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A parabolic partial differential equation u(t,z) = Lu(t, z) is considered, where
L is a linear second-order differential operator with time-independent coeflicients,
which may depend on xz. We assume that the spatial coordinate x belongs to a
finite- or infinite-dimensional real separable Hilbert space H.

Assuming the existence of a strongly continuous resolving semigroup for this
equation, we construct a representation of this semigroup by a Feynman formula,
i.e. we write it in the form of the limit of a multiple integral over H as the
multiplicity of the integral tends to infinity. This representation gives a unique
solution to the Cauchy problem in the uniform closure of the set of smooth cylindrical
functions on H. Moreover, this solution depends continuously on the initial condition.
In the case where the coefficient of the first-derivative term in L vanishes we prove
that the strongly continuous resolving semigroup exists (this implies the existence
of the unique solution to the Cauchy problem in the class mentioned above) and
that the solution to the Cauchy problem depends continuously on the coefficients
of the equation.

The article is published in the author’s wording.

1. Introduction

Representation of a function by the limit of a multiple integral as multiplicity tends
to infinity is called a Feynman formula, after R.P. Feynman, who was the first to use
such representations on the physical level of rigor for the solution of the Cauchy problem
for PDEs [24, 25]. The term "Feynman formula" in this sense was introduced in 2002 by
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O.G. Smolyanov [31]. One can find out more about the research into Feynman formulas
up to 2009 in [33]. The most recent (but not complete) overview is [37] (2014, in Russian).
It is important to note that Feynman formulas are closely related to Feynman-Kac
formulas [30], however the latter will not be studied in the present article. Usage of
Feynman and Feynman-Kac formulas includes exact or numerical evaluation of integrals
over Gaussian measures on spaces of high or infinite dimension; some useful approaches
to this topic are developed in [6, §].

Differential equations for functions of an infinite-dimensional argument arise in (quantum)
field theory and string theory, theory of stochastic processes and financial mathematics.
Evolutionary equations (i.e. PDEs in the form wuj(¢,z) = ...) in infinite-dimensional
spaces have been studied since 1960s by O.G. Smolyanov, E.T. Shavgulidze, E. Nelson,
A .Yu. Khrennikov, S. Albeverio and others. We will mention just some of the publications,
which are most recent and relevant for our study.

In [3] the Schrédinger equation in Hilbert space is studied. The equation includes the
terms of second, first and zero order, the coefficient of the second order term is constant.
The solution to the Cauchy problem is given by a Feynman-Kac-Ito formula.

In [22] a solution to a heat equation in Hilbert space without the terms of the first
and zero order is discussed, the coefficient of the second-derivative term is constant. The
solution is given in the form of a convolution with the Gaussian measure (analogous to
the finite dimensional equation with constant coefficients), the existence of the resolving
semigroup is proved. In [14] the solution to the same equation is given by a Feynman-Kac
formula.

In [15] the parabolic equation in finite-dimensional space is studied for the case of
variable coefficients. Under the assumption that a strongly continuous resolving semigroup
exists for the Cauchy problem, Feynman and Feynman-Kac formulas were proven in [15]
for the solution.

In [28], for a class of equations in an infinite-dimensional space, with a variable
coefficient at the highest derivative (but without first- and zero-order derivatives’ terms),
a Feynman formula was obtained and the existence of resolving semigroup was proven.

In spaces over the field of p-adic numbers, Feynman and Feynman-Kac formulas for
the solutions of the Cauchy problem for evolutionary equations were given in |11, 12].

In [19, 20], Schrodinger and heat equations in R™ were studied in the case of time-
dependent coefficients, and a Chernoff-type theorem was proven for this case.

In [4, 16] Feynman formulas for perturbed semigroups are obtained.

The present article extends my first results in this area [28| to the case of non-zero
coefficients at the first- and zero-order derivatives.

I do not provide the technical proofs for the two key theorems to keep the paper
short, but give all the background that is relevant for the proofs. The article may be
used as a very short introduction to analysis in Hilbert space and to the applications of
Co-semigroup theory in solving evolutionary PDEs.

2. Notation and definitions

The symbol H stands for the real separable Hilbert space with the scalar product (-, -).
The self-adjoint, positive, non-degenerate (hence injective), linear operator A: H — H
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is assumed to be defined everywhere on H. The operator A is assumed to be of trace
class, which means that for every orthonormal basis (ex) in H the sum Y ;- (Aeg, e) =
trA is finite; this sum is called the trace of A (it is independent of the choice of the
basis (ey)).

The symbol X below stands for any complex Banach space. The symbol Ly(X, X)
stands for space of all linear bounded operators in X', endowed with the classical operator
norm.

Symbol C(M, N) will mean the set of all continuous functions from M to N, where
M and N are topological spaces.

A function f: H — R is called cylindrical [5, 10], if there exist vectors ey, ..., e,
from H and function f": R®™ — R such that for every « € H the equality f(z) =
f"({z,e1),...,{x, e,)) holds. In other words, the function f: H — R is cylindrical if
there exists an n—dimensional subspace H,, C H and orthogonal projector P: H — H,
such that f(z) = f(Pz) for every x € H. The cylindrical function f can be imagined
as a function, which is first defined on H,, and then continued to the entire space H in
such a way that f(x) = f(xo) if 2o € H, and x € (x¢ + kerP).

Symbol D = Cp2(H,R) stands for the space of all continuous bounded cylindrical
functions H — R such that they have Fréchet derivatives [17] of all positive integer
orders at every point of H, and their Fréchet derivatives of any positive integer order are
bounded and continuous.

