lf =

⋃
j∈Lf
{(lfj , o

j
l ∈ Lo)} – a set of functional links between objects,

Database DIM dynamics completeness 261

ALf
(ojl) – a function to retrieve a cortege attributes of object-link ojl of functional

links Lf ,
VLf

(ojl) – a function to retrieve a cortege of values of object-link ojl ’ attributes of
functional links Lf

F – a finite set of algorithmic procedures, intended to modify objects and their
attributes,

T – a descrete timeline.

Some of attributes of every object stay constant during the object «lifetime». But
some other attributes values vary in time under the dynamic determined rules for
objects interaction. Such an attribute modification does not depend on time moment
of modification, but it depends on values of other attributes of the object, and, possibly,
depends on other objects linked with the object. Let F ′ be a set of algorithmic procedures,
while execution any of them f ∈ F

′ at a moment of time t ∈ T on a set of corteges of
values {Voj(t) | j ∈ 1,m(t), oj ∈ O, t ∈ [tnoj , t

k
oj
]} of all existing values (m(t) – is an

amount of such objects), which are significant for interaction procedure execution, and
a set L of links between these objects are values of such corteges an the next moment of
time:

< Vo1(t+ 1), Vo2(t+ 1), . . . , Vom(t)
(t+ 1) > = f(Vo1(t), Vo2(t), . . . , Vom(t)

(t), L),
t ∈ [tnoj , t

k
oj
], j ∈ 1,m(t).

Procedures from set F ′ define dynamics of modifying model object attributes.
Apart from the set F ′ , introduce a set of algorithmic procedures F ′′ such that while

the executing procedure g ∈ F
′′ at a moment of time t some of existing objects cease to

exist («die»): tko = t, but some of them come into existence («born») at the next moment
of time t+ 1: tno = t+ 1.

< onew1(t+ 1), . . . , onewm(t+1)
(t+ 1) > = g(oold1(t), . . . , ooldn(t)

(t), L),
tkooldj

= t, j ∈ 1, n(t); tnonewj
= t+ 1, j ∈ 1, m(t+ 1),

where in replace for old objects ooldj (j ∈ 1, n(t)) «born» new objects onewj
(j ∈

1, m(t+ 1)).
Procedures F

′′ define the dynamics for OD-model objects modifications, and the
union F = F

′ ∪ F
′′ defines the full dynamics for the model.

This paper is aimed at considerations of the dynamics for objects attributes
modifications.

According to this clarification, it is possible to describe extended OD-model as:

(O,A,A(o), V (o), Lp, Lo, Lf , ALf
(ojl), VLf

(ojl), F
′
, F

′′
, T),

where
O – a finite set of objects,
A =

⋃
oAo – a finite set of objects attributes in conjunction with types of those

attributes (each element is a pair (a, V a) – attribute, type of attribute),
A(o) – a function to retrieve cortege of attributes of the object o,

262 Моделирование и анализ информационных систем Т.22, №2 (2015)

V (o) – a function to retrieve a cortege of values of attributes of objects (order of the
values matches to the order of object attributes in a cortege A(o)),

Lp =
⋃

j∈Lp
{lpj = {o, o1}} – a set of simple links between objects,

Lo – a set of objects-links (O ∩ Lo = ∅),
Lf =

⋃
j∈Lf
{(lfj , o

j
l ∈ Lo)} – a set of functional links between objects,

ALf
(ojl) – a function to retrieve cortege of attributes of the functional links’ Lf object

ojl ,
VLf

(ojl) – a function to retrieve cortege of values of attributes of the functional links’
Lf object ojl ,

F
′ – a finite set of algorithmic procedures for modifying objects’ attributes values,

F
′′ – a finite set of algorithmic procedures for modifying objects,

T – a descrete timeline.

2. DIM extensions (interaction relation and history
relation)

2.1. Interaction relation

To introduce such a type of relation define a special class ch of interactions, which
describes methods for interactions for objects of classes From, Where and What.

The interaction relation is defined on the set

B ⊆ {(cf , ct, cw, oh) | cf ∈ C, ct ∈ C, cw ∈ C, oh ∈ ch}

(B – from behavior) of fours of 3 classes: From (cf – from), Where (ct – to), What (cw –
what) and an object of interaction class ch How (oh – how).

Projections Bf , Bt, Bw of this set respectively define sets of classes which take part
in roles From, Where or What, and Bh ≡ ch is a set of interaction objects, or, that is
the same – an interaction class. This class can act as How class: it is possible to view,
modify or remove methods of interaction.

The interaction class structure includes such attributes as interaction name,
interaction script (or its procedure), interaction duration, interaction mode (usermode
or automatic), interaction resources modification and interaction conditions. The last
attributes describes conditions imposed on resources needed by interaction, so when these
conditions are satisfied – interaction can be executed in automatic mode. This fact allows
to introduce events, which can be fired during DIM DBMS worktime in automatic mode.
This mode can be described in a few key points: when interaction executes, it can modify
resource conditions of other interaction, so it can cause execution of other interactions.
Thus, it is possible to introduce interaction graph, where nodes are interactions, and
edges are resource conditions connecting interactions with each other. Such an approach
gives serious benefits: after introducing timeline scale and applying automatic mode of
interactions execution, it is possible to simulate data modification forecast that gives
a user understanding of the feasibility of applying business-solutions. This mechanism
brings temporal data management features for future into DIM.

