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We consider the mathematical model in which an operating processor serves
the set of the stationary objects positioned in a one-dimensional working zone.
The processor performs two voyages between the uttermost points of the zone:
the forward or direct one, where certain objects are served, and the return one,
where remaining objects are served. Servicing of the object cannot start earlier
than its ready date. The individual penalty function is assigned to every object, the
function depending on the servicing completion time. Minimized criteria of schedule
quality are assumed to be total service duration and total penalty. We formulate
and study optimization problems with one and two criteria. Proposed algorithms
are based on dynamic programming and Pareto principle, the implementations
of these algorithms are demonstrated on numerical examples. We show that the
algorithm for the problem of processing time minimization is polynomial, and that
the problem of total penalty minimization is NP -hard. Correspondingly, the bi-
criteria problem with the mentioned evaluation criteria is fundamentally intractable,
computational complexity of the schedule structure algorithm is exponential. The
model describes the fuel supply processes to the diesel-electrical dredgers which
extract non-metallic building materials (sand, gravel) in large-scale areas of inland
waterways. Similar models and optimization problems are important, for example,
in applications like the control of satellite group refueling and regular civil aircraft
refueling.
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Introduction
The problems under study were posed when it was necessary to create computer-based
systems for operating control of fuel supply to the floating diesel-electrical complexes
or dredgers extracting non-metallic building materials (gravel, sand) in larger transport
areas of inland waterways. One of the transport area operator’s responsibilities is to
work out the time schedule [1–6] reducing cost losses due to idling of both dredgers and
a fuel supply tanker. In this paper we formulate optimization problems for the model in
which the moving processor is to serve the set of stationary objects positioned within
uniform one-dimensional working zone. The processor is assumed to do two-way voyages
– the forward or direct one, during which few objects are served, and the return one,
when the remaining objects are served. Individual penalty function is assigned to each
object; it is a monotone increasing function associated with the time when servicing of
the particular object is accomplished. The minimized criteria are the service completion
time of all the objects involved and the total penalty. Similar models and optimization
problems are important, for example, in applications like the control of satellite group
refueling [7] and regular civil aircraft refueling [8].

1. Mathematical Model And Problems Formulation
There is an assumed setOn = {o1, o2, . . . , on} of the stationary objects within the working
zone L of the operating processor P (fig. 1). The working zone is one-dimensional and
finite; its initial point A is a start up point for the processor. Objects are supposed to be
numbered in the order of their distances increasing from the point A; the end point B
of the zone L is the location of the object on. Starting from the moment t = 0 the
processor moves from the start up point A towards the end point B (forward voyage, let
us denote it by λ+ ), and having reached the end point, it moves back to the point A
(return voyage, let us denote it by λ−).

Fig. 1: Modelling single processor servicing the related objects.

During the cycle λ+λ− the processor P performs single continuing service of group
On-related objects: a few of them are served in voyage λ+ , remaining objects – in
voyage λ−. Simultaneous servicing of two and more objects is prohibited.

With every object oj we associate monotone non-decreasing penalty function of its
service completion time; it represents the losses related to the service.

By 1, 2, . . . , n we denote segment L points where the objects o1, o2, . . . , on are positioned
correspondingly (the points n and B coincide); τj - object oj service duration, rj - ready
date of the object oj; ϕj(t) - the object oj penalty function (if servicing of the object oj
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is accomplished at the moment t then ϕj(t) is a penalty for this particular object; γj−1,j
and γj,j−1 - the processor movement durations between j−1 and j in the voyages λ+ and
λ− respectively; j = 1, n, here γ0,1 and γ1,0 - the processor movement durations between
point A and the point 1 in the voyages λ+ and λ− correspondingly. The values τj, γj−1,j
and γj,j−1 are positive integers, rj are non-negative integers.