If f: H— R is twice Fréchet differentiable, then f'(z) will stand for the first Fréchet
derivative of f at the point z, and f”(z) will denote the second derivative. Riesz-Fréchet
representation theorem allows us to assume f'(z) € H and f"(z) € Ly(H, H) for every
x € H.

Symbol Cy(H,R) stands for the Banach space of all bounded continuous functions
H — R, endowed with a uniform norm || f|| = sup,cp |f(x)]. It is regarded as a closed
subspace of a complex Banach space C,(H,C).

Let X = Cpo(H,R) be the closure of the space D in Cy(H,R). It is clear, that X
with the norm || f|| = sup,cy |f(z)| is a Banach space, as it is a closed linear subspace of
the Banach space Cy(H,R). Function f belongs to X if and only if there is a sequence
of functions (f;) C D such that lim;_, f; = f, i.e. im; oo sup,cp |f(z) — fi(x)] = 0.

Symbol C,(H, H) stands for a Banach space of all bounded continuous functions
B: H — H, endowed with the uniform norm ||B|| = sup,cy || B(x)].

Denote Dy = {B: H — H|3N € N,by € H, B, € D : B(z) = Bi(z)by + -+ +
BN(SL')bN}

Let Xy be the closure of Dy in Cy(H, H).

Ifxr € H,and R: H — H is linear, trace class, positive, non-degenerate operator, then
symbol u% stands for the Gaussian probabilistic measure |1, 5, 34] on H with expectation
x and correlation operator R, i.e. the unique sigma-additive measure on Borel sigma-
algebra in H such that the equality [,, e"*¥ 1% (dy) = exp (i (z,z) — 3 (Rz, z)) holds for
every z € H. To make it shorter, we will write ug instead of u%. See section 3.1. for
useful formulas about integration over the Gaussian measure.

It B H — H is a vector field, and g: H — R and C': H — R are real-valued

functions, then symbol L defines a differential operator on the space of functions
p: H—>R
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(Le)() = gla)trAQ"(z) + (¢ (x), AB(x)) + C)p(a), « € H.

The pair (£, M) defines a linear operator £ with the domain M. It will be shown in
theorem 4.2 that L(D) C X when A, B, g and C have certain properties. So (L, D) is
a densely defined (on D) operator L: X D D — X. Here the earlier defined spaces D
and X are endowed with the uniform norm, induced from Cy(H,R). Let (L, D;) be the
closure of (L, D) in X. This means that

Dy ={f € X[3() C D: lim f; = £.3 lim Lf}},

and, if f € Dy, then, by definition, Lf = lim;_,o Lf;.

If for every fixed first argument ¢t > 0 of the function wu: [0,+00) x H — R we
have [z — u(t,x)] € Dy, then the expression Lu(t, ) means the result of applying the
operator L to the function z +— u(t, x) with the fixed ¢ > 0.

Expression (S;):>o defines the one-parameter family of linear operators in the space
of functions p: H — R

)t {AB@.B@)

(Sup) () = €' /o / o(w+y)elTTBEV) 1y, 4 (dy) for t > 0, and Sep = .
H

Remark 2.1. Further, in theorem 4.1, we will prove that for every ¢ > 0 and for A,
B, g and C having certain properties the following holds i) S;(X) C X, ii) operator
S is bounded, and iii) %Stgohzo = Ly for all ¢ € D. This will allow us to use the

Chernoff approximation (theorems 3.1, 3.2) and prove the main result of the present
article, theorem 4.4.

3. Helpful facts and techniques

3.1. Integration in Hilbert space

Lemma 3.1. ([5], Chapter II, §2, 3°) If a function ¢: H — R is cylindrical and
measurable, i.e. p(z) = ¢"({x,e1), ..., (x,e,)) for some n € N, some measurable function
©": R" — R, and some finite orthonormal family of vectors ey, . .., e, from space H, then

/Hsf)(y)m(dy) = (\/12—%)71 \/deltiMQ/n " (2) exp (—%<M§127Z>Rn> dz, (1)

where H,, = span(ey,...,e,),and P: H > h+—— (h,e1)e;+---+(h,e,)e, € H,, Q = PA,
Q: H, — H,, and M is the matrix of the operator () in basis ey, ..., e, of the space
H,. If e;,...,e, is a full set of eigenvectors of the operator @), and ¢,...,q, is the
corresponding set of eigenvalues, then

/Hw(y)m(dy): <\/12_7T)n \/Hl":ﬁ/n O™ (21, ..., Zn) €XD (—i%) dz1...dz,.
@
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Lemma 3.2. (Ezplicit form of some integrals over Gaussian measure)

Let H be a real separable Hilbert space of finite or infinite dimension, A: H — H be
a linear, trace class, symmetric, positive, non-degenerate operator, 7 be the centered
Gaussian measure on H with the correlation operator g, and G: H — H be a bounded
linear operator. Let w and z be non-zero vectors from H.

Then the following equalities hold:

| (Gopnstiy) = u(iG), ()
H
/ e 3 (dy) = 342, (4)
H
[ {w0)elez(dy) = (A et 5, 5)
H
/ (Gy.y)e® uz(dy) = (0AG + (GAz, Az))er 159, (6)
H

Proof. Formulas (3) and (4) can be found in [5], chapter II, §2, 1°. Formula (5) can
be derived from the fact that the function under the integral is cylindrical, so lemma
3.1 can be employed. For a proof of (6), one can make the change of variable in the
integral, h = y — Aw, then ([5], chapter II, §4, 2°, theorem 4.2) we have pz(dy) =

e_%<gw’w>_<h’w>ug(dh), and the integral reduces to (3).