Interaction procedure (interaction script) – defines how the interaction execution
process will be performed ([17],[18]). For describing logic for working with data inside

Database DIM dynamics completeness 263

of DIM interaction, specialized, DIM oriented programming languages were designed:
PL/ODQL and DIM-FL. First of them – PL/ODQL is the main programming
tool in DIM ([12], [13]). PL/ODQL in most of its aspects inherits idiosyncrasies and
constructions of well-known PL/SQL language [16] used in Oracle DBMS. Just as in the
case with SQL extension, PL/ODQL application case is grouped into separate modules
(in case of PL/SQL such modules are usually called packages). The language has a wide
area of features for working with ODQL-queries, sets of DIM objects, and also it gives
the possibility to use mature exceptions mechanism. In addition to general purpose
the programming language PL/ODQL, a specialized mathematical formula oriented
programming language – DIM-FL (Formula Language) was designed ([14],[15]). Due
to its nature, DIM-FL language must give developers the ability to develop algorithms
relying on mathematical calculations techniques, and its syntax must be very simple,
concentrated on mathematical constructions.

In some parts the execution of this procedure can be interactive (for example: defining
of objects From, Where and What), but in other parts, procedures written in DIM-FL
or PL/ODQL can be launched (to launch them, special built-in DIM-FL and PL/ODQL
interpreter must be executed with a parameter set in interactive mode of passed from
Interaction procedure body). Beside this fact, interaction execution can be interrupted
for some reasons, and, to be able to find the reason, verbose log is written into Interaction
log during the execution.

Certain parts of interaction and the order of their execution are described using
DIM-Script:

• determination of objects What, From and Where;

• sequential execution of interaction subparts (procedures and functions) written in
PL/ODQL and mathematical formulas written in DIM-FL language, and calls of
another interactions.

The first stage in interaction execution is determination of objects What, From,
Where, which take part in the interaction execution process. To mark which objects are
needed, the user at design time of interaction chooses objects and classes using a special
interactive wizard (interaction and ODQL-queries generation master). At runtime of
interaction the executor finds out What, From, Where objects by performing bound
ODQL-queries. Using DIM-Script a syntax, a developer can use keywords WHAT,
FROM and TO to mark objects from classes What, From, To, respectively:

<keyword> “{” <ODQL-query> [, <ODQL-query>] . . . “}”
<keyword> ::= WHAT | FROM | TO.
Constructions with queries, which can fetch objects that take part in the interaction

execution are located at the very beginning of the interaction body before any other
script constructions. Descriptions of all the objects WHAT, FROM and TO are not
obligatory, because not every interaction should be bound with all the objects What,
From, Where. Some objects are settled by default values at runtime.

Also some special calling statements were introduced in DIM-Script:

• to call PL/ODQL procedures EXECUTE statement should be used: EXECUTE
<name of PL/ODQL Procedure >;

264 Моделирование и анализ информационных систем Т.22, №2 (2015)

• to call sophisticated calculations described in DIM-FL formulas CALCULATE
statement should be used: CALCULATE <name of DIM-FL Formula >;

• to call another interaction, CALL should be used: CALL <name of Interaction>.

2.2. History relation

The history relation introduced in DIM, is used to represent the temporal aspect of data
management. For all the objects, the history of which is necessary to store, 2 additional
parameters: moment of birth tbo and moment of death tdo of objects are introduced. After
the object death it ceases to exist, but to replace it (in the next moment of time) new
objects can appear, which are called successors

osc1 , o
sc
2 , . . . (tbosc1 = tbosc2 = · · · = tdo + 1)

of the initial object, and for a new object birth other objects with preceded by moment
of death td = tb − 1, these objects are called predecessors

opr1 , opr2 , . . . (tdopr1
= tdopr2

= · · · = tbo − 1).

To be exact, for an objects o, successor object – object osc, which replaced the initial
one in the moment next to the moment of death tdo + 1 = tbosc , and, possibly, replaced
another objects. Predecessor object – object opr, which was replaced by a current object
o at the moment of time previous to the moment of birth of initial object tbo − 1 = tdopr
(also, possibly, together with some other objects). In the set of all the objects of model
O is introduced, an antisymmetric transitive binary relation, which is called relation of
history of objects

H = {(opr, osc)|opr, osc ∈ O, tbosc − tdopr = 1}.

The relation defines an object-predecessor opr for object osc, object-successor osc for
object opr and a moment of modification t = tdopr = tbosc − 1 Using this relation, it is
possible to find out the set of its successors {osc1 , osc2 , . . . } (tbosc1 = tbosc2 = · · · = tdo + 1) at
the moment of time just before its death and a set of its predecessors at the moment of
time just after its birth {opr1 , opr2 , . . . } (td

opr1
= td

opr2
= · · · = tbo − 1).

