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We give an analytic proof of the existence of Shilnikov chaos in complex Ginzburg—
Landau equation subject to a large third-order dispersion perturbation.

The goal of this paper is to show that chaotic behavior is possible in complex
Ginzburg-Landau equation with additional large dispersion term. The equation is

O = (1 +iv)0%u + Bu — (1 + iw)u|ul* + Ldu, (1)

where u is a complex-values function, spatially periodic with period 27, i.e. we consider
Eq. (1) on the interval x € (—m,7) with the periodic boundary condition u(—m) =
u(m). The dispersion term Lu,,, causes fast temporal oscillations in the solution, so
the evolution is described by effective averaged equation (see Eq. (3)). This averaging
is performed in Ref. [5]; it was also shown there that the averaging in a presence of
the second-order dispersion term iLu,, with large L leads to a significant simplification
of the dynamics (the averaged system acquires a gradient structure). In this letter we
show that, surprisingly, introducing the dispersion term as in Eq. (1) does not make
dynamics gradient, and chaos can emerge in the averaged system. As the result is of an
ideological nature, we refrained of the use of numerical integration. Instead, we provide
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an analytic proof of the existence of chaos in the averaged system (assisted by Maple
and Mathematica tools).
As L islarge, Eq. (1) can be viewed as a perturbation of the auxiliary linear dispersion
equation
U = Lty (2)

By choosing the orthogonal basis e, = ¢, n € Z, the flow H(t) generated by Eq. (2)
is given by ‘
Hi(t)e, = e e,

These solutions are 27/L-periodic with respect to time, i.e. they correspond to fast
oscillations.

In order to average these oscillations, one makes the following change of variable u
in Eq. (1):
u(t) = Hp(t)w(t)

The equations for w acquire explicit rapidly oscillating terms. Averaging them out is
done in [5]. The result is the following equation:

Opw = (1 + i) 0w + fw — (1 + iw) N (w), (3)
with the operator IV given by
N(w) = <2w S lwal* + @) waw_, — 2w0|w0|2> eo— Y wnllwal® + 2w_,|*)en,
nez nez n#0

where we denote w = ) _, wye,, and @ is the complex conjugate of w.

This is an infinite-dimensional system. It is shown in Ref. |5] that it is well-posed and
has a global attractor in an appropriate Sobolev space. The study of its full dynamics
can be difficult, however this system has finite-dimensional invariant manifolds. One of
these manifolds is

w, =0 for all In| > 2.

In restriction to this space, we have w = yeg + v(e; +e_1). Then
N(w) = (4y[v* + ylyl* + 25v*)eo + (v(2ly|* + 3[v[*) + 0y*)(e1 + e-1),
and Eq. (3) becomes

{ g =By — (1+iw) [y(ly|* + 4v[*) + 25v7],
b= (B —1—iy)v— (1 +iw) [v(2ly]* + 3Jv[*) + vy?] .

Let y = /re’?, v = /pe’. We obtain

72
2Vr

which gives

e +ip\/re = Byre” — (1 +iw) [Vre¥(r + 4p) + 2\/Fe’i”p62iw] ,

7 =2r[f—r—4p —2p(cosn — wsinn)],
® = —w(r+4p) — 2(sinn + wcosn)p,
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Fig. 1. Homoclinic loop to the saddle-focus in system (4). The equilibrium is at » = 0.06,
p = 0.07221, n = 0.143345, which corresponds to w ~ —30.965, f ~ 1.1306, v ~ —2.9361

(see Egs. (5),(6)).
where 1 = 2(¢ — ¢). Similarly,

§€%aw+¢¢vﬁaw:(5_1_¢7%ﬂkw_%1+¢w>h@a¢@r+3m_%vﬁew%¥WL

SO
p=2p[f—1—-2r—3p— (cosn+wsinn)r|,

b= =7 —w(2r+3p) + (sin 7y — weosn)r.

Finally (by scaling time to 2), we obtain the following three-dimensional system:

A ———
p=plB—1=2r—3p— (cosn+wsinn)r], @
==y +w(p—r)+ (siny — wcosn)r + 2(sinn + wcos n)p.

The computations that follow show that system (4) has a region of parameter values
(83,7, w) which correspond to chaotic behavior. We prove this by showing that at a certain
parameter value the system has Shilnikov saddle-focus homocinic loop [6, 7] (see also Ref.
[1]). Doing this numerically would be an easy exercise — e.g. see in Fig. 1 a homoclinic
loop we found in this system. However, we want to prove its existence analytically. To
this aim, we employ the idea of [2, 3] who showed that bifurcations of an equilibrium
state with triple zero eigenvalue can lead to the birth of the Shlnikov loop. Fully analytic
proof of this can be obtained using the result of [4]; we also mention that this method
was used for an analytic proof of (space-time) chaos in Ginzburg-Landau type equations
in [§].