Lemma 3.3. (On a linear change of variable in the integral over Gaussian measure) Let
H be a real separable Hilbert space. Suppose a linear operator A: H — H is positive,
non-degenerate, trace class, and self-adjoint. We will identify with the symbol @4 the
centered Gaussian measure on H with the correlational operator A. Let ¢ > 0; the symbol
tA denotes operator, that takes + € H to tAx € H. Let f: H — R be a continuous
integrable function.

Then

/H F(@)a(dar) = /H J(Viz)padz). (7)

Proof uses the uniqueness of the Gaussian measure with a given Fourier transform,
and the standard theorem of changing variable in the Lebesgue integral.

Lemma 3.4. (On integrability of a polynomial multiplied by an exponent) Let H, A, pa
be as above, P: R — R be a polynomial, and g € R.

Then function H > x — P(||z|)e’l#l € R is integrable over 4.

Proof is easy to construct by relying on Fernique’s theorem [23|, which (applied to
this case) says that there exists such o > 0 that [}, e?lvI? 114 (dy) < +oc.

3.2. Derivatives of cylindrical functions

Proposition 3.1. Let f be a cylindrical real-valued function on H, i.e. there is a number
n € N and a function f*: R”™ — R such that for every € H the equality f(z) =
f"({z,e1),...,{x,e,)) holds. A set of vectors ey, ..., e, can be considered orthonormal
without loss of generality. Lets complete this set to an orthonormal basis (e )ren in H.
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Then:
1. Function f is differentiable in the direction h if and only if the function f" is
differentiable in the direction ((h,e1),..., (h,e,)) € R" and

f(x)h = <h, (81f"((x,61>,...,(x,en>), ey Ouf™(yen), . {z,en)), 0, 0, 0>>

where the symbol 9; f" defines the partial derivative with respect to the j-th argument
of the function f, and (aq,...,®,,0,0,0,...) = age; + - - - + a,e,. If the function f has
a Fréchet derivative at the point z, then f’(x) is a vector whose first n coordinates yield
the gradient of the function f™, and the other coordinates are zero:

F(z) = <81f”((:7c,61),...,(:v,en>), ey Oz er), . (T en)), 0, 0, o) (8)

2. Function f has a Fréchet derivative in H if and only if the function f™ has a Fréchet
derivative in R"™.
3. Let A: H — H be a trace-class operator (i.e. let trA < 0o). Then

trAf"(z ZZ Aeg, ex) <6k8 "z, e), ..., {(x, en>)> =

s=1 k=1

_ tr(An(f”)”((x, e, ... (z, en>)>, 9)

where A,, is the matrix of the operator PA in the basis eq,...,e,, where P is the
projector to the linear span of the vectors eq, ..., e,.
Proof is a straight-forward application the derivative’s definition.

3.3. Differential operator on a finite-dimensional space

Lemma 3.5. ([7], theorems 4.3.1, 4.3.2. and Corollary 4.3.4) Suppose for every i =
I,...,.nand j = 1,...,n functlons a’: R" - R, b¥: R* - R, c: R®* — R from
Cy°(R™, R) are given, Where Cpe(R™ R) is the class of all bounded real-valued functions
on R™, which have bounded partial derivatives of all orders. Suppose also that ¢(z) <0
for all z € R™.

For u € Cp°(R", R) we define a differential operator 7" by the formula

ZZ “( ﬁx 890 +sz 8@ z) + e(z)ulz).

i=1 j=1

Suppose that there exists a constant ¢ > 0 such that for every £ = (&,...,&,) € R
and all € R the ellipticity condition is fulfilled: 31" | Y7 | a¥(2)&&; > »|[¢]|*. Take
an arbitrary constant A > 0 and function f € Cp°(R", R).

Then:

1. There is a unique function u € C;°(R", R), which is a solution of the equation

(Tu)(x) - Mulx) = f(2). (10)

2. For every function v € Cy°(R™, R) the following estimate is true
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sup |(Tv)(z) — Av(z)| > A sup |v(z)|. (11)
rz€R” rER?
Note that equation (10) can have unbounded solutions; this does not contradict the
lemma.

3.4. Strongly continuous semigroups of operators and evolutionary
equations

Let X be a complex Banach space.

Definition 3.1. By a strongly continuous one-parameter semigroup (7%)s>o of linear
bounded operators in X we (following [26, 18|) mean the mapping

T: [0,+00) = Ly(X, X)

of the non-negative half-line into the space of all bounded linear operators on X', which
satisfies the following conditions:

1.V e X : Top = .

2.Vt > 0,Vs > 0: Ty s =T, 0 Ts.

3. Vo € X function s — Ty is continuous as a mapping [0, +00) — X.

Definition 3.2. By the generator of a strongly continuous one-parameter semigroup
(Ts)s>0 of linear bounded operators on X we mean a linear operator £: X D Dom(L) —
X given by the formula

Tap—
s——+0 S

on its domain -
Dom(L) = {(p € X : 3 lim M},
s—+0 S
where the limit is understood in the strong sense, i.e. it is defined in terms of the
norm in the space X.

The use of the symbol £ for the generator is related to the fact that the generator is
always a closed operator:

Proposition 3.2. (theorem 1.4 in [26], p. 51) The generator of a strongly continuous
semigroup is a closed linear operator with a dense domain. The generator defines its
semigroup uniquely.

Proposition 3.3. (lemma 1.1 and definition 1.2. in [26], p. 48-49) The set Dom(L)
coincides with the set of those ¢ € X, for which the mapping s — Ty is differentiable
with respect to s at every point s € [0, +00).

