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We consider the mathematical model in which an operating processor serves
the set of the stationary objects positioned in a one-dimensional working zone.
The processor performs two voyages between the uttermost points of the zone:
the forward or direct one, where certain objects are served, and the return one,
where remaining objects are served. Servicing of the object cannot start earlier
than its ready date. The individual penalty function is assigned to every object, the
function depending on the servicing completion time. Minimized criteria of schedule
quality are assumed to be total service duration and total penalty. We formulate
and study optimization problems with one and two criteria. Proposed algorithms
are based on dynamic programming and Pareto principle, the implementations
of these algorithms are demonstrated on numerical examples. We show that the
algorithm for the problem of processing time minimization is polynomial, and that
the problem of total penalty minimization is N P-hard. Correspondingly, the bi-
criteria problem with the mentioned evaluation criteria is fundamentally intractable,
computational complexity of the schedule structure algorithm is exponential. The
model describes the fuel supply processes to the diesel-electrical dredgers which
extract non-metallic building materials (sand, gravel) in large-scale areas of inland
waterways. Similar models and optimization problems are important, for example,
in applications like the control of satellite group refueling and regular civil aircraft
refueling.
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Introduction

The problems under study were posed when it was necessary to create computer-based
systems for operating control of fuel supply to the floating diesel-electrical complexes
or dredgers extracting non-metallic building materials (gravel, sand) in larger transport
areas of inland waterways. One of the transport area operator’s responsibilities is to
work out the time schedule [1-6] reducing cost losses due to idling of both dredgers and
a fuel supply tanker. In this paper we formulate optimization problems for the model in
which the moving processor is to serve the set of stationary objects positioned within
uniform one-dimensional working zone. The processor is assumed to do two-way voyages
— the forward or direct one, during which few objects are served, and the return one,
when the remaining objects are served. Individual penalty function is assigned to each
object; it is a monotone increasing function associated with the time when servicing of
the particular object is accomplished. The minimized criteria are the service completion
time of all the objects involved and the total penalty. Similar models and optimization
problems are important, for example, in applications like the control of satellite group
refueling [7] and regular civil aircraft refueling [8|.

1. Mathematical Model And Problems Formulation

There is an assumed set O,, = {01, 09, ..., 0, } of the stationary objects within the working
zone L of the operating processor P (fig. 1). The working zone is one-dimensional and
finite; its initial point A is a start up point for the processor. Objects are supposed to be
numbered in the order of their distances increasing from the point A; the end point B
of the zone L is the location of the object o,. Starting from the moment t = 0 the
processor moves from the start up point A towards the end point B (forward voyage, let
us denote it by A, ), and having reached the end point, it moves back to the point A
(return voyage, let us denote it by A_).
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Fig. 1: Modelling single processor servicing the related objects.

During the cycle Ay \_ the processor P performs single continuing service of group
O,-related objects: a few of them are served in voyage A, , remaining objects — in
voyage A_. Simultaneous servicing of two and more objects is prohibited.

With every object o; we associate monotone non-decreasing penalty function of its
service completion time; it represents the losses related to the service.

By 1,2,...,n we denote segment L points where the objects 01, 0o, . . ., 0, are positioned
correspondingly (the points n and B coincide); 7, - object o; service duration, r; - ready
date of the object 0;; ¢;(t) - the object o; penalty function (if servicing of the object o,
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is accomplished at the moment ¢ then ¢;(t) is a penalty for this particular object; v,_1 ;
and 7y; j_1 - the processor movement durations between j—1 and j in the voyages A} and
A_ respectively; j = 1,n, here g1 and 71 o - the processor movement durations between
point A and the point 1 in the voyages A\ and A_ correspondingly. The values 7;, ;-1 ;
and v, ;_1 are positive integers, r; are non-negative integers.

Servicing strategy is an arbitrary subset of ascending indices V' = (iy,4s,...,4x) of
the set N = 1,2,...,n. During the strategy realization the objects o;_, where i,, € V|
are served in voyage A; the remaining objects of the set O, are served in voyage \_.
By V= = (igt1,%k+2,---,1,) as defined by strategy V we denote the sequence of the
objects served in voyage A_, the indices in V'~ are listed in the diminishing order. The
sequences V and V'~ do not contain equal elements. To be explicit, we assume that
the object o, is served upon completion of voyage A\, hence n € V. Let us note that
V- = @ if and only if V = (1,2,...,n). It is evident that the number of different
servicing strategies is equal to 2"71. We assume that service time schedules to apply the
strategy V' are the tuples as follows:

P = <(i17ai17bi1)7 (i27ai27bi2)7 ey (ikaaik7bik)7 ceey (in7ain7bin)> )

where V' = (iy,d9,...,i), V™ = (ikt1, %12, - -, 0n), ix = N, a;,, and b; - servicing start
up and completion time for the object o;,, respectively, m = 1,n; a;; > Y04, bi, = @i, +7iy;
@iy > biy iy i, big = @iy +Tigs oo @iy 2> Ui i iy bi, = @i, +Ti, . Further we denote

the object o, servicing start up and completion time by S, (p) and C,(p) correspondingly,
the values being depended on the schedule p.
By K (p) we denote the total penalty for all objects under service during the schedule p

implementation, K (p) = < > ¢;(C;(p)) p. By T'(p) we denote the time when the processor
7j=1

returns to the initial point after service accomplishment involving the objects according
to schedule p. For arbitrary schedule p we have:

T(p) = bi,, + Yin0- (1)

The schedule p is called r-feasible if during its implementation all ready dates for
the objects are observed. The set of all r-feasible schedules (each of them implements
some servicing strategy) is assumed here as R; the set of all r-feasible schedules which
implements the strategy V' will be denoted as R(V'). It is obvious that any set R(V') is
nonempty.

Further, we consider the following two problems.

Problem 1. min T'(p).
roblem 1. min (p)

Problem 2. min {K(p),T(p)}.
pPER
The problem 1 is to construct the schedule optimal by processing time. In bi-criteria
problem 2 the first criterion is total penalty for the objects, the second one - servicing
cycle duration. For problem 2 we will use the Pareto concept, which implies the synthesis
of the total set of the efficient estimates, simultaneously providing the opportunity to
determine the problem solution that assures any efficient estimate [9-12].
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For problems 1 and 2 we will further construct the respective algorithms of polynomial
and exponential computational complexity. Both algorithms are based on dynamic
programming [13,14]|. We will further show, that problem 2 is fundamentally intractable.
This intractability follows from the N P-hardness [15-17] of a one-criterion problem
below.

Probl 3. min K(p).
roblem 3. min (p)

We will show below that problem 3 is N P-hard even in a particular case, when all
functions ¢;(t), 7 = 1,n, are linear. If we construct the set of efficient estimates for
problem 2 this will inevitably lead us to the solution of problem 3.

2. Compact schedules and 0-schedules

Schedule p, p € R, is called compact, if in-between stops of the processor during
the cycle A \_ are only related to the objects service in their locations, and to their
expectancy for the ready dates to come. When constructing the compact schedule for
arbitrary strategy V = (i1, s, ...,1), the servicing start and completion times a;  and

b;,, of the object o, , m = 1,n, are calculated consecutively to the extent that the
parameter m grows, the following formulas being:

ai, = max (Yo, i ); (2)
Qixyr = max(bix + %x’ixﬂvrixﬂ)a x=1Ln-1 (4>

We will denote the compact schedule implementing arbitrary strategy V by pp(V).
Specified schedule is defined unambiguously.

It should be noted that the processor which started the forward voyage relatively late
(for example, at the moment IIl;iXp) can serve the objects of set O, = {01,09,...,0,}

without intermediate idlings which arise from the need to observe the ready dates.
By to(V) we denote the minimal forward voyage start time so that the processor can
further serve all the objects of the set O,, according to strategy V without intermediate
idlings as a result of ready dates ry,rs,...,7r,. We will call this servicing mode as "0-
mode and related schedule is named here as "0O-schedule". The 0-schedule implementing
the strategy V' will be denoted as po (V).

It is evident that to(V) is a total idle time of the processor in waiting for the ready
dates ry, 7y, ..., 7, during the schedule pi(V') implementation. For fixed strategy V the
value to(V) is defined as follows.

1. We sequentially calculate the values a;,, and b, for the schedule py(V') using the
formulas(2) — (4) with a gradual parameter m growth, m = 1,n;

2. Time losses T™ are then calculated for direct servicing of all the objects involved,
as well as for the processor movement from the point 0 to the point n and then
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back to the last object to be serviced in the strategy:

Z Tj + Yo + Ynjin, if the set of the objects served in the backward voyage
=

T*

is nonempty;

n
> T+ Yom, in opposite case
j=1

3. We set to(V) =b;,, — T™*.

For 0-schedule p = <(7§1,a’- bi,), (ig; iy, 0,), - (i, af, b7 ), - (s > defined

217 T11

by the servicing strategy V' = (i1, 142, ...,ix), we have the followmg relatlons
a;, = to(V) + 70,15 (5)
a;xﬂ = b;x Tt Vigsigr1s X = Ln—1 <7)

For the given initial data, O-schedule implementing the arbitrary strategy V' can be
uniquely defined. We should note, that if t5(V') = 0, the schedules po(V') and p(V') are
identical.