Servicing strategy is an arbitrary subset of ascending indices V = (i1, i2, . . . , ik) of
the set N = 1, 2, . . . , n. During the strategy realization the objects oim , where im ∈ V ,
are served in voyage λ+; the remaining objects of the set On are served in voyage λ−.
By V − = (ik+1, ik+2, . . . , in) as defined by strategy V we denote the sequence of the
objects served in voyage λ−, the indices in V − are listed in the diminishing order. The
sequences V and V − do not contain equal elements. To be explicit, we assume that
the object on is served upon completion of voyage λ+, hence n ∈ V . Let us note that
V − = ∅ if and only if V = (1, 2, . . . , n). It is evident that the number of different
servicing strategies is equal to 2n−1. We assume that service time schedules to apply the
strategy V are the tuples as follows:

ρ = 〈(i1, ai1 , bi1), (i2, ai2 , bi2), . . . , (ik, aik , bik), . . . , (in, ain , bin)〉 ,

where V = (i1, i2, . . . , ik), V − = (ik+1, ik+2, . . . , in), ik = n, aim and bim - servicing start
up and completion time for the object oim respectively,m = 1, n; ai1 ≥ γ0,i1 , bi1 = ai1+τi1 ;
ai2 ≥ bi1 +γi1,i2 , bi2 = ai2 +τi2 ; . . . ; ain ≥ bin−1 +γin−1,in , bin = ain+τin . Further we denote
the object ox servicing start up and completion time by Sx(ρ) and Cx(ρ) correspondingly,
the values being depended on the schedule ρ.

ByK(ρ) we denote the total penalty for all objects under service during the schedule ρ

implementation,K(ρ) =

{
n∑
j=1

ϕj(Cj(ρ))

}
. By T (ρ) we denote the time when the processor

returns to the initial point after service accomplishment involving the objects according
to schedule ρ. For arbitrary schedule ρ we have:

T (ρ) = bin + γin,0. (1)

The schedule ρ is called r-feasible if during its implementation all ready dates for
the objects are observed. The set of all r-feasible schedules (each of them implements
some servicing strategy) is assumed here as R; the set of all r-feasible schedules which
implements the strategy V will be denoted as R(V ). It is obvious that any set R(V ) is
nonempty.

Further, we consider the following two problems.

Problem 1. min
ρ∈R

T (ρ).

Problem 2. min
ρ∈R
{K(ρ), T (ρ)}.

The problem 1 is to construct the schedule optimal by processing time. In bi-criteria
problem 2 the first criterion is total penalty for the objects, the second one - servicing
cycle duration. For problem 2 we will use the Pareto concept, which implies the synthesis
of the total set of the efficient estimates, simultaneously providing the opportunity to
determine the problem solution that assures any efficient estimate [9–12].
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For problems 1 and 2 we will further construct the respective algorithms of polynomial
and exponential computational complexity. Both algorithms are based on dynamic
programming [13,14]. We will further show, that problem 2 is fundamentally intractable.
This intractability follows from the NP -hardness [15–17] of a one-criterion problem
below.

Problem 3. min
ρ∈R

K(ρ).

We will show below that problem 3 is NP -hard even in a particular case, when all
functions ϕj(t), j = 1, n, are linear. If we construct the set of efficient estimates for
problem 2 this will inevitably lead us to the solution of problem 3.

2. Compact schedules and 0-schedules

Schedule ρ, ρ ∈ R, is called compact, if in-between stops of the processor during
the cycle λ+λ− are only related to the objects service in their locations, and to their
expectancy for the ready dates to come. When constructing the compact schedule for
arbitrary strategy V = (i1, i2, . . . , ik), the servicing start and completion times aim and
bim of the object oim , m = 1, n, are calculated consecutively to the extent that the
parameter m grows, the following formulas being:

ai1 = max(γ0,i1 , ri1); (2)

bim = aim + τim ,m = 1, n; (3)

aiχ+1 = max(biχ + γiχ,iχ+1 , riχ+1), χ = 1, n− 1 (4)

We will denote the compact schedule implementing arbitrary strategy V by ρk(V ).
Specified schedule is defined unambiguously.

It should be noted that the processor which started the forward voyage relatively late
(for example, at the moment max

p
p) can serve the objects of set On = {o1, o2, . . . , on}

without intermediate idlings which arise from the need to observe the ready dates.
By t0(V ) we denote the minimal forward voyage start time so that the processor can
further serve all the objects of the set On according to strategy V without intermediate
idlings as a result of ready dates r1, r2, . . . , rn. We will call this servicing mode as "0-
mode and related schedule is named here as "0-schedule". The 0-schedule implementing
the strategy V will be denoted as ρ0(V ).

It is evident that t0(V ) is a total idle time of the processor in waiting for the ready
dates r1, r2, . . . , rn during the schedule ρk(V ) implementation. For fixed strategy V the
value t0(V ) is defined as follows.