Definition 3.3. 1. The problem of finding a function U: [0, +0c0) — X such that

{ 4U(t) = LU(t); t=>0,

U(O) = U, (12)
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is called the abstract Cauchy problem, associated with the closed linear operator
L: X D Dom(L) — X and a vector Uy € X.

2. A function U: [0,400) — & is called a classic solution to abstract Cauchy problem
(12) if, for every t > 0, the function U has a continuous derivative U’: [0, +00) — X,
U(t) € Dom(L), and (12) holds.

3. A continuous function U: [0, +00) — & is called a mild solution to abstract Cauchy

problem (12) if for every ¢ > 0 we have [} U(s)ds € Dom(L) and U(t) = L [ U(s)ds+Up.

Proposition 3.4. (proposition 6.2 in [26], p. 145) If the operator (£, Dom(L)) is a
generator of a strongly continuous semigroup (75)s>o, then:

1. For every Uy € Dom(L) there is a unique classic solution to abstract Cauchy
problem (12), which is given by the formula U(t) = T'(¢)Uj.

2. For every Uy € X there is a unique mild solution to abstract Cauchy problem (12),
which is given by the formula U(t) = T'(t)U,.

Definition 3.4. Linear operator £: X D Dom(L) — X in Banach space & is called
dissipative if for every A > 0 and every z € Dom(L) the estimate ||Lx — Az| > A||z]|
holds.

Proposition 3.5. (On the closability of a densely defined dissipative operator)
(proposition 3.14 in [26]) A linear dissipative operator £ : X D Dom(L) — X in
the Banach space X with the domain Dom(L) dense in X is closable. The closure
L:X D Dom(L) — X is also a dissipative operator.

The main tool for the construction of Feynman formulas for the solutions of the
Cauchy problem is Chernoft’s theorem. For convenience we decompose its conditions
into several blocks and give them separate names, as follows.

Theorem 3.1. (P. R. CHERNOFF, 1968; see [35] and theorem 10.7.21 in [2]) Let X be
Banach space, and L,(X, X') be the space of all linear bounded operators in X endowed
with the operator norm. Let £: X D Dom(L) — X be a linear operator.

Suppose there is a function F' such that: B

(E). There exists a strongly continuous semigroup (e'*);>q, and its generator is
(L, Dom(L)).

(CT1). F is defined on [0, +00), takes values in L, (X, X') and t — F(t) f is continuous
for every vector f € X.

(CT2). F(0)=1.

(CT3). There exists a dense subspace D C X such that for every f € D there exists
a limit F'(0)f = limy_o(F(t)f — f)/t = Lf.

(CT4). The operator (£, D) has a closure (£, Dom(L)).

(N). There exists w € R such that [|F(t)|| < e* for all ¢t > 0.

Then for every f € X we have (F(t/n))"f — e“f as n — oo, and the limit is
uniform with respect to t from every segment [0, o] for every fixed ¢, > 0.

Definition 3.5. In the present article two mappings F; and F; are called Chernoff-
equivalent if there exists a Cp-semigroup (e“);>o such that (Fi(t/n))"f — e'“f,
(Fy(t/n))"f — e f for every f € X as n — oo, and the limit is uniform with respect to
t from every segment [0, to] for every fixed ¢y > 0.
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Remark 3.1. There are several slightly different definitions of the Chernoff equivalence,
see e.g. [36, 29, 37|. We will just use this one not going into details. The only thing we need
from this definition is that if F' satisfies all the conditions of Chernoft’s theorem, then by
Chernoft’s theorem the mapping F is Chernoff-equivalent to the mapping Fy(t) = e'*,
i.e. the limit of (F(¢/n))™ as n tends to infinity yields the Cy-semigroup (e'£);>o.

Definition 3.6. Let us following [32] call a mapping F' Chernoff-tangent to the operator
L if it satisfies the conditions (CT1)-(CT4) of Chernoff’s theorem.

Remark 3.2. With these definitions the Chernoff-equivalence of F' to (e'£);>q follows
from: existence (E) of the Cy-semigroup + Chernoff-tangency (CT) + growth of the
norm bound (N).

Theorem 3.2. (Chernoff-type theorem, |26], corollary 5.3 from theorem 5.2) Let X’ be a
Banach space, and L,(X, X') be the space of all linear bounded operators on X endowed
with the operator norm. Suppose there is a function

Vi [0, 400) = Ly(X, X)),

meeting the condition Vi = I, where [ is the identity operator. Suppose there are numbers
M > 1 and w € R such that ||(V;)*]| < Mekt for every t > 0 and every k € N. Suppose
the limit
lim Vie—v =: Lo

t10
exists for every ¢ € D C X, where D is a dense subspace of X. Suppose there is a
number Ay > w such that (Aol — £)(D) is a dense subspace of X.

Then the closure £ of the operator £ is a generator of a strongly continuous semigroup

of operators (73);>0 given by the formula
Tip = lim (Vi)ngo
n—oo n

where the limit exists for every ¢ € X and is uniform with respect to t € [0, ¢y] for every
to > 0. Moreover (1});>o satisfies the estimate ||T;|| < Me** for every ¢ > 0.

Theorem 3.3. (Approzimation of generator implies approximation of semigroup)
(theorem 4.9 in [26])
Let (€£1%);50 be a sequence of strongly continuous semigroups of operators in a Banach

space X' with the generators (£;, Dom(L;)), which satisfies, for some fixed constants
M > 1,w € R, the condition
there is a closed linear operator (£, Dom(L)) on X with a dense domain Dom(L), such
that £;2 — Lx for every x € Dom(L). Suppose the image of the operator (Aol — L) is

dense in X’ for some Ay > 0.
Then the semigroups (e£1);>0, 7 € N converge strongly (and uniformly in ¢ € [0, #o]

eLit|l < Me®t for all t > 0 and every j € N. Suppose

for every fixed ¢y > 0) to a strongly continuous semigroup (e“*),>o with the generator L.