Theorem 1. The schedule p,(V') minimizes value of K(p) on the set R(V'); both schedules
po(V) and pr.(V) minimize the values of the T'(p) on the set R(V').

The theorem statements are easily proved by contradiction.

3. Problem 1 solving algorithm

According to theorem 1, problem 1 permits the following equivalent form.

Problem 4. mvin T(po(V)).

From the definition of 0-schedule it follows that:
T(po(V)) = to(V +ZTJ+Z7JJ+1+Z7JJ 1- (8)

Thus, the problem of the criterion T'(po(V')) minimization and, equally, the criterion
T'(px(V)) minimization, reduces to the minimization of the value ¢, (V):

mvin to(V). (9)

Having defined the subset V" as optimal for problem (9), we will easily then construct
the optimal servicing schedule for problem 1.

Let us denote as D(k) the start up marginal momentum, when the processor in
point k can serve all the objects {og, 0g+1,- .., 0,} in the O-mode during the subsequent
implementation of the forward or direct voyage (from point k) and then the return voyage,
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i.e. without idlings time due to the ready dates rg,rgy1,...,7n, here k € {1,2,...,n}.
Together with the values D(k) calculation, we will consecutively construct the strategy Vp
which assures these values.
It is evident that
D(n) =r,. (10)

Sequence Vp being composed is initially assumed as a single element n. We select the
following notation:

W*(k) = (e + Tet1+ - -+ Tn) + (Vekr1 + Vet k42 F - oo F Vot T Vone1 - - - + Vet1k);

thus, W*(k) is the total time of the direct servicing of the objects {0k, 0k+1, .. .,0,} and
the processor movements from the point £ to the point n and from the point n to the
point k in the direct and return voyages respectively.

There is an alternative for each object from the set {o1,09,...,0,-1} : it can be
served either in the direct or in the return voyage. Assuming that there are no idlings,
servicing of the object 0,1 can start in the direct voyage at the moment ¢, _, if and only
it (¢ 1 >r, )&, 1+ 71+ Ya_1.n = D(n)). The minimal possible value ¢, ; which
meets the above constraints is equal to max{r,_1, D(n) — (Th—1 + Yn-1n)} -

Let us assume that servicing of the object 0, _; is performed in the return voyage.
With no idlings assumed, the processor skips the servicing of the object 0, ; in the
direct voyage, and can start moving from the point n — 1 towards the point n at the
moment ¢/_, if and only if (¢_ + vp—1, > D(n))&(t!_, + W (n—1) — 751 > 1pp1).
The  minimal  possible  value ¢/, in this case is equal to
max {D(n) — Vo1, -1 — (W*(n — 1) — 7,,_1), 0} resulting in:

. max{r,_1, D(n) — (Tn_1 + Vn_1.) }
D(n —1) = min max{D(n) — Yn-1m,Tn-1 — W*(n—=1) = 7,-1),0}| (11)

Index n — 1 is included in the sequence Vp if D(n — 1) = max {r,—1, D(n) — (7h—1 +
’7n—17n)}'

Let us assume that for arbitrary & € {2,3,...,n — 1} the value D(k) has been
obtained. With no idlings assumed servicing of the object o0,_; during the direct voyage
can start at the moment ¢)_, if and only if (t;v_l > rk_l) & (t;c_l + o1+ Vh—1k > D(k))

The minimal possible value t;_,, for which the given constrains are met, is equal to
max {rg_1, D(k) — (Tk—1 +Yk—1)} - Let servicing of the object o,_; be performed in the
return voyage. With no idlings assumed the processor skips the servicing of the object
o1 in the direct voyage and can start moving from the point £ — 1 towards the point &
at the moment ¢}, if and only if (¢} _; +vk—14 > D(k))&(t)_+W*(k—1)—Tk—1 > 7_1).

Thus the minimal possible value ¢} _; is equal to max{D(k)—vyx_1x, re—1—(W*(k—1)—
Tk—1), 0} resulting in:

max{ry_1, D(k) — (Th—1 + Ye-1.)},

D(k—1) =mi
( ) min maX{D(k) — Ve—1k, Th—1 — (W*(k — 1) — kal)ao} )

(12)
ke{2,3,...,n—1}.

We include index k—1 in sequence Vp if D(k—1) = max {ry_1, D(k) — (Th—1+Yk—1.) }
and accomplish strategy Vp construction when calculations using formula (12) have been
made with parameter k£ values consequently decreasing.
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By D(0) we denote the minimal start time of the movement from point 0, when the
processor can serve all the objects of the set O,, = {01, 0, ...,0,} during the cycle Ay A_
in the 0-mode, i.e. without idlings due to the ready dates. It means that D(0) + yp1 >
D(1). Hence we have:

D(0) = max (D(1) — v1,0). (13)

The equations (10) — (13) are dynamic programming relations which allow to consecu-
tively define values D(n), D(n — 1), D(n — 2),...,D(0). According to the introduced
definitions of the value D(0) and the function ¢y(V') , we obtain the equation:

D(0) = min to(V) = to(Vn) (14)

Strategy Vp constructed is the optimal solution for problem 4. Corresponding schedules
po(Vp) and pg(Vp) are optimal for problem 1.