To describe the dynamics of classes modification, some analogous constructions for
classes are introduced: moment of birth of class, moment of death of class, relation
of history of classes, classes-predecessors and classes-successors. If class modification
is performed, all the objects of class undergo changes, and links between classes and
objects can be also modified. To make modifications of classes (or objects), some special
procedures are introduced. If some class cold is replaced by a class cnew, then all the object
belonging to class cold cease to exist, and to replace them new objects belonging to class
cnew appear. Wherein addition/removing of class parameters and addition/removing of
the links with other classes are performed in a way described later:

1) the class definition is copied into a new class cnew with a new class identifier
(thus, the class cold with an old identifier becomes a predecessor, but the class
cnew becomes a successor in a relation of the classes history);

Database DIM dynamics completeness 265

2) the data from objects belonging to the old class cold are copied into the data of
objects of the new class, every object gets its own new identifier (thus, every object
with the old identifier becomes the predecessor of the object with new identifier in
the relation of classes history);

3) attributes belonging to the new class cnew are added as additional attributes;

4) for all the objects of new class values of those added attributes are defined;

5) affiliation to a group of each added attribute of the new class cnew is changed
according to the need;

6) unneeded attributes of the new class cnew are removed, and also integrity constraints
for this class are checked;

7) new links with other classes are added to the new class cnew and also for those
objects of those other classes that need to be linked with objects of the new class,
some links are determined (such objects obtain a new identifier and new links with
objects with the old identifier are settled with the help of the relation of objects
history);

8) unneeded links of the new class cnew with other classes and links between objects
of these classes are removed (as for such objects of other classes, data are copied
into objects with new identifiers and links between old and new objects are created
using relation of objects history); then integrity constraints for all the objects for
which old class cold had a parent object are checked.

Similar to these constructions, dynamics constructions for attributes were introduced.
For example, it is possible to modify datatype of an attribute and this modification will
be kept as a relation of attributes history item.

To describe the dynamics of interaction it is also necessary to introduce similar
constructions: moment of interaction birth, moment of interaction death, relation of
history of interactions, interactions-predecessors and interactions-successors, and also
period of application of interactions. Usually, only topical interactions are in use. But
sometimes, period of application of interaction may be longer than its «lifetime», thus
it can be applied to objects which «lifetime» period is outside the interaction «lifetime»
period, although that period should be inside the period of interaction application.

2.3. Object type of DIM

The type of an object in DIM is defined by a set of class attributes and a set of
interactions, for each of them the class of the object or its parent class acts as 1 of
4 roles in interaction. A set of type attributes is defined by:

1) class parameters of the object;

2) parameters of parent classes for the class of object, if they exists;

3) links with any other classes, which are linked by inclusion with the class of object
or with its parent classes.

266 Моделирование и анализ информационных систем Т.22, №2 (2015)

The type of the object is defined by its class only in simplest cases, as we can see from
the definition.

3. Dynamic completeness of OD-models’ descriptions
in regard to DIM

In the previous paper [11] a projection G for transformation arbitrary OD-model into
DIM classes scheme was constructed. Based on this projection was proved theorem on
completeness of static data representation in DIM.

Now, it’s considered to continue investigation on this projection to extend into
ability to transform algorithms from set F of OD-model into DIM interactions. This
transformation should keep in sync objects from both models, their attributes and
attributes values before execution of any algorithm f ∈ F (or respective interaction
G(f) ∈ B) and after its execution.

To minimize G(f) transformation’s dependence from f and G(f) descriptions
characteristics, it’s a good approach to use universal well-known algorithm description
in the form of Turing machine (MT). To be able to use this approach, Turing machines
for OD-model (OD.MT) and for DIM -model (DIM.MT) are investigated.

3.1. OD-model’s Turing machine’s description

BuildOD-model of arbitrary Turing machine (MT). To accomplish this task it is necessary
to represent memory tape and MT control unit (CU) as objects, and also describe an
interaction between them using set of OD-model functions, which will comply with
modification of model’s objects at each step of MT work.

Let outer MT alphabet B consist of m symbols and some empty symbol b0 : B =
{b0, b1, . . . , bm}, and let inner MT alphabet Q consist of n states, and a stop state
q0 : Q = {q0, q1, . . . , qn}. At time of MT start, i.e. at the moment of time t = 0, control
unit is in an initial state q1.

The MT memory tape is infinite in both directions, so as such it cannot be described
as an ordinary OD-model. But, there are non-empty symbols only on each cell of finite
section of the memory tape. Because of this, it is possible to bind to a pair of indexes
with MT memory tape: imin and imax, which will point to starting and ending cell of
that finite portion. Value of index imin is chosen in such a way that all the cells left of
this point are empty b0. And value of index imax is chosen in such a way that all the cells
right of this point are empty b0.

In this way, it is possible to represent MT memory tape using finite set of cells or
objects, each of them have their own index in the range from imin to imax. Each cell from
memory tape describes object oCell

i , where i ∈ [imin, imax].
Object oCell

i has 4 attributes AoCell
i

=< i, b, t0, td >, where
i – is a current cell index on memory tape,
b – a symbol in the current cell (b ∈ B),
t0 – a birth time of the cell,
td – a death time of the cell.

Database DIM dynamics completeness 267

MT tape itself is represented by an oLenta object, which has 3 attributes AoLenta =<
imin, imax, t0 >, where
imin – is an index of the leftmost cell, containing non-empty symbol in the considered
tape section,
imax – an index of the rightmost cell, containing non-empty symbol in the considered
tape section,
t0 = 0 – a birth time of MT memory tape object.