In other words, for every z € X there exists lim;_,q, eLity = Lty uniformly in ¢ € [0, to]

for every fixed to > 0.

Remark 3.3. Below, the role of X will be played by space X, a closed real subspace of
the complex Banach space C,(H, C). Because all the operators used in this paper below
are real, and (as it will be proven further in theorems 4.1 and 4.2) X is invariant with
respect to them, the above theorems about X are applicable to X.
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3.5. Properties of spaces D, X, D,

Remark 3.4. It directly follows from the definitions of these spaces that
i) Dc D, C X C Cy(H,R) C Cy(H,C);
ii) D and D; are dense in X
iii) X is a Banach space.

Proposition 3.6. If f € D, then f is uniformly continuous.

Proof. It follows from the definition of the space D that the function D > f: H —+ R
is bounded and its Fréchet derivatives of all orders exist and are bounded. In particular,
there exists sup,cy ||f'(2)|| = M < oo. For every x € H and every y € H one can see
the estimate

[f() = F)l < lle =yl sup [If'(2)]] < M|z —yl| (13)

z€[z,y]
which implies the uniform continuity of f.

O

Proposition 3.7. If ¢ € X, then ¢ is uniformly continuous.
Proof. Take any given ¢ > 0. Let us find § > 0 such that ||z — y| < § implies
o(z) — p(y)] <e.
As ¢ € X, there exists a sequence of functions (f;) C D converging to ¢ uniformly.
Hence, there exists a number jy such that (introducing the notation f; = f) we have
€
le = fioll = llp = £l = sup () = f2)] < 3. (14)
reH
Moreover, as f € D, proposition 3.6 implies estimate (13) with some M > 0.
Let us set 0 = 357 and note that ||z — y|| < d. Then
(13),(14) ¢ 5 €
l(2) =)l < le(2) = fl@)l +1f(2) = fWI+ 1) e < g+ Mgt o =e
O
Proposition 3.8. Suppose that a sequence of functions ( fj);il C X converges uniformly
to a function fo € X. Then the family (f;)52, is equicontinuous.
Proof. Suppose ¢ > 0 is given. Let us find 6 > 0 such that ||z — y|| < § implies that
o(z) — 0y <e.
By proposition 3.7, function f; is uniformly continuous for each j =0, 1,2, ... Thus,
for each j =0,1,2,... there exists ; > 0 such that ||z — y|| < d; implies

€
|fi@) = i) < 5. (15)
As f; — fo uniformly, there exists jy such that for all j > jo
€
sup | fo(x) — fi(z)| < <. (16)
zeH 3

Let us set 0 = min(dy, d1,. .., d;,). Then for j > j, we have that ||z — y|| < J implies

(15),(16) ¢ € €

[fi@) = £l < 1fi(@) = fo(@)[ + 1fol@) = fo)l + [foly) = iyl < S+g+3=e

Now, if 0 < j < jo, then ||z — y|| < ¢ implies estimate (15), which is even stronger.
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Remark 3.5. A number a € R is called a limit at infinity of a funtion f: H — R if

lim sup |f(x) —al=0.
R_””X’HIIIZR’ (z) ~a

It is shown in [28] that if H is infinite-dimensional, then a non-constant function that
belongs to X cannot have a limit at infinity. For example, the function z — exp(—||z|?)
belongs to Cy(H,R) but not to X.

Remark 3.6. Suppose that ap: R — R is a family of infinitely-smooth functions,

uniformly bounded with their first and second derivatives:

dP Q. (t)
dtp

sup supsup
pe{0,1,2} keN teR

‘ < M = const.

For example, ay(t) = sin(dg(t — t)), where di and ¢, are constants and 0 < dy < 1.
Suppose numerical series ) .-, by converges absolutely. Let ()72, be an orthonormal
basis in H.

Then function

flx) = brar((z, ex))
k=1

belongs to the class D;.
This statement can be easily extended to the case aj: R™ — R.

Remark 3.7. Space D is not separable (it does not have a countable dense subset).
In the case of one-dimensional H it can be shown similar to the standard proof of the
nonseparability of Cy(R,R). If dimH > 1, then R! can be embedded into H as a linear
span of a non-zero vector e € H. Using this, one can embed the set of cylindrical functions
contributing to the non-separability of D in the case of one-dimensional H, into the space
D in the general case.

Remark 3.8. By Remark 3.7 and the inclusion D C D; C X, one can see that D; and
X are not separable too.

4. Main results

4.1. Family S, provides a semigroup with generator L

Theorem 4.1. (On the properties of family (Si)i>0 and its connection to the operator
L)

Suppose that g € X, and for every x € H we have g(x) > g, = const > 0. Suppose
that B € Xy and C' € X. Suppose that ¢ > 0, and fig4(2)a is the centered Gaussian
measure on H with the correlation operator 2tg(z)A.