It should be noted that calculation of every succeeding value D(k) (as the argument
decreases) involves few operations. Hence, the proposed algorithm to solve problem 1 is
functioning in linear time (from n).

Example 1. Optimal schedule related to criterion K(p) is to be obtained with objects
01, 02, 03 and o4 located at points 1, 2, 3 and 4 respectively to be served; vo1 = 110 = 2,
Y2 = Yeq1 =1, 723 =732 =10, 734 = a3 =1, =1, rp =10, r3 = 12, ry, = 15,
7'1:7'2:7'3:7'4:1.

Firstly, we calculate values W*(k): W*(1) = 28, W*(2) =25, W*(3) =4, W*(4) = 1.
According to formula (10), we set: D(4) = 15. The sequence Vp is initially assumed to
be of a single element n equalling here to 4. Then according to formula (11) we obtain:
D(3) = min [max{12,15 — (1 + 1)}, max{15 — 1,12 — (4 — 1),0}] = 13; index 3 being
included in sequence Vp. According to formula (12) when k& = 3 we receive: D(2) =
min [max{10,13 — (14 10)}, max{13 — 10,10 — (25 — 1), 0}] = 3; with index 2 being not
included in sequence Vp. Then according to the same formula with £ = 2 we get: D(1) =
min[max{1,3—(1+1)}, max{3—1,1—27,0}] = 1; index 1 being included in sequence V.
Finally, according to formula (13) we define D(0) = 0. In this case the optimal 0-schedule
implementation starts from the moment 0; at the same time this schedule is compact.
It is easy to define, that po(Vp) = px(Vp) = ((1,2,3), (3,14, 15), (4,16,17), (2, 28,29)).
According to (1), the optimal criterion value for problem 1 is equal to 32.

4. Problem 2 solving algorithm

According to theorem 1, we can replace the problem under study mig{K (p), T(p)} by
pe
the following equivalent problem.

Problem 5. mvin{K(pk(V)),T(pk(V))}.

Let us denote problem 5 by symbol Z; and the required set of the efficient estimates
pertaining to the problem will be assumed as E. We will use a multi-criteria dynamic
programming method [18-20] to synthesize this set.

Let us consider the set of particular problems Z(k,t); problem Z(k,t) is thought as
a situation when the processor during voyage A, arrives at point £ at the moment ¢; the
minimized criteria being:
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— total penalty for the objects from the set {og, 0x41,...,0n};
— time when processor leaves the point £ in voyage \_.

Thus, the estimate (a, b) obtained for Z(k,t) means, that the total penalty for objects
{0k, Ok41,...,0,} is equal to a, and the processor leaves the point k during voyage A_ at
the moment b.

By ef f(M) we denote a set of efficient in set M estimates; the estimate (a, b) from M
is efficient if there is no such estimate (a’,’) in M so that ¢’ < a and ¥/ < b and at least
one of the given inequalities is strict inequality. By E(k,t) we denote a set of efficient
estimates pertaining to problem Z(k,t), where k = 1, n.

Evidently,

E(n,t) = (gn(max(t,r,) + ), max(t,r,) + 7). (15)

Let us assume that the sets F(k+ 1,t) have already been constructed for all possible
values of parameter . We need to construct the sets E(k,t).

Let a priori be known that the objects of the set {0i1,0r12,...,0,} are served
with estimate (p,q) and the processor arrives at the point k£ at the moment ¢ during
voyage A, and further it serves the object og. In this case the estimate of servicing the
objects {0k, Ok11,...,0,} 1S

At k,p,q) = (pe(max(t, r) + ) + D, ¢ + Vet1k)- (16)

Since servicing of object oj, accomplishes at the moment py, = max(t,ry) + 7%, the
processor arrives at the point £+ 1 at the moment p; = g + i k+1. Further servicing of
the set {og41,0k+2,- -, 0,} can be effected with the estimates from the set E(k + 1, uj);
implementation of the estimates that do not belong to this particular set is obviously
impractical. For the set {01, 0k42,-..,0,} we obtain the set of the estimates

P(k,t) = {A(t,k,p,q) : (p,q) € E(k+1,u3)} (17)

provided that servicing of the object oy is performed in voyage ;.