Since the memory cells are located on the MT memory tape, then there are links
lo

Lenta

oCell
i

(i ∈ [imin, imax]) between object oLenta and objects oCell
i which indicate that the

cell oCell
i belongs to the tape oLenta.

Due to the fact that procedures f ∈ F ′ were initially designed to use a set of corteges
of values {Voj(t)|j ∈ 1,m(t), oj ∈ O, t ∈ [tnoj , t

k
oj
]} of all the objects which are significant

for the procedure and a set of links among objects as arguments to produce a set of
corteges of values at the moment next after the procedure’s execution, we assume that
there are such significant objects and object-links only are placed on the tape (in the
form of attribute values, delimited by special characters).

Introduce format, in which OD-model objects are written on memory tape. For
simplicity, only b cells attributes (characters) are considered significant for objects
representation on memory tape, other cell attributes belong to cells only and does
not refer to the objects from OD-model, written on memory tape. First, we consider
how object’s attribute is written: attribute name, then – delimiter character “-”, then –
attribute value, for example, a − 2. Object consists of several attributes, delimited by
“+” character. And finally, objects are delimited by “*” character. Beside of representing
object attributes themselves, is is also necessary to identify an object, to accomplish this,
object representations are prefixed by their IDs (OD-model object ID) and a special
delimiter character “|”: 1|a − 1. For example, some objects o1, o2 with attributes (a =
1, b = 2, c = 3), (g = 5, l = 3) are written in a form o1|a−1+b−2+c−3∗o2|g−5+l−3.
All these delimiters must be included in OD.MT external alphabet. We consider that
only object’s representation format is predefined, the formats of result, or order of objects
are unique for every OD.MT .

At each moment of time MT control unit inspects a cell on the memory tape, and,
according to its functional table and current state, MT determines what symbol will be
written into current cell and where control unit’s head should be moved. Control unit is
defined by object oUU , which has 4 attributes AoUU =< i, q, d, t0 >, where
i – is a cell index, which is currently inspected by CU’s head,
q – a current Turing machine state (q ∈ Q),
d – CU’s head movement on the current MT work step (1 – one cell to the left, −1 – one
cell to the right, 0 – no movement),
t0 = 0 – time of CU’s object creation.

Each step of MT’s work is defined by MT’s functional table: using current state q and
currently inspecting symbol b CU, basing on rules from functional table, makes decision
what symbol should be written to the tape and determines new qnew state of MT and
direction of the head movement d.

MT’s functional table is described by a set of oMT
q, b objects. Each oMT

q, b describes
exactly one rule from the instructions table. Object oMT

q, b has no links with other objects
(LoMT

q, b
= �) and has 6 attributes AoMT

q, b
=< q, b, qnew, bnew, d, t0 >, where

268 Моделирование и анализ информационных систем Т.22, №2 (2015)

q – is a current MT state (q ∈ Q),
b – a character, currently inspected by MT (b ∈ B),
qnew – a new MT state (qnew ∈ Q),
bnew – a new MT character (bnew ∈ B),
d – head movements (1 – one cell to the left, −1 – one cell to the right, 0 – no movement),
t0 = 0 – time of instruction’s creation.

At the moment of time t = 0 all the objects currently describing MT are created,
after that the input word is defined and the starting state is settled. Then MT starts its
work and its first step is executing at the t = 1 moment of time.

Each step of MT’s work is an interaction between two objects: control unit and
memory tape. This interaction is described by functions from OD-model, which, by
object attributes’ values at the moment of time t determine object attributes’ values at
the moment of time t+ 1.

To describe OD-model’s functions, which can define modification of objects on the
memory tape and control unit, interacting on each step of MT’s work, introduce objects
and attributes marks:

• moment of time, at which the object is inspecting, is marked left to the object
identifier in parentheses (for example, oUU(t) – CU object at the t moment of
time);

• to specify object attribute’s value a notation [name of the object].[name of the
attribute] is used (for example oUU(t).q – current MT’s state at the t moment of
time);

• to refer to the memory cell object on the MT’s memory tape with the specified
index brackets to the right of the object name are used (for example, oLenta[i] –
memory cell with index i).

Each step of MT’s work is performed in one discrete time interval (t, t+ 1]: in time
interval (t, t + n] MT performs exactly n steps. Describe one step of MT work using
OD-model’s functions, which machine performs in time interval from t to t+ 1.

Head’s movement (oUU(t+1).d), character currently recording onto the memory tape
(oLenta[oUU(t).i](t+1).b) and the new MT’s state (oUU(t+1).q) are identified by following
OD-model’s functions:

1. oUU(t+ 1).d = fd(o
Lenta[oUU(t).i](t).b, oUU(t).q), where

oUU(t).i – an index of the currently inspected MT’s cell at the t moment of time,

oLenta[oUU(t).i](t).b – a character in the currently inspected MT’s cell at the t
moment of time,

oUU(t).q – an MT’s state at the t moment of time,

fd – a function, which determines head’s movement and depends from current MT’s
state q and b character in currently inspecting MT’s cell at the t : fd() = oMT

b, q .d
moment of time.

2. oLenta[oUU(t).i](t+ 1).b = fb(o
Lenta[oUU(t).i](t).b, oUU(t).q), where fb – a function,

which identifies new character that to be written onto the memory tape cell, that is

Database DIM dynamics completeness 269

currently inspected at the t moment of time. Function fb depends on current MT’s
state and a character currently inspected in MT’s cell at the t : fb() = oMT

b, q .bnew
moment of time.