For t > 0 and ¢ € Cy(H,R) let us define

_{AB(),B() -
(Sip) () = D7 / 90(95+y)6<9<1w>3( )’y>u2tg<x>A(dy) for t > 0, and Spp := ¢.
H
(17)
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Then:
1. If t > 0 and ¢ € Cy(H,R), then Syp € Cy(H,R). For every t > 0 the operator

o ) (QHAHHBH2+HC”>t
Sy Cp(H,R) — Cy(H,R) is linear and bounded; its norm does not exceed e\~ % .
2.t ge D, C € D, B € Dp, then the space D for every ¢ > 0 is invariant with
respect to the operator S;.
3.If g e X, C € X, B € Xy, then the space X for every t > 0 is invariant with
respect to the operator .S;.
4. For every function ¢ € D, for g € X, C' € X, B € Xy there exists (uniformly with
respect to z € H) a limit

- (5ip)(@) — o)
t—0 t

= g(@)trA¢"(z) + (¢'(x), AB(z)) + C(z)e(x) = (Le)(x).

5. if pe X, ge X, C € X, Be Xy, then the function [0, +00) 2t — Sy € X is
continuous, i.e. if ty > 0,¢, > 0 and ¢, — to, then sup,cp |(St,.¢)(x) — (S,e)(x)| — 0.

Analogue of theorem 4.1 for finite-dimensional H can be found in [15]. The proof for
the case of infinite-dimensional H follows the same general line but is more involved. It
uses lemmas from sections 3.1., 3.5. and will be published in a separate paper.

Theorem 4.2. (On the properties of the operator L) Suppose that for each x € H the
inequalities g(x) > g, = const > 0 and C(z) < 0 hold. As C' € X, there exists a sequence
(C;) C D converging to C' uniformly; let us additionally require that this sequence can
be selected in such a way that Cj(x) < 0 for all j € N and all x € H. The operator
L: D — X is defined by the equation

(Lep)(z) = g(@)trAp"(z) + (¢'(z), AB(z)) + C(z)p(z).

Symbol I stands for the identity operator.

Then:

1.Itge D, Ce D, BeDyand pe D, then Lpe D.lfge X, C e X, Be Xy
and ¢ € D, then Ly € X.

2.Ifge D, C € D, B € Dy, then for each A > 0 the operator \I — L is surjective
on D, therefore (A — L)(D) = D is a dense subspace in X.

3.Ifge D,C € D, B € Dy, then the operator (L, D) is dissipative and closable.

4. Ifge X, C e X, B =0, then for each A > 0 the space (\[ — L)(D) is dense in X.

5.1f g € X, C € X, B € Xy, then the operator (L, D) is dissipative and has the
closure (L, D;). The operator (L, D;) is also dissipative.

The proof of theorem 4.2 is based on the results of sections 3.2., 3.3. and will be
published in a separate paper. Item 1 follows from the definition of the operator L.
Items 2 and 3 are derived from lemma 3.5, proposition 3.1 and proposition 3.5. Item 4
is derived from item 2. Item 5 is obtained by proceeding to the limit in the dissipativity
estimate proven in item 3 and then applying proposition 3.5.

Theorem 4.3. (On the connection between the family (S;);>o and the semigroup with
the generator L)
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Suppose that g € X, B € Xy, C € X, and for every x € H we have g(z) > gy =
const > 0 and C'(z) < 0. As C € X, there exists a sequence (C;) C D, converging to
C uniformly; let us additionally claim that this sequence can be selected in such a way
that C;(z) <0 for all j € N and all € H. Then the following holds:

1. If the closure (L, D;) of the operator (L, D) is a generator of a strongly continuous

semigroup (etz of linear continuous operators on the space X, then
>0
Z n
e = lim <S£) @, (18)
n—oo n

where limit exists for every ¢ € X and is uniform with respect to ¢t € [0, %] for every
to > 0. .
2. If B = 0, then the operator (L,D;) is a generator of a strongly continuous

semigroup (eLt> of linear continuous operators on the space X. Moreover for every
t>0

t > 0 we have Heft

3. Suppose B = 0, and for all j € N the functions g; € X, B; € Xy and C; € X are
given. Suppose B; = 0 for all j € N. Suppose there exists a number ¢y, > 0 such that for
all j € Nand all z € H we have g;(z) > €9 and C;(z) < 0. Let us denote by the symbol
L; the operator L, which corresponds to the functions g;, B; and C}, and the operator
L corresponding to the functions g, B and C will be denoted by Ly. Suppose also that
gj(x) = g(z) and C;(z) — C(x), uniformly with respect to x € H.

<1, i.e. the semigroup <eft) is contractive.
>0

Then the (existing by item 2) strongly continuous semigroups (efjf) converge
>0

strongly (and uniformly with respect to t € [0, ] for every fixed ty > 0) to the (existing
Lot with the generator Ly. In other
>0

words for every ty > 0 and every ¢ € X there exists a limit

lim (efj%) (x) = (efot<p> (z), (19)

Jj—00

by item 2) strongly continuous semigroup (e

uniformly with respect to « € H and t € [0, ty].

Proof.

1. Recall theorem 3.1 and set F(t) = S;, w = QHA!I#”Z +|IC|, ¥ = X, D = D,
F'(0) = L, G = L. One can see that according to items 1, 4 and 5 of theorem 4.1 and
item 5 of theorem 4.2 all the conditions of theorem 3.1 are fulfilled.

2. Note that C(x) < 0, so sup,cp €™ < 1 and for B = 0 one obtains the estimate
IIS¢]] < 1. Conditions of theorem 3.2 are fulfilled if one sets X = X, D = D, L = L,
Vi=25, M =1, w = 0. Indeed, according to item 1 of theorem 4.1, for all £ > 0 the
estimate ||S,|| < e =1 holds true, therefore || (S,)" || <1-----1 = 1. Other conditions
of theorem 3.2 follow from item 4 of theorem 4.1 and items 4 and 5 of theorem 4.2.