If on arriving at point k processor postpones object o servicing till voyage A\_, and
servicing of objects {0gy1, Ok+2,- -, 0,} is performed with the estimates (p/, ¢') then the
estimate of object servicing from set {og, 0x41,...,0,} is as follows:

B(t,k,p',q) = (0" + pr(max(q" + Vi1, 7k) + Tk), max(q + Ves1.4, k) + Th)- (18)

In the considered case the processor performing voyage A, arrives at point k + 1
at the moment v} = ¢ 4 7y +1. Further servicing of the set {o0x41,0k42,...,0,} can be
performed with the estimates from the set E(k+ 1, v} ); implementation of the estimates
that do not belong to this set is obviously impractical. For the set {ox, 011, ..,0,} we
obtain the following set of the estimates on the assumption that object o servicing is
effected in voyage \_:

Q(k,t) ={B(t,k,p',q) : (p,q) € E(k+1,7)}. (19)
It is evident that
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Elk,t) = ef f(P,) UQ(k, 1)), k=n—1,n—2,...,1. (20)

The computational process using formulas (15) — (20) implies a consequent search
of sets E(k,t) when index k is decreasing. This finally leads to the construction of set
E(]_, ’}/0’1).

To obtain target set F of the efficient estimates pertaining to problem 2, we need to
add vector (0,7, ) to each vector of set E(1,701):

E = {95 = ($17$2) X1 = Y1, T2 = Y2 + V10, where y = (yl,?ﬁ) € E(L’Yo,l)} (21)

Prior to calculations based on relations (15) — (21), for each k, k = 1,n we need to
define sets O, of possible processor arrival moments ¢ to point k£ during voyage A,. Only
for the values ¢ belonging to ©y, we need to construct sets E(k,t) when calculating with
the help of recurrent relations (15) — (20). The sets O are defined to the extent that
index k values diminish. It is obvious, that when k& = 1 the only possible value of ¢ is
V0.1, 1.e. ©1 = {701} Let us denote as My 1(Nk41) the set of the possible values of the
processor arrival moments to point k + 1 in voyage A, when object o was respectively
served during A, (A_). It is obvious that

M1 = {ug g, = max(6,ry) + T, + Ve r+1,0 € O}
Nipr =1{v Vg = 04+ Yhry1,0 € O}

@k+1 = {Mk+1UNk+1},Where k: ]_,2,...,7?/— 1. (22)

Exzample 2. It is required to discover a full set of efficient estimates pertaining to
problem 2 with the parameters values and the penalty functions given in Table 1.

Table 1: Modelling parameters, Example 2

J T rj V-1, Vi1 ©;(t)

1 1 1 2 2 0

2 1 10 1 1 max{t -3, 0}

3 1 14 10 10 max{10(¢ — 15), 0}
1 1 14 1 1 max{15(f — 16),0}

Firstly, for each value k(k = 1,n) we need to find the sets O}, of possible moments ¢
of the processor arrival to point k in voyage A,. It is apparent that the only possible
value of t when k = 1 is 73 = 1, i.e. ©; = {2}. According to (22), we find that:
O, = {3,4},05 = {13,14,21},04 = {14, 15, 16, 22, 23}.

Then with the help of formulas (15) —(20) we calculate values E(k,t). The established
estimates are shown in Table 2. For each estimate the triple index is given: the number of
the estimate (revealed when calculating), the estimate number used to have the current
estimate constructed, and the voyage in which the object o is served. For example,
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the record (a,b); j+ means that the estimate (a,b) of number ¢ is constructed from the
estimate having number j, and object oy is served in voyage A,. Similarly the record
(a,b); j— means that the estimate (a,b) of number i is constructed from the estimate
having number 7, and the object o; is served in voyage A_. This information will
be further used when we construct servicing strategy, which assures particular criteria
values.

Table 2 filled in from right to left. Firstly, we fill in the cells of the fourth column
(k = 4) with the help of (15). Here we assume that all estimates for k = 4 are constructed
from the dummy estimate of number 0 and we take into account that the last object is
always served in voyage A,.. We thus gain as follows:

E(4,14) = {(p4(max(14,74) + 74), max(14,73) + 73) } = {(w4(14),15)} = {(0,15)}1.0.+-

Similarly, we define values:

E(4,15) = {(0, 16)}20+, E(4,16) = {(15, 17)}504, £(4,22) = {(105, 23)}40.+,
E(4,23) = {(120,24)}50 -

Filling in the required cells for k equaling to 3, 2 and 1 is executed with the help
of (16) — (20). Example of set E(3,13) construction illustrates the calculations based on
the above relations. F(3,13) = ef f(P(3,13) UQ(3,13)) in accord with (20). Set P(3,13)
is defined starting with value 3 calculation:

Wy = t3 + 34 = max(t,r3) + 73 + 734 = max(13,14) + 1 + 1 = 16.