3. oUU(t + 1).q = fq(o
Lenta[oUU(t).i](t).b, oUU(t).q), where fq is a function, which

determines new MT’s state at the t + 1 moment of time. Function depends on
current MT’s state and a character being currently inspected by CU at the t :
fq() = oMT

b, q .qnew moment of time.

Index of currently inspected MT’s cell at the t+1 moment time is determined in this
way:

oUU(t+ 1).i = oUU(t).i+ oUU(t+ 1).d

After identification of index of a new inspected cell, it is possible that a cell with this
index does not exists on the memory tape. In this case there is a need of creating a new
memory cell and of definition of attributes of the newly created memory cell object. At
the cell’s birth time, the cell is defined by its number, which is equal to the number of
new examined cell. An empty symbol b0 is written into the cell. The moment of the cell’s
«birth» time is set to t + 1, and the cell’s «death» is set to infinity. Necessity to create
a new cell can appear in 2 cases only:

• if index of a new memory cell is less than leftmost cell index
oUU(t+ 1).i < oLenta(t).imin.
In this case index of the leftmost cell is decreased by 1
oLenta(t+ 1).imin = oLenta(t).imin − 1.

• if index of a new memory cell is greater than rightmost cell index
oUU(t+ 1).i > oLenta(t).imax.
In this case index of the leftmost cell is increased by 1
oLenta(t+ 1).imax = oLenta(t).imax + 1.

After MT finishes its step, a situation when at one of the ends of memory tape utmost
cell contains empty symbol b0 and CU’s head do not inspect this cell can happen. In this
case such a cell is removed from the tape. If that cell was the leftmost cell, then MT’s
memory tape’s cell’s leftmost index is increased by 1 oLenta(t+1).imin = oLenta(t).imin+1.
On the other hand, if that cell was the rightmost cell, then MT’s memory tape’s cell’s
rightmost index is decreased by one oLenta(t+ 1).imax = oLenta(t).imax − 1.

Using conditional construction if . . . then . . . end if and the new operator for
creating a new object, it is now possible to represent one step of MT’s work in a form of
an algorithmic procedure:

oUU(t+ 1).d = fd(o
Lenta[oUU(t).i](t).b, oUU(t).q)

oLenta[oUU(t).i](t+ 1).b = fb(o
Lenta[oUU(t).i](t).b, oUU(t).q)

oUU(t+ 1).q = fq(o
Lenta[oUU(t).i](t).b, oUU(t).q)

oUU(t+ 1).i = oUU(t).i+ oUU(t+ 1).d

270 Моделирование и анализ информационных систем Т.22, №2 (2015)

if oUU(t+ 1).i < oLenta(t).imin then
oCell
new = new oCell

oCell
new .t0 = t+ 1

oCell
new .td =∞
oCell
new .b = b0

oCell
new .i = oLenta(t).imin − 1

oLenta(t+ 1).imin = oLenta(t).imin − 1

oLenta[oLenta(t+ 1).imin] = oCell
new

end if

if oUU(t+ 1).i > oLenta(t).imax then
oCell
new = new oCell

oCell
new .t0 = t+ 1

oCell
new .td =∞
oCell
new .s = b0

oCell
new .i = oLenta(t).imax + 1

oLenta(t+ 1).imax = oLenta(t).imax + 1

oLenta[oLenta(t+ 1).imax] = oCell
new

end if

if oLenta[oLenta(t).imax](t+ 1).b = b0 then
oLenta[oLenta(t).imax](t+ 1).td = t+ 1

oLenta(t+ 1).imax = oLenta(t).imax − 1

end if

if oLenta[oLenta(t).imin](t+ 1).b = b0 then
oLenta[oLenta(t).imin](t+ 1).td = t+ 1

oLenta(t+ 1).imin = oLenta(t).imin + 1

end if

3.2. DIM-model’s Turing machine description

DIM Turing machine’s control unit can be emulated by an PL/ODQL procedure MT .
Work of DIM.MT starts from launching corresponding MT procedure, inside of which,
in an endless cycle, reading and writing from / to memory tape are performed before
stop state q0 will be reached.

Now, a way to build MT for using in DIM should be considered. And also, very
important to construct and consider a projection G(OD.MT) = DIM.MT , that allows
to construct such a Turing machine for DIM, which will be equivalent to OD.MT .

The main idea in constructingDIM.MT is to build a mapping between mainOD.MT
Turing machines components, and namely memory tapes and control units.

Database DIM dynamics completeness 271

Similarly toOD.MT , inDIM.MT an oLentaDIM object including an array of oCell
DIM objects

is used as “input” / “output” memory tape (we assume, that at the every moment of time
only finite part of the tape is inspected)

DIM Turing machine’s control unit can be modelled as PL/ODQL procedure MT .
DIM.MT execution starts from launching correspondingMT procedure, inside of which,
in infinite cycle, read write operations of characters from to the memory tape are
performed. Information about objects is transformed in according to transition (in a case
in inheritance) of some attributes to parental objects. If such an information modification
is done for one of the children objects and do not changes for another child object, thus,
parent object’s attribute values are copied and each of these copies are written to the
memory tape and bound with another child objects.