1. We sequentially calculate the values aim and bim for the schedule ρk(V ) using the
formulas(2) – (4) with a gradual parameter m growth, m = 1, n;

2. Time losses T ∗ are then calculated for direct servicing of all the objects involved,
as well as for the processor movement from the point 0 to the point n and then
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back to the last object to be serviced in the strategy:

T ∗ =



n∑
j=1

τj + γ0,n + γn,in , if the set of the objects served in the backward voyage

is nonempty;
n∑
j=1

τj + γ0,n, in opposite case

3. We set t0(V ) = bin − T ∗.

For 0-schedule ρ =
〈
(i1, a

′
i1
, b′i1), (i2, a

′
i2
, b′i2), . . . , (ik, a

′
ik
, b′ik), . . . , (in, a

′
in , b

′
in)
〉
, defined

by the servicing strategy V = (i1, i2, . . . , ik), we have the following relations:

a′i1 = t0(V ) + γ0,1; (5)

bim = a′im + τim ,m = 1, n; (6)

a′iχ+1
= b′iχ + γiχ,iχ+1 , χ = 1, n− 1 (7)

For the given initial data, 0-schedule implementing the arbitrary strategy V can be
uniquely defined. We should note, that if t0(V ) = 0, the schedules ρ0(V ) and ρk(V ) are
identical.

Theorem 1. The schedule ρk(V ) minimizes value ofK(ρ) on the set R(V ); both schedules
ρ0(V ) and ρk(V ) minimize the values of the T (ρ) on the set R(V ).

The theorem statements are easily proved by contradiction.

3. Problem 1 solving algorithm
According to theorem 1, problem 1 permits the following equivalent form.

Problem 4. min
V

T (ρ0(V )).

From the definition of 0-schedule it follows that:

T (ρ0(V )) = t0(V ) +
n∑
j=1

τj +
n−1∑
j=1

γj,j+1 +
1∑

j=n

γj,j−1. (8)

Thus, the problem of the criterion T (ρ0(V )) minimization and, equally, the criterion
T (ρk(V )) minimization, reduces to the minimization of the value t0(V ):

min
V

t0(V ). (9)

Having defined the subset V as optimal for problem (9), we will easily then construct
the optimal servicing schedule for problem 1.

Let us denote as D(k) the start up marginal momentum, when the processor in
point k can serve all the objects {ok, ok+1, . . . , on} in the 0-mode during the subsequent
implementation of the forward or direct voyage (from point k) and then the return voyage,
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i.e. without idlings time due to the ready dates rk, rk+1, . . . , rn, here k ∈ {1, 2, . . . , n}.
Together with the valuesD(k) calculation, we will consecutively construct the strategy VD
which assures these values.

It is evident that
D(n) = rn. (10)

Sequence VD being composed is initially assumed as a single element n. We select the
following notation:

W ∗(k) = (τk + τk+1 + . . .+ τn) + (γk,k+1 + γk+1,k+2 + . . .+ γn−1,n + γn,n−1 + . . .+ γk+1,k);

thus, W ∗(k) is the total time of the direct servicing of the objects {ok, ok+1, . . . , on} and
the processor movements from the point k to the point n and from the point n to the
point k in the direct and return voyages respectively.

There is an alternative for each object from the set {o1, o2, . . . , on−1} : it can be
served either in the direct or in the return voyage. Assuming that there are no idlings,
servicing of the object on−1 can start in the direct voyage at the moment t′n−1 if and only
if (t′n−1 ≥ rn−1)&(t′n−1 + τn−1 + γn−1.n ≥ D(n)). The minimal possible value t′n−1 which
meets the above constraints is equal to max{rn−1, D(n)− (τn−1 + γn−1,n)} .

Let us assume that servicing of the object on−1 is performed in the return voyage.
With no idlings assumed, the processor skips the servicing of the object on−1 in the
direct voyage, and can start moving from the point n − 1 towards the point n at the
moment t′′n−1 if and only if (t′′n−1 + γn−1,n ≥ D(n))&(t′′n−1 +W ∗(n− 1)− τn−1 ≥ rn−1).
The minimal possible value t′′n−1 in this case is equal to
max {D(n)− γn−1,n, rn−1 − (W ∗(n− 1)− τn−1), 0} resulting in:

D(n− 1) = min

[
max{rn−1, D(n)− (τn−1 + γn−1,n)},

max{D(n)− γn−1,n, rn−1 − (W ∗(n− 1)− τn−1), 0}

]
. (11)

Index n− 1 is included in the sequence VD if D(n− 1) = max {rn−1, D(n)− (τn−1 +
γn−1,n)}.