Thus calculating value P(3,13) we will use the only estimate (15, 17) of set £(4,16).
According to (16) and (17) we obtain P(3,13) = {(p3(max(13,73)+73)+15,17+743)} =
{(ps(15) +15,18)} = {(15,18)}.

Set (3, 13) is defined starting with value v calculation: v =t 434 = 13+ 1 = 14.
Thus, during calculations we will use estimates from set F(4,14) = {(0, 15)}. According
to (18) and (19) we get:

Q(3, 13) = {(903(H1aX(15+’Y473, 7“3)+T3>+0, max(15+7473, 7“3)+T3)} = {(@3(17), 17)} =
{(20,17)}.

Finally we obtain: E(3,13) = ef f((15,18) U (20,17)) = {(15,18), (20,17)}.

The consecutive number 6 is assigned to the estimate (15,18), which is constructed
on the basis of the estimate having number 3, the calculations with the help of (17)
correspond to object o3 servicing in voyage A, . The record has been entered in the table
cell as (15,18)¢3 4.

Succeeding number 7 is assigned to the estimate (20, 17), the estimate being construct-
ed from the estimate of number 1, and the calculation using formula (19) corresponds
to object o3 servicing in voyage A_. The record has been entered in the table cell as
(20,17)7.1,—.

The remaining estimates entered in table 2 have been calculated in a similar manner.
The empty cells of Table 2 correspond to the unfeasible pairs (k,t).

Thus we have revealed that set E(1,2) contains one estimate only. According to (21),
the single efficient estimate in the considered example is (41, 32); thus, there has been
defined an optimal strategy for both criteria considered here. The estimate indices that
have been entered in Table 2 allow easy finding the strategy, which generates the estimate:
objects 1, 3,4 to be served in the direct voyage; object 2 to be served in the return voyage.
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Table 2: E(k,t) values

t\k 1 2 3 1
2 (41, 30)13.12.+
3 (41,29) 106,
(45, 28)11’77_
1 (41,29) 19,6,
13 (15,18)6.5+
(20, 17)7’17_
14 (15, 18)55.+ (0,15)10.+
15 (0,16)2.0
16 (15,17)3.0
21 (190, 25)g 5 +
22 (105, 23) 40+
23 (120, 24)5.0.+

To estimate the computational complexity of the proposed algorithm we denote the
maximum of the values v;_1 ;, vjj-1, T, 7 = 1,n, by @, and the maximum of the values r;
by Q*, j = 1,n. It is evident that servicing objects of the set O,, = {01, 02, ..., 0,} can be
accomplished not later than M = 3Q+Q*. The second coordinate of every estimate taken
from any set E(k,t) does not exceed M. Hence there are not more than M estimates in
each set E(k,t). The number of estimates of each set P(k,t) and Q(k,t) constructed for
E(k,t) calculation also does not exceed M. Consequently, we need no more than linearly
depending on M number of the elementary operations for each set E(k,t) synthesis.
The first argument in the sets E(k,¢) can take n values, the second argument — no
more than M values. The upper bound for the number of constructed sets E(k,t) is
the product nM. Thus, the number of elementary operations necessary to construct the
set E is bounded above by the value of nM? order. So the proposed algorithm of efficient
estimates synthesis in problem 2 is pseudo-polynomial.

5. Computational complexity of the problem 3

It is known [21], that if all ready dates r; are equal to zero and the individual penalty
functions ¢;(t) are linear, j = 1,n, then problem 3 has polynomial solution. However,
one cannot avoid the fact as follows.

Theorem 2. If all individual penalty functions are linear and there exists the single
object with non-zero ready date, then problem 3 is N P-hard.

The proof is that N P-complete partition problem [15] has to be polynomially-time
reduced to problem 3 that satisfies the theorem conditions. The partition problem is
given as follows. There exists a finite set of natural numbers W = {wy, ws, ..., w,}; the
question arises whether it is possible to split this set into two disjoint subsets so that the
sum of the numbers from the first subset is equal to the sum of the numbers from the
second subset. The positive answer obviously necessitates the condition under which the
number from the set W does not exceed the half of the sum of all numbers . It should be
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also noted that the problem remains N P-complete in the case when all elements of the

n
set W are even numbers. Further we assume that > w; = 2U, all w; are even numbers
i=1
and w; < U, i=1,n.
The initial data of the partition problem allow us to construct a problem where
processor P during the successive voyages Ay and A_ is to serve stationary objects