Now, consider how it is possible to build Turing machine analogous to OD.MT using
PL/ODQL procedures. Let, external alphabet of such a Turing machine consist of m
characters together with an empty character b0 and earlier described characters from
OD.MT alphabet: B = {b0, b1, . . . , bm}. On the other hand, inner machine’s alphabet
consist of n inner states and a special finish state q0 : Q = {q0, q1, . . . , qn}. When one
launches MT (executes corresponding procedure), i.e. at the moment of time t = 0 q
variable is set to q0.

Just like as in the case with MT.OD infinite memory tape can be considered partly:
on each step of MT.DIM work (at each iteration of MT procedure’s main loop) the
machine inspects only the finite part of memory tape tape. In this case a PL/ODQL
object oLentaDIM with ad array of oCell

DIM ’s is used as a memory tape, consequently, imin is
always equals to 0, and imax is equals to memory tape oCell

DIM objects array length.
Below an example of PL/ODQL module, which models Turing machine’s work within

the DIM ’s model, is given. The machine’s work starts with MT procedure launch, which
performs processing of objects located on memory tape.

By analogy with above given Turing machine for OD-model, logic of the machine’s
operation is defined by a set of functions dimfd , dimfb and dimfq . Function dimfd defines
“reading-out head”ś shift and depends, just like as in case with MT.OD-function, on
current MT.DIM ’s state and currently inspecting character b at the current moment
of time. dimfb – used to compute character, which should be written into currently
inspecting memory tape’s cell and depends on current DIM.MT ’s state and currently
inspecting character b (similar to OD.MT ’s function fb). dimfq – used to compute inner
DIM.MT ’s state q at the moment of time t+1, and depends on current DIM.MT state
and currently inspecting character (similar to OD.MT ’s function fq).

Additional helper functions, also used in MT procedure:

• get – obtains character with index i from the memory tape tape;

• set – writes character b to the memory tape tape at i position;

• lextend – extends memory tape to the left, i.e. performs array of cells extension,
adds oCell

DIM with b0 character to the left of the array, imin decreases by one, thus
adds an empty memory cell at the left border of the memory tape;

• rextend – extends memory tape to right, i.e. performs array of cells extension,
adds oCell

DIM with b0 character to the right of the array, imax increased by one, thus
adds an empty memory cell at the right border of the memory tape.

272 Моделирование и анализ информационных систем Т.22, №2 (2015)

DIM_MT BEGIN
. . .

PROCEDURE MT (oLentaDIM tape) IS
VAR INTEGER imin := 0; // memory tape left border

VAR INTEGER imax := Length(tape); // memory tape right border

VAR STRING q := q0; // current MT state

VAR INTEGER i := imin; // index of currently being inspected character

VAR STRING b := b0; // character currently being written

VAR INTEGER d := 0; // current shift

BEGIN
// main loop

WHILE (q <> q0)

BEGIN
d := dimfd(get(tape, i), q); // current shift

b := dimfb(get(tape, i), q); // character to write

q := dimfq(get(tape, i), q); // new state

i := i + d; // currently being inspected character′s index

IF i < imin

lextend(tape);
i := imin;

b := b0;

END IF

IF i > imax

rextend(tape);
imax := imax + 1;

b := b0

END IF

// write character to the memory tape

set(tape, i, b);

END;

END;

. . .

END DIM_MT;

Database DIM dynamics completeness 273

3.3. Object attributes dynamic’s completeness

An algorithm f ∈ F
′ launch of an arbitrary OD-model at the moment of time t ∈ T

is bound to 2 static descriptions of the model using DIM classes schemes: S0 at the t
moment of time, right before f launch and S1 at the t + 1 moment of time right after
the procedure launch finishes. Strictly speaking, a DIM interaction b ∈ B describes
dynamics of objects’ attributes’ values modifications, which is initiated by f algorithm,
if this interaction transforms S0 DIM scheme classes into S1 scheme.

Theorem 1. Theorem on completeness of the Objects attributes values’ dynamic. For
an arbitrary algorithm f ∈ F

′ of an arbitrary OD-model there is a DIM interaction DIM
b ∈ B, which describes process of changing objects properties, caused by f algorithm
execution at arbitrary moment of time t ∈ T .

Proof. Let, an arbitrary OD-model algorithm is represented in a form of OD.MT Turing
machine. To prove this statement it is necessary to build DIM Interaction, which performs
DIM objects modifications, similar to OD-model’s objects modifications which can be
done by f algorithm Turing machine. We assume, we decouple MT functionality from
the source of objects, and put OD.MT functions into DIM.MT , will execute OD.MT
inside of DIM and on the DIM objects.

1) build a Turing machine model inside of DIM , which realizes exactly the same
modifications of objects, likeMT.DIM with OD-objects. As was mentioned above,
DIM.MT can be modelled in a form of special procedure, which transforms an
array of character objects, written on memory tape. Because of fact that OD.MT
execution logic is described by a set of functions fd, fb and fq, which depends
on current MT’s state and character being currently inspected, it is possible to
emulate these functions behavior in DIM.MT , inside of DIM_MT module: fDIM

d ,
fDIM
b and fDIM

q .