Thus, in the rest of the paper we are showing that system (4) has values of parameters
which correspond to the equilibrium state that has all three eigenvalues zero and satisfies
the conditions of Arneodo—Coullet—Spiegel-Tresser—Ibanez—Rodriguez theorem. It is easy
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to see that at non-zero r and p, the equilibria are given by

B =r+4p+2p(cosn —wsinn),
f=142r+3p+ (cosn+ wsinn)r, (5)
vy =w(p—r1)+ (sinn —wcosn)r + 2(sinn + w cosn)p.

Thus, any (r, p,n) can be an equilibrium for an appropriate choice of 5 and ~, provided
p(1 4+ 2(cosn —wsinn)) —r(1 + (cosn + wsinn)) = 1. (6)

The linearization matrix at the non-zero equilibrium is

—r —2r(24 cosn—wsinn) 2rp(sinn4w cosn)
A —p(2+ cos n+wsinn) —3p rp(sin n—w cosn) )
(cos n+wsinn)r+

—Ww-+ SN 7—w Cos 1N w+2(sin n+w cosn) +2(cos n—wsing)p
We now look for the values of r, p,  that correspond to a triple zero eigenvalue of A.
This happens when the trace, determinant, and the sum oA of the three main second-
order minors of A are simultaneously zero.
Condition tr A = 0 reads as

r(1 —cosn —wsinn) + p(3 — 2cosn + 2wsinn) = 0. (8)
Note that if sinnp = 0, then tr A cannot vanish at positive r and p, so we further assume

sinn # 0.
The determinant of matrix A vanishes when

pJi+1rJy =0
where
—1 —2(2+4cosn —wsinn) 2(sinn + wcosn)
J1 =] —(2+4 cosn + wsinn) -3 0 ,
—w+sing —wcosn w4+ 2(sinn +wcosn)  2(cosn — wsinny)
and
-1 —2(2 + cosn — wsinn) 0
Jy = | —(2+ cosn + wsinn) -3 sinn — wcosn
—w+sinn —wcosn w4+ 2(sinn +wcosn) cosn—+wsiny
We have

J1=—2(2+Cosn+wsinn)' 44 2(cosn —wsinn)  sinn+ wcosn ‘_

—w —2(sinn + wcosn) cosn —wsinny

—6‘ —1 sinn + wcosn ‘

—w+4sinn —wcosn cosn —wsiny

= —(4+2cosn + 2wsing) [(4 4+ w?) cosn — Bwsing + 2(1 + w?)] —
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—6 [(w2 — 1) cosn + 2wsinn — sin®n + w? cosn] =
= —2(1 + w?)(1 + 7cosn + 2wsinn + 7cos? 1 + wsinn cosn),

and
Jy=—

-3 sinn —wcosn |
w+ 2(sinn +wcosn) cosn+ wsinny

—2(2 4 cosn — wsinn)

24 cosn+wsinn  sinn —wcosn
w— (sinn —wcosn) cosn+wsinny

= — [(w® — 3) cosn — dwsinn — 2sin” n + 2w’ cos® n] —
—(44 2cosn — 2wsinn) [(2 + w®) cosn +wsinn + 1 4+ w?] =
= —(1 +w?)(2+ Tcosn — 2wsinn + 6 cos® n — 2w sinn cosn).
Thus the condition det A = 0 is written as

2p(1 + 7cosn + 2wsinn + 7 cos® n + wsinn cosn)+
+7(2 4 Tcosn — 2wsinn + 6cos’n — 2wsinncosn) = 0. (9)

Under condition tr A = 0, matrix A can be rewritten as

—r —2r(2 4 cosn —wsinn) 2rp(sinn + w cosn)
—p(2 + cosn + wsinn) —3p rp(sinn —wcosn)
—w +sinn — wcosn w + 2(sinn + w cosn) r+3p

Its main second-order minors are

—r —2r(24cosp—wsinn) | 5 . o ,
‘ —p(2+ cos ntw sinn) —3p = 7p(2w”sin”n —5— 8 cosn — 2 cos” 1),
—r 2rp(sing +wcosn) |
—Ww +sinn — wcosn r+3p -