3. Recall theorem 3.3, and set X = X, D = D, L = Ly, £, = L;. One can see
that item 2 of this theorem and items 4 and 5 of theorem 4.2 imply all the conditions
of theorem 3.3, except for the following one: if ¢ € D, then jli_)rglo Ljp = Lop. A simple

check shows that this condition is also fulfilled.

a
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4.2. Feynman formula solves the Cauchy problem for the parabolic
equation

We want to find a function u: [0,4+00) x H — R satisfying the following conditions
(we call them Cauchy problem for the parabolic differential equation):

{ u(t, ) = Lu(z,t); t>0,x€H,

u(0, ) = up(); v € H. (20)

To this Cauchy problem, we relate the so-called abstract Cauchy problem (see Definition
3.3), which we define as the following system of conditions upon the function U: [0, +o00) —

p —
LU(t)=LU(t); t>0
dt ) Y

Remark 4.1. Problem (20) can be considered as problem (21) in the following sense.
Function u: (t,x) — u(t,z) of two variables (¢,x) can be considered as a function
w: t — [z —— u(t, z)] of one variable ¢, with values in the space of functions of variable
x. Then

u(t,z) = (U(t))(xz), t>0,x€H.

Using this correspondence, we start from Definition 3.3 and define the solution of problem
(20).

Definition 4.1. We call a function u: [0,400) x H — R a strong solution of problem
(20) if it satisfies the following conditions:

( u(t,-) € Dy; t>0,
function ¢t — wu(t, -) is continuous; t>0,
Uniformly for x € H Elli_I}% w =uy(t,x); t>0,
u(t,-) € X; t>0, (22)
Function ¢t — w;(t, -) is continuous; t>0,
uy(t, x) = Lu(z,t); t>0,z€H,
u(0, ) = up(x); x e H.

\

Definition 4.2. We call a function u: [0,4+00) x H — R a mild solution of problem
(20) if it satisfies the following conditions:

u(t, ) € X; t>0,

Function ¢ — u(t,-) is continuous; ¢ > 0,

5 u(s,)ds € Dy; t>0, (23)
u(t,z) = Lfot u(s, x)ds + ug(z); t>0,z € H,

ug € X.

Definition 4.3. Let us use the symbol C([0,400),X) for the class of all functions
u: [0, +00) x H — R such that for every ¢ > 0 the function x — u(t, z) belongs to the
class X, and the mapping t — u(t, ) € X is continuous for every ¢ > 0.

Finally, let us state and prove the main result of the article. We use definitions and
notation from Section 2.
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Theorem 4.4. (On the solution of the Cauchy problem for a parabolic differential
equation in Hilbert space)

Suppose g € X,C € X, B € Xp. Suppose there is a number g > 0 such that for all
x € H we have g(x) > go and C(x) < 0. As C € X, there exists a sequence (C;) C D,
converging to C' uniformly; let us additionally require that this sequence can be selected
in such a way way that C;(z) <0 for all j € Nand all z € H.

Then the following holds:

1. If there exists a strongly continuous semigroup with the generator L, then for every
up € D; there exists a solution u of problem (22), unique in the class C([0, +o0), X).
The solution depends continuously on wug, and is given by the formula

u(t,z) = lim <<Si> u0> (x), where the limit is uniform with respect to ¢t € [0, to]
n—o00 n
for every to > 0.

2. If there exists a strongly continuous semigroup with the generator L, then for every
up € X there exists a solution u of problem (23), unique in the class C(]0, +00), X). It

depends continuously on u, and is given by the formula u(t, x) = lim <<Si> ug ) (),
n—00 n

where the limit is uniform with respect to ¢t € [0, to] for every t, > 0.
3. If B = 0, then there exists a strongly continuous semigroup with the generator

L. The formula u(t,r) = lim <<Sg)n uo) () becomes simpler than in the case B # 0.

n—oo

Namely, for B = 0 we have

nh_{go// //e” Clx)+>5Z 1C(yk)) (yl)umg(y (dyl)u% olus )A(dyQ)

(24)

'-ugg( Al @Yn—1) i ) 4 (dYn).-

In this case the solution u for all £ > 0 satisfies the estimate sup,c |u(t,z)| <
S,y o).

4. Let B = 0, and let the functions g; € X, B; € Xy and C; € X be given for all
j € N. Let B; =0 for all j € N. Suppose there exists g > 0 such that g;(x) > &, and
Cij(x) < 0forall j € Nand all z € H. Let us use the symbol L; for the operator L
that corresponds to the functions g;, B; and Cj}, and the symbol Ly for the operator
L that corresponds to the functions g, B and C. Suppose also that g;(z) — g(x) and
Cj(x) — C(z), uniformly with respect to x € H. We denote as u; the solution of
problems (22) and (23) for the operator L. For solution of problems (22) and (23) with
the operator L, we use the symbol wu.

Then w,;(t,x) converges to u(t,z) as j — oo, uniformly with respect x € H and
uniformly with respect to ¢ € [0, to] for every fixed ¢, > 0.

Remark 4.2. Note that if B = 0, then solution depends continuously on the data of
the Cauchy problem: the coefficients of the equation (item 4) and the initial condition
(items 1 and 2).

Remark 4.3. Analogous theorems for C- or R"-valued functions u can be formulated
mutatis mutandis. The result will hold true due to the theorem above and the linearity
of L and S;. The only additional condition will be that the coefficients of the equation
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must be real-valued. The same remark is applicable to all the key theorems of this article.

Proof of the theorem.