Let us assume that for arbitrary k ∈ {2, 3, . . . , n − 1} the value D(k) has been
obtained. With no idlings assumed servicing of the object ok−1 during the direct voyage
can start at the moment t′k−1 if and only if

(
t′k−1 ≥ rk−1

)
&
(
t′k−1+τk−1+γk−1,k ≥ D(k)

)
.

The minimal possible value t′k−1, for which the given constrains are met, is equal to
max {rk−1, D(k)− (τk−1 + γk−1,k)} . Let servicing of the object ok−1 be performed in the
return voyage. With no idlings assumed the processor skips the servicing of the object
ok−1 in the direct voyage and can start moving from the point k− 1 towards the point k
at the moment t′′k−1 if and only if (t′′k−1+γk−1,k ≥ D(k))&(t′′k−1+W ∗(k−1)−τk−1 ≥ rk−1).

Thus the minimal possible value t′′k−1 is equal to max{D(k)−γk−1,k, rk−1−(W ∗(k−1)−
τk−1), 0} resulting in:

D(k − 1) = min

[
max{rk−1, D(k)− (τk−1 + γk−1,k)},

max{D(k)− γk−1,k, rk−1 − (W ∗(k − 1)− τk−1), 0}

]
, (12)

k ∈ {2, 3, . . . , n− 1}.
We include index k−1 in sequence VD if D(k−1) = max {rk−1, D(k)−(τk−1+γk−1,k)}

and accomplish strategy VD construction when calculations using formula (12) have been
made with parameter k values consequently decreasing.
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By D(0) we denote the minimal start time of the movement from point 0, when the
processor can serve all the objects of the set On = {o1, o2, . . . , on} during the cycle λ+λ−
in the 0-mode, i.e. without idlings due to the ready dates. It means that D(0) + γ0,1 ≥
D(1). Hence we have:

D(0) = max (D(1)− γ0,1, 0). (13)

The equations (10) – (13) are dynamic programming relations which allow to consecu-
tively define values D(n), D(n − 1), D(n − 2), . . . , D(0). According to the introduced
definitions of the value D(0) and the function t0(V ) , we obtain the equation:

D(0) = min
V

t0(V ) = t0(VD) (14)

Strategy VD constructed is the optimal solution for problem 4. Corresponding schedules
ρ0(VD) and ρk(VD) are optimal for problem 1.

It should be noted that calculation of every succeeding value D(k) (as the argument
decreases) involves few operations. Hence, the proposed algorithm to solve problem 1 is
functioning in linear time (from n).

E x a m p l e 1. Optimal schedule related to criterion K1(ρ) is to be obtained with objects
o1, o2, o3 and o4 located at points 1, 2, 3 and 4 respectively to be served; γ0,1 = γ1,0 = 2,
γ1,2 = γ2,1 = 1, γ2,3 = γ3,2 = 10, γ3,4 = γ4,3 = 1, r1 = 1, r2 = 10, r3 = 12, r4 = 15,
τ1 = τ2 = τ3 = τ4 = 1.

Firstly, we calculate valuesW ∗(k):W ∗(1) = 28,W ∗(2) = 25,W ∗(3) = 4,W ∗(4) = 1.
According to formula (10), we set: D(4) = 15. The sequence VD is initially assumed to
be of a single element n equalling here to 4. Then according to formula (11) we obtain:
D(3) = min [max{12, 15 − (1 + 1)},max{15 − 1, 12 − (4 − 1), 0}] = 13; index 3 being
included in sequence VD. According to formula (12) when k = 3 we receive: D(2) =
min [max{10, 13− (1 + 10)},max{13− 10, 10− (25− 1), 0}] = 3; with index 2 being not
included in sequence VD. Then according to the same formula with k = 2 we get: D(1) =
min[max{1, 3−(1+1)},max{3−1, 1−27, 0}] = 1; index 1 being included in sequence VD.
Finally, according to formula (13) we define D(0) = 0. In this case the optimal 0-schedule
implementation starts from the moment 0; at the same time this schedule is compact.
It is easy to define, that ρ0(VD) = ρk(VD) = 〈(1, 2, 3), (3, 14, 15), (4, 16, 17), (2, 28, 29)〉.
According to (1), the optimal criterion value for problem 1 is equal to 32.