= —1(r+3p) — 2rp(sin®n — w? cos* n — wsinn — w? cosn),

and

—3p rp(sinn — wcosn)
w + 2(sinn + w cosn) r+3p

= —3p(r + 3p) — rp(2sin®n — 2w? cos® n + wsinn — w? cosn).
Thus, the sum 0 A of these minors vanishes (under condition tr A = 0) when
(r+3p)* + rp(9 — 2w? + (8 — 3w?) cosn — wsinng — 2(1 + w?) cos*n) = 0. (10)

We are looking for values of r, p, n,w which solve the system of Egs. (6),(8),(9),(10).
From Eq. (8) we find
—1+cosn+wsinn

3= 2cosn + 2wsiny

p:

(11)



332 Modeauposanue u anarusd ungopmayuonnvir cucmem T.22, Ne3 (2015)

By plugging this into Egs. (9) and (10), we obtain the following system of equations
2

for ¢ = wsinn and z = cosn (so w? = 5):

201424+ q) (1 + T2+ 722 +2¢+q2) + (3 — 22+ 2¢)(2 + Tz + 62° — 2¢ — 2¢qz) = 0,

and
2 ¢ ¢ @ s
(24+5q) +(—1+z+q)(3—22+2q)(9—21 — 22+(8—31 — Z2)z—q—2(1+ - 22)2 )=0.
This recasts as
2¢°2 — q(322% + 282 —4) — 22% —42* — 52 —4 =0, (12)

and

(1 —2%) (2% + 10yz + 25¢%) + (2¢* + ¢ — 22> + 52 — 3)(9 + 82—
—112% = 82% +22* — q(1 — 2%) — (2+ 32+ 22%)¢%) = 0,

or

2(22% + 32 4+ 2)¢* + 3 (4 + 32) — ¢*(82* — 202° — 512 + 152 4+ 48)+
+q(22 — 1)(12 +132) + (22 — 1)(42* — 262° +292% + 212 — 27) = 0,

or

(22%(22% 4 32 + 2)¢* + 2(642* + 1522° + 14323 + 482 — 8)q + 10202°+
+ 33622° 4 43652 4 24822° + 23227 — 2002 + 16) x
x (2¢°2 — (3222 + 282 —4) — 22° —42® — 52 —4) =
= (3276825 +1367042"+2309762°+1899042° +609332* — 9076 2° — 586422 +12162—64) g+
4204827 41075225+ 273282 +434082° +-455532° +-303562* +103742° — 82% — 7202 4 64.
By Eq. (12), this gives us

wsing = ¢ = —(20482° + 107522° + 2732827 + 434082+
+ 455532° 4 303562 + 103742" — 82% — 720z + 64) x
x (32768z° + 1367042" 4 2309762° + 1899042+

+609332* — 90762% — 586422 + 12162 — 64) . (13)
By inserting this expression into Eq. (12) we obtain the following equation for z:
2(20482° 4107522 42732827 +434082°+455532° 430356 2* +103742° —82% — 7202 +64)* 2+

+(204827 4107522 + 2732827 +434082° +-455532° + 3035621 +-103742° — 822 — 7202 +64) x
x (327682° + 13670427 +2309762° + 1899042° 4+ 609332* — 90762> — 58642 + 12162 — 64) x
x (3227 4 282 — 4) — (2% + 42% + 52 + 4)(327682° + 13670427 4 2309762° + 1899042°+
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+609332* — 90762 — 586422 + 12162 — 64)? = 0,

or
P(z) = =512 — 15362 + 1235842 — 2946562° — 26691682" — 10140682° + 167134712%+

+3894457627 + 298966402% — 114324482° — 387599362'° — 289587202 — 8060928212+
4524288213 4 524288214 = (.

This polynomial has the following roots in the interval [—1, 1]:
z ~ —0.8468602601, —0.8453251846, —0.05672395050, 0.09599192317, 0.1369140710,

0.2980830761, 0.982719862
The root z = cosn = zp =~ 0.136914071 corresponds to

n =no ~ 1.433450854.

By Eq. (13) one finds
W= wy ~ —3.487162,

and, by Eqgs. (6),(11),
r=r1o~ 0.092903423, p = py ~ 0.09590066.

One may check that the other roots of P(z) do not produce positive values of r and p.
The corresponding values of § = 3y and v = 7 are found from Eq. (5):

By =~ 1.16531, 70 ~ 0.224354.

Note that P’(zy) ~ —6633 # 0, therefore any small perturbation of the system of
Egs. (8),(9),(10),(6) will have a solution (r, p,w,n) close to (rg, po, no). Thus, for any given
small values p, v, \, we can always find values of parameters (3,7, w) close to (5o, Y0, wo)
which would correspond to the existence of an equilibrium state close to (7o, po, 7o) such
that the linearization matrix A at this equilibrium will have tr A = u, 0A = v and

det A = ).