01,09, ...,0,12 located in one-dimensional working zone L; the object o; is assumed
to be located at point 7, the values 7,_1,,7i-1,% = 1,n+ 2 are purported equaling
to 1. The objects 0; and 0,42 of the set O, o = {01,090, ...,0441,0n42} are considered

as "significant"; the remaining ones being assumed "ordinary". Servicing duration of
an ordinary object 0;,; is assumed to be equal to w;, i = 1,n; hence the total time
expenditure for servicing all ordinary objects is equal to 2U. Servicing periods of significant
objects are the following: 7, = U+1, 7,40 = 1. Individual penalty functions for significant
objects are defined by the formulas: p;(t) = t; p,12(t) = Dt, where D is sufficiently large
constant, its value to be defined below. The individual penalty functions of the ordinary
objects are supposed to be identically equal to zero. Each object o0;, j = 1,n+1 is
assumed to be ready for servicing starting from the moment ¢ = 0; assuming that
Tnie = (n+2)+U.

Servicing of the significant object 0,.5 may commence at the moment r, 5 if and
only if the processor consumes the time that does not exceed U envisaged for servicing
the remaining objects in the direct voyage, bearing in mind that all movements of the
processor in this voyage use up n + 2 units of time.

Let us assume that servicing of the object 0,15 commences at the moment 7,,5. Then
the object penalty is equal to D(n+3+U); the object 0 is not served in the direct voyage,
and time consuming service of the ordinary objects under the given circumstances equals
to U — ¢ time, where ¢ is a number from the set {0,1,...,U}. The fact that servicing
of the object 0; is accomplished at the moment T = 2n 4 3U + 5 + ¢ is easily calculated
for the case. The total penalty for all objects involved equals to D((n+3)+U) +T.

It should be noted that T < 2n + 4U + 5 and we assume that D = 2n + 4U + 6.
The values thus prescribed prompt that the total penalty for all the objects does not
exceed D(n + 3 4+ U + 1); this is true in case the object o; is being served in the direct
voyage or the time exceeding U is consumed for ordinary object service in the direct
voyage; otherwise, the object oy is being served in the return voyage, and the time not
exceeding U is consumed for the ordinary object service in the direct voyage, then this
penalty is less than D(n+ 3+ U + 1).

Service problem thus constructed where total penalty criteria to be minimized, reveals
that the object 0y is to be served in the return voyage and the time U — ¢ is thought to
be consumed for the ordinary object service in the direct voyage. Total penalty for all
objects becomes equal to D(n+ 3+ U) + 2n + 3U + 5 + €. Lower estimate for the total
penalty is the value D(n + 3 + U) + 2n + 3U + 5 obtained when ¢ = 0 . We are in a
position to obtain this estimate provided that there is a subset of the ordinary objects
with the total servicing duration U, i.e. if the initial partition problem has a positive
answer.

The above model is mathematically reduced in the polynomially dependent time of
input data available. The theorem has thus been proved.
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6. Conclusion

Here we have presented a mathematical model of servicing where a moving processor is
to serve a set of the stationary objects positioned within the one-dimensional working
zone. We have defined the optimization problems with one and two criteria to evaluate
the quality of servicing schedules for the set of the objects. These criteria correspond to
situations arising in operative management of fuel supply to diesel-electrical complexes
afloat or dredgers.

We have developed the algorithms based on the dynamic programming and the Pareto
concept; the implementations of these algorithms have been demonstrated on numerical
examples.

We have shown that the algorithm for the problem of processing time minimization is
polynomial, and that the problem of total penalty minimization is N P-hard. Correspond-
ingly, the bi-criteria problem with the mentioned evaluation criteria is fundamentally
intractable, computational complexity of the schedule structure algorithm is exponential.

The entailing circumstances considered are not practically critical, since the number
of stationary objects does not exceed 13—-15 units in existent production systems allowing
for the construction of an optimal schedule within an hour. In the meantime, there may
essentially exist larger amount of objects in production systems other than stated in view
of the considered mathematical model, and, as the case may be, it will call for efficient
heuristics approaches (see [22-25]) to seek optimization solutions.
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IlocTpoenue pacnucanuii 00Cay>KMBaHUS CTAITMOHAPHBIX
00bEKTOB MepeMenialonmMcs B OJHOMEPHOII 30He IMTPOIeCCOPOM

Hynmakuna H. A.) Koran /1. U., ®enocenko FHO. C.