4. Problem 2 solving algorithm
According to theorem 1, we can replace the problem under study min

ρ∈R
{K(ρ), T (ρ)} by

the following equivalent problem.

Problem 5. min
V
{K(ρk(V )), T (ρk(V ))}.

Let us denote problem 5 by symbol Z; and the required set of the efficient estimates
pertaining to the problem will be assumed as E. We will use a multi-criteria dynamic
programming method [18–20] to synthesize this set.

Let us consider the set of particular problems Z(k, t); problem Z(k, t) is thought as
a situation when the processor during voyage λ+ arrives at point k at the moment t; the
minimized criteria being:
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− total penalty for the objects from the set {ok, ok+1, . . . , on};

− time when processor leaves the point k in voyage λ−.

Thus, the estimate (a, b) obtained for Z(k, t) means, that the total penalty for objects
{ok, ok+1, . . . , on} is equal to a, and the processor leaves the point k during voyage λ− at
the moment b.

By eff(M) we denote a set of efficient in setM estimates; the estimate (a, b) fromM
is efficient if there is no such estimate (a′, b′) in M so that a′ ≤ a and b′ ≤ b and at least
one of the given inequalities is strict inequality. By E(k, t) we denote a set of efficient
estimates pertaining to problem Z(k, t), where k = 1, n.

Evidently,
E(n, t) = (ϕn(max(t, rn) + τn),max(t, rn) + τn). (15)

Let us assume that the sets E(k+ 1, t) have already been constructed for all possible
values of parameter t. We need to construct the sets E(k, t).

Let a priori be known that the objects of the set {ok+1, ok+2, . . . , on} are served
with estimate (p, q) and the processor arrives at the point k at the moment t during
voyage λ+ and further it serves the object ok. In this case the estimate of servicing the
objects {ok, ok+1, . . . , on} is

A(t, k, p, q) = (ϕk(max(t, rk) + τk) + p, q + γk+1,k). (16)

Since servicing of object ok accomplishes at the moment µk = max(t, rk) + τk, the
processor arrives at the point k+ 1 at the moment µ∗k = µk + γk,k+1. Further servicing of
the set {ok+1, ok+2, . . . , on} can be effected with the estimates from the set E(k + 1, µ∗k);
implementation of the estimates that do not belong to this particular set is obviously
impractical. For the set {ok+1, ok+2, . . . , on} we obtain the set of the estimates

P (k, t) = {A(t, k, p, q) : (p, q) ∈ E(k + 1, µ∗k)} (17)

provided that servicing of the object ok is performed in voyage λ+.
If on arriving at point k processor postpones object ok servicing till voyage λ−, and

servicing of objects {ok+1, ok+2, . . . , on} is performed with the estimates (p′, q′) then the
estimate of object servicing from set {ok, ok+1, . . . , on} is as follows:

B(t, k, p′, q′) = (p′ + ϕk(max(q′ + γk+1,k, rk) + τk),max(q′ + γk+1,k, rk) + τk). (18)

In the considered case the processor performing voyage λ+ arrives at point k + 1
at the moment ν∗k = t + γk,k+1. Further servicing of the set {ok+1, ok+2, . . . , on} can be
performed with the estimates from the set E(k+ 1, ν∗k); implementation of the estimates
that do not belong to this set is obviously impractical. For the set {ok, ok+1, . . . , on} we
obtain the following set of the estimates on the assumption that object ok servicing is
effected in voyage λ−:

Q(k, t) = {B(t, k, p′, q′) : (p, q) ∈ E(k + 1, ν∗k)}. (19)

It is evident that
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E(k, t) = eff(P (k, t) ∪Q(k, t)), k = n− 1, n− 2, . . . , 1. (20)

The computational process using formulas (15) – (20) implies a consequent search
of sets E(k, t) when index k is decreasing. This finally leads to the construction of set
E(1, γ0,1).

To obtain target set E of the efficient estimates pertaining to problem 2, we need to
add vector (0, γ1,0) to each vector of set E(1, γ0,1):

E = {x = (x1, x2) : x1 = y1, x2 = y2 + γ1,0, where y = (y1, y2) ∈ E(1, γ0,1)}. (21)

Prior to calculations based on relations (15) – (21), for each k, k = 