Consider system (4) at (5,7v,w) = (5o, 70, wo). We put the coordinate origin to the
equilibrium, i.e. we denote xy = r — ro,x9 = p — pg,x3 = n — 1. The system takes the
form

& = Az + F(z) + O(||z||?)

where F(z) contains only quadratic terms; recall that the matrix A has three zero

0

eigenvalues, so A% = 0. We take the vectors A%¢, Ae and e = [ 1 | as the coordinate
0

basis. In other words, we make a coordinate transformation z = (X, where () =

(A%e, Ae, e). One needs to check that det(Q)) # 0; then the system takes the form

X4 X
— | Xo =1 X3 +Q_1F(QX) +O(||X||3)-
X3 0
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Moreover, when we add any small perturbation to this system we can always choose
coordinates so that X; = X, and X, = X3. Thus, if a perturbation of the C?-size ¢ is
added so that the equilibrium state does not disappear, the system takes the form

d Xl X2
| X2 )= X +QTFQX) + O(IX[P + a1 X[, (14)
X3 )\Xl —VX2+MX3

As we just mentioned, the coefficients u = tr A, v = 0 A and A = det A can acquire
arbitrary small values when the parameters (3, v, w are changed appropriately. It has been
shown in Refs. [2, 4] that systems of form (14) have chaotic dynamics (the Shilnikov
saddle-focus loop) at some values of p, v, A (which can be chosen arbitrarily small),
provided the the coefficient a of X? in the equation for X5 is not zero.

Thus, to prove the existence of chaotic behavior in system (4), it remains to compute
det @ and a. By plugging the values of 7, po, 10, wo into Eq. (7), we find

—0.09290342 —1.0388902 0.009143666
A 0.1263404  —0.287702  0.01307936 | ,
4.955187 —2.460879  0.3806054

—0.07731418  0.3729058 —0.01095737
A%~ 0.01672483  —0.080668085 0.0023703315
1.1147085 —5.376519 0.1579823

Thus, the matrix Q = (A%e, Ae, e) is given by

0.3729058  —1.0388902 0
@~ | —0.080668085 —0.287702 1
—5.376519 —2.460879 0

We have det Q ~ 6.503289 # 0, so the system can indeed be brought to form (14).

It remains to find the coefficient a of X2 in the equation for X3 in Eq. (14)). It equals
to the product of the third row of the matrix Q! to f(A%e). The third row of Q! is
orthogonal to the first and second columns of @, i.e. to the vectors A%e and Ae. Any row
of the matrix A? satisfies this property (recall that A% = 0). Therefore, in order to check
that a # 0, it is enough to check that the product f(A2e) to the third row of A% is non-
zero. Since f is the quadratic part of the Taylor expansion of the right-hand side of system
(4) at the point (g, po, etag), we need to compute the coefficient of €2 in the expansion
in powers of e for p17 + pap + p3n evaluated at (r, p,n) = (10 + q1&, po + @€, M0 + q3€),
where (py, ps, p3) is the third row of A% and (qi,q2,q3)" = AZe is the second column of
A?: recall that

p1 ~ 1.1147085, p2 ~ —5.376519, p3 ~ 0.1579823,

q1 ~ 0.3729058, g2 ~ —0.080668085, g3 ~ —5.376519.
We have

1+ pop +p3n = —pir® — 3pap® — rp(4py +2p1(cosn — wsinn) + pao(2 + cosn +wsin ) )+
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+ps(sinn — wcosn)r + 2ps(sinn + wcosn)p + linear terms.

By plugging (7, p,n) = (ro + q1€, po + @26, M0 + g3¢€) in the right-hand side, we find that
the coefficient of €2 equals to

—p1G7 — 3pags — Q1q2(4p1 + 2p2 + (2p1 + pa) cosno + (p2 — 2py )wo sin )+
+(q1p0 + q270)q3((2p1 + p2) sinno + (2p1 — p2)wo cos o)+

1, .
+§T0Poq3((2p1 + p2) cos o + (p2 — 2p1)wo sinmng) —

1

—§p3q§(sin Mo — Wo COS Mo )To + P3q3q1(cos 1y + wosinng) — pgqg(sin Mo + Wo COS 1) Po+

+2p3qsqa(cos my — wosinng) ~ 5.898,

i.e. it is non-zero. This finishes the proof of the existence of chaotic dynamics in system

(4).
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