Boaoicexuti 2ocydapemsennovili yrusepcumem 6001020 MPaHcnopma
603005 Poccus, 2. Huorcrnuii Hoszopod, ya. Hecmeposa, 5a
Mocxoscruti 2ocydapemeenmsili ynusepcumem npudbopocmpoenus u uh@Gopmamury
107996 Poccuas, 2. Mockea, ya. Cmpomvirxa, 20

KuroueBbie cjioBa: Teopusl paclucanuii, JUHAMIYCCKOE ITPOrpaMMUPOBAHEE,
npuanun [lapero, N P-Tpy1HOCTb, MHOTOKPUTEPUAIbHAS ONTUMUBATIINS

PaccmarpuBaercs MmaremMaTudeckas MOJIE/b, B KOTOPOH MOOMJIBHBIN ITPOIECCOD, TTepe-
MeIasiCh B IIpeJiesiax OJHOMEPHON paboUeil 30HbI, peajn3yer 0gHO(MA3HOE OJIHOKPATHOE
00C/Ty2KUBaHUE PACCPEIOTOYCHHON B IIPEJIEIax ITON 30HbI COBOKYITHOCTH CTAIIMOHAPHBIX
0bbekToB. B mporiecce mepemertiennit B pabodeil 30He IIPOIECCOp COBepIIaeT JBa peii-
ca — upaMoii u obparubril. [Ipr 9TOM YacTh 00HEKTOB 00C/TYKUBAECTCA B IIPAMOM peiice,
ocrajbHbIe 00BEKTBI — B obpaTHOM peiice. ObcmyKuBaHue JTIOO0T0 00bEKTa Helb3sT Ha-
JaTh paHee MPeIIUCaHHoro eMy cpoka. C KazKIbIM 00bEeKTOM aCCOIMUPOBAH WH/IUBHULY-
AJILHBIH TITpad, ABJILAIONINICT MOHOTOHHO BO3pacTaolieil (hyHKIMeh OT MOMEHTa 3aBep-
IIIeHNs ero o0C/IyKuBaHus. B KadecTBe MUHIMU3UPYEMbIX KPUTEPUEB OIEHKU KadecTBa
pacrucanuiit 00CIyKMBAaHWS BBICTYIAIOT MOMEHT 3aBepIleHnsi paboT MO BCel COBOKYII-
HOCTH OOBEKTOB M BeJMYMHA CyMMapHOro mrpada mo HuM. CTaBaTcs WM MCCIe Ty 0TS
ONTUMHU3AIMOHHDBIE 38JIa9l C OJHUM U JBYMS KPHUTEPUSIMH OIEHKHU, KOHCTPYHUPYEMbIe
peIaoIe aJrOPUTMbl OCHOBAHBI Ha IPUHIIAIIE IUHAMUYIECKOTO MPOIPAMMUPOBAHUS W
kourneriuu [lapero; mocsieoBaTeibHas UX pean3alius TPOJIEMOHCTPUPOBAHA HA HUC-
JIEHHBIX TIpuMepax. [[okazaHo, 9TO aJrOpuT™M perreHns 3a/a9i Ha ONTUMAaJIbHOE ObICT-
POJIeIiCTBHE SBJISETCA MOJUHOMUAIBHBIM, a 3aJada IMOCTPOEHUsT PACIIUCAHUsT OOC/TYKH-
BaHUs, 00ECIICYNBAIONIEr0 MUHUMUBAINIO BEJIMIHHBI CyMMapHOro mTpada 10 BceM 00b-
ekTaM, siBiasercsd N P—rpyanoit. CooTBeTCTBEHHO OMKpUTEPHAIbHAS 3a/1a9a ¢ YKA3aHHbI-
MU KPUTEPUSIMU OIEHKU OTHOCUTCS K YUC/IY TPY/IHOPEIIaeMbIX, BHIUYUCIUTEIbHAS CII0XK-
HOCTH aJITOPUTMA ITOCTPOEHUST PACITUCAHUST OOC/Ty JKUBAHUS sIBJIETCST SKCIIOHEHITNATBHOTA.
Moyiesib onmchIBaeT MPOIECChl CHAOXKEHUSA TOILJIMBOM ILJIABYUUX JIM3€/Tb-3ICKTPHICCKIX
KOMILJIEKCOB, OCYIIECTBJ/IAIONINX PYCIOBYIO JOOBIYY MHEPTHBIX CTPOUTEIbHBIX MaTepua-
JIOB B KPYIHOMACIITAOHBIX paffoHax pedHbIX IyTeil. Mojenn u onTuMu3aiinoHHbIE 3a-
Jladu, MMOJI00HBIE PACCMATPUBAEMBIM, IIPEJICTABJISIOT UHTEPEC JJjis TaKUX [PUJIOXKEHUII,
KaK yIpaBJIeHUe J03aIPABKOIl TOILJIUBOM OPOUTAIBHON TPYIIUPOBKU CIIyTHUKOB U Ma-
TUCTPAJTBHBIX IPAXKIAHCKUX CAMOJIETOB.

Crarbs myOJIMKyeTCsl B aBTOPCKON PeTaKIni.
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