1. Suppose that there exists a strongly continuous semigroup with the generator L.
Then by item 1 of proposition 3.4 we obtain the existence of a strong solution (definition
3.3) to Cauchy problem (21), and the solution is unique in the class C'([0, +00), X). By
item 1 of theorem 4.3 the semigroup is given in the form described. Using the relation
between problems (20) and (21) explained in remark 4.1, we obtain the solution for
problem (22). The solution is unique in the class C([0, +00), X), as follows from remark
4.1.

2. The proof is similar to that in item 1. The only difference is that in proposition
3.4 we use item 2 instead of item 1.

3. The existence of the sought semigroup follows from item 2 of theorem 4.3. The
estimate for the supremum of the absolute value of the solution follows from the fact
that the semigroup is contractive.

Let us explain how the equality u(t,z) = lim, <<Si> u0> () implies formula
(24). For a continuous bounded function ¢: H — R and a point z € H, the following
change of variables rule in the integral is correct:

/H¢(y)/m(dy)Z/Hl/J(y—x)ui(dy).

Applying this rule, and changing A to 2tg(x)A, we come to the equality

(Sup)(x) = ') / O( + Y) tatg(e) 4 (dy)

H

— C@) /H o(x+ (y — 37))M§tg(x)A(d3/) =) /H @(y)ﬂgtg(r)fl(dy)'

For n = 2 in formula (24) we get the expression

((S;)ng) (2) = (83 (S1%) ) (@) = /H ( /H 2O COD oy )it A(dy1)> M (0 (dY2)-

In the same way expressions for n > 2 are derived. Thus, the formula (24) is proven.
4. The proof follows immediately from item 3 of theorem 4.3.
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Pemmenue napadosmyeckoro juddepeHnuajibHOr0 ypaBHEHUS

B I'MJIbOEPTOBOM MPOCTPAHCTBE
c nomornibio popmyibl Deitnmana - 1

Pemmzos 1. /1.

Mocxosckuii T'ocydapemeennoti Texnuveckuts Ynueepcumem um. H.5. Baymana,
2-a bBaymancxas ya., 0. 5, Mockea, 105005, Poccus
Huotcezopodcxuti eocydapemeenmnuit yrnusepcumem um. H.HU. Jlobavesckozo,
np. Tazapuna, 23, 2. Huoichut Hoszopod, 603950, Poccus

KuaroueBsbie ciioBa: ['minbeproBo mpoctpancTBo, hopmysina PeitHmana, TeopemMa
YepHoBa, KpaTHbIE HHTETPAJIbI, TayCCOBCKAs Mepa

B pabore paccmarpuBaerca mnapabosimdeckoe g depeHnuaabHoe  ypaBHEHUE
wy(t, x) = Lu(t, ) B 9aCTHBIX MPOM3BOJHBIX, TJe L — 310 jmHeitnblii guddepeHimaabHbIii
oIIepaTop BTOPOro MOpsijiKa ¢ KoddduimenTaMu, He 3aBUCAIIIMU OT BPEMEHU, HO 3aBU-
camumu ot x. Ilpesmnoaraercs, 9To mpocTpaHCTBEHHAs TEePEeMeHHas T ITPUHA/JIEYKUT
KOHEYHOMEPHOMY WJIM OECKOHEYHOMEPHOMY BEIIECTBEHHOMY CelapadebHOMY THIbOEp-
TOBY IpocTpancTBy H.

W3 cymecTBoBaHUS CHJIBHO HETPEPBIBHOMN TOJIYT'PYIIIIBI, PA3pelIaonieil paccMaTpuBa-
eMoe ypaBHeHne, B CTaThe BHIBOJAUTCS MIPEJICTABIEHIE STOI MOJIYTPYIIIBI B BUJI€ (DOPMYJIBI
QeitnMana, T.e. MOJIYTPyIIa 3alichiBaeTcsd B (hopMe Ipejieia KpaTHOTro nurerpasia mo H
[pu cTpeMseiics K 6eCKOHETHOCTH KPATHOCTU. DTO MPEJICTAB/ICHHE JTACT €INHCTBEHHOE
pemenne 3aJaan Komm i paccMaTpUBaeMOro ypaBHEHUSA B KJacce (DYHKIIN, sABJIs-
IOIUXCA PABHOMEPHBIMU TIpeJie/IaMy TTIQJIKUX ITMJINHIpudeckux yHkuit Ha H. Bosee
TOT'0, 3TO PEIlleHre HeIPEePbIBHO 3aBUCUT OT HAaYaJbHOrO yciaoBud. [ ciaydasi, Korja B
orteparope L ko3 duiiuenT npu nepBoil Mpon3BoJIHOI paBeH HYJIIO, B HACTOLAIIEH pado-
Te JIOKA3aHO, YTO &) CUJIBbHO HEIPEPBIBHASI Pa3peNIaoliast IOyIPyIIa CyIecTByeT (310
BJICYET 3a cODOOIl CyIecTBOBaAHUE €IUHCTBEHHOTO PEIIeHUs JIJTs 3a/1a49u Ko B yromMsmy-
TOM BbIIIIe Kjtacce (byHKIWMA) 1 6) 9TO pelleHie HeIPEPhIBHO 3aBUCUT OT KO3(MUINEHTOB
yDaBHEHUS.

Crarbg myOJIMKyeTcs B aBTOPCKON peIaKIuy.

Csenienuns 06 aBTOpE:
Pemuzos UBan /ImMmurpueBud,
Hwxkeropojicknit rocynapcrsennbiit yausepcurer um. H.U. Jlobauesckoro,
MJIQ NI HAYYHBIA COTPYIHUK;
Mockoscekuit ['ocymapcrennniit Texunueckuit Yausepcurer um. H.9. Baymana,
ACCUCTEHT
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