2) in DIM , interactions take a set of objects, which are fetched using FROM query,
as an input parameters, instead of using DIM.MT memory tape object as an
argument.

3) it is necessary to transform a set of DIM objects and a oLentaDIM memory tape object.
This transformation can be performed by a special encoding function, which writes
objects to the memory tape, according to the format given with the OD.MT
(objects representation format is predefined). After memory tape object, which
satisfy conditions G−1(oLentaDIM) = oLenta and G−1(oCell

iDIM
) = oCell

i ,∀i ∈ [imin, imax],
was built, it is possible to turn to building procedure’s main cycle, modelling MT
operating.

274 Моделирование и анализ информационных систем Т.22, №2 (2015)

BEGIN
// main cycle

WHILE (q <> q0)

BEGIN
d := dimfd(get(tape, i), q); // shift

b := dimfb(get(tape, i), q); // character for write

q := dimfq(get(tape, i), q); // new state

i := i + d; // current state

. . .

4) after MT stops (i.e. after main cycle iterations were finished) it is necessary to
make reverse transformation: transform DIM.MT memory tape objects back to
DIM objects.

Obtained after application of the inverse transformation, a set of objects is a result
of OD.MT processing after DIM objects. However, objects, obtained in such a
way, not always correctly represents modifications, for example, if was modified an
attribute, which belongs to the parent object (not to the current object), a tryout
to persist this object into DB will also modify other objects (which are the children
for the parent object).

The solution lies on the fact that in such cases (when not all the child objects take
part in modification of attributes values) the parent objects to be copied and only
its copy is modified. Also, the link to the parent object is redefined for the base
object, which was modified during algorithm execution.

The implementation of this approach is an application of procedureNORMALIZE,
which uses 2 sets of objects: source set of objects source and a resulting set result:

1) for an every object os from the source set, find corresponding object or from
the resulting set;

2) if the source object os was modified, identify rather modified attributes belong
to the object itself, or to its parent object;

3) if inherited attributes were changed, it is necessary to create a copy of the
unmodified object in the result set, for the object or itself – change a link to
the parent object to the parent object copy with unmodified attributes.

Thus, attribute values of objects, which are not modified in MT work process, will
not be broken.

Similarly to this process, it it necessary to make such an operations with inclusion
objects and including objects – we assume that in this case a new object is
created instead of the old one. To implement this, a procedure NORMALIZE_
INCLUSION , which uses 2 sets of objects: a source set set and a resultant set
result, is used:

Database DIM dynamics completeness 275

1) for an every object os from the source objects set, which is an inclusion or
including object, find corresponding object or from the resulting set;

2) if the source os was modified, it is necessary to create its copy in the resulting
set orcopy ;

3) create history links between object os and its modified version orcopy .

Analogous actions on creation object-copy and linking it through history relation
with the source object are taken for objects, for which have been changed identifying
attributes, and these actions are implemented usingNORMALIZE_ID procedure.

5) After executing all the operations from p.4, the resulting set contains objects which
are modified in quite the same way as while executing OD.MT on objects from
OD-model;

6) Interaction runtime environment persists objects from resulting set into metalevel.
Actually, the environment also creates new objects (refer to the p.4) and creates
history, inheritance and inclusion links between objects (using ODQL queries).

Thus, after all actions were accomplished, DIM interaction b ∈ B, which describes
dynamics of objects attributes values modifications, which were initially performed by
f algorithm’s execution at arbitrary moment of time t ∈ T is designed. Execution
of the interaction performs exactly the same DIM -model objects’ attributes values
modifications, as execution of an algorithm f ∈ F

′ over objects from the source OD-
model.

References
[1] Codd E. F., “A relational model for large shared data banks”, Comm. ACM, 1970.
[2] Codd E. F., Further normalization of the database relational model, in Database Systems,

Prentice Hall, Englewood Cliffs, NJ, 1972.

[3] Atkinson M. et al., “The Object-Oriented Database System Manifesto.”, Elsevier Science,
1990.

[4] Garcia-Molina H. et al., Database Systems: The Complete Book (2nd Edition), Pearson
Prentice Hall, Upper Saddle River, NJ, 2008.

[5] Greene Robert, “OODBMS Architectures. An examination of implementations.”,
Technical report, Versant Corp., 2006.

[6] Kostenko B. B., Kuznetsov S. D., “Istoriya i aktualnye problemy temporalnykh baz
dannykh”, 2007, http://www.citforum.ru/database/articles/temporal, (in Russian).

[7] Pisarenko D. S., Roublev V. S., “Object DBMS DIM and its main concepts”, Modeling and
analysis of information systems, 16:1 (2009), 60–87.

[8] Roublev V. S., “The Object Query Language of the Dynamic Information Model DIM”,
Modeling and analysis of information systems, 17:3 (2010), 144–161.

[9] Roublev V. S., “Zaprosnaya polnota yazyka ODQL dinamicheskoy informatsionnoy modeli
DIM”, Fiziko-matematicheskie i estestvennye nauki, 1, Yaroslavl, 2011, 69–75, (in
Russian).

[10] Roublev V. S., “Object Query Computing Optimization in the Dynamic Information
Model DIM”, Modeling and analysis of information systems, 18:2 (2011), 39–51.

http://www.citforum.ru/database/articles/temporal

276 Моделирование и анализ информационных систем Т.22, №2 (2015)

[11] Roublev V. S., “Teorema o staticheskoy polnote SUBD DIM”, Problemy teoreticheskoy
kibernetiki. Materialy XVII mezhdunarodnoy konferentsii (Kazan, 16–20 iyunya 2014 g.),
Otechestvo, Kazan, 2014, 242–245, (in Russian).

[12] Roublev V. S., Petrov A. N., “Yazyk PL/ODQL i mnozhestva s indeksami”, Estestvennye
nauki, 3, YaGPU, Yaroslavl, 2012, 74–83, (in Russian).

[13] Petrov A. N., “PL/ODQL language and sets with indexes”, Science Drive – 2012. Yaroslavl,
2012.

[14] Pisarenko D. S., “Yazyk matematicheskikh formul DIM-FL Dinamicheskoy
informatsionnoy modeli DIM”, Studencheskie zametki po informatike i matematike:
sbornik nauchnykh statey studentov i aspirantov fakulteta IVT, 3, YarGU, Yaroslavl,
2008, 88–96, (in Russian).

[15] Petrov A. N., “Yazyk formul DIM-FL i ego realizatsiya v SUBD DIM”, Molodaya nauka
v klassicheskom universitete: Tezisy dokladov nauchnykh konferentsy festivalya studentov,
aspirantov i molodykh uchenykh (Ivanovo, 21–25 aprelya 2014), Ivanovsky gosudarstvenny
universitet, Ivanovo, 2014, 44–45, (in Russian).

[16] Moore Sh., Belden E., “Oracle Database PL/SQL Language Reference, 11g Release 2”,
2013.

[17] Petrov A. N., “Vzaimodeystvi SUBD DIM i ikh realizatsiya”, Sbornik dokladov
Mezhdunarodnoy konferentsii “II vesennie nauchnye chteniya” (17 may 2014), Nauchno-
informatsionny tsentr “Znanie”, Donetsk, Ukraina, 2014, (in Russian).

[18] Petrov A., “Dynamic Information Model Interactions: Design and Implementation of
Database-Driven Workflow Approach”, Preliminary proceedings of the 8th Spring/Summer
young researches’ colloquiu on software engineering (SYRCoSE 2014), Saint Petersburg,
Russia, 2014, 177–181.

[19] Petrov A. N., “PL/ODQL interpreter – realizatsiya yazyka programmirovaniya PL/ODQL,
primenyaemogo v SUBD DIM”, Svidetelstvo o gosudarstvennoy registratsii programmy
dlya EVM № 2014661854.

[20] Petrov A. N., “Programma dlya vypolneniya programmnykh moduley, sozdannykh na
yazyke DIM-FL”, Svidetelstvo o gosudarstvennoy registratsii programmy dlya EVM
№ 2015611827.

Database DIM dynamics completeness 277

Полнота динамики значений свойств данных в СУБД DIM

Петров А.Н., Рублев В.С.

Ярославский государственный университет им. П. Г. Демидова
150000 Россия, г. Ярославль, ул. Советская, 14

Ключевые слова: объектная СУБД, динамика данных, полнота представления

Данная работа посвящена обоснованию возможности использования объектной СУБД
DIM и ее механизма взаимодействий в качестве алгоритмически полной реализации объект-
но-динамической модели. В статье описывается расширение статической OD-модели путем
включения в неё множеств алгоритмических процедур, описывающих изменения значений
свойств объектов, а также создание, удаление и изменение самих объектов. Для обеспе-
чения DIM возможностями модификации данных, эквивалентной модификациям в OD-
модели, вводятся отношения взаимодействий и истории. Для того, чтобы минимизировать
зависимость от конструкций описаний алгоритмических процедур OD-модели, которые
могут быть записаны на различных языках, выполняется сведение аппарата процедур к
универсальной форме – машине Тьюринга. Представляется способ построения машины
Тьюринга эквивалентной OD.MT в рамках DIM, использующей набор PL/ODQL проце-
дур в качестве аналога управляющего устройства и функциональной таблицы. Описывает-
ся принцип формирования ленты памяти такойDIM.MT путём кодирования информации
об объектах DIM и их последующего декодирования с ленты обратно в объекты DIM. При
этом процесс работы такой машины моделируется с помощью бесконечного цикла вы-
полнения PL/ODQL процедур чтения / записи объектов с входной ленты. В заключение
приводится доказательство теоремы о полноте представления динамики данных матема-
тической модели DIM новой объектной СУБД, основанное на доказанной ранее теореме о
статической полноте представления данных в DIM.

Статья публикуется в авторской редакции.

Сведения об авторах:
Петров Алексей Николаевич,

Ярославский государственный университет им. П. Г. Демидова,
аспирант,

orcid.org/0000-0002-1037-866X
Рублев Вадим Сергеевич,

Ярославский государственный университет им. П. Г. Демидова,
профессор,

orcid.org/0000-0001-8095-3132

	OD-model extension
	DIM extensions (interaction relation and history relation)
	Interaction relation
	History relation
	Object type of DIM

	Dynamic completeness of OD-models' descriptions in regard to DIM
	OD-model's Turing machine's description
	DIM-model's Turing machine description
	Object attributes dynamic's completeness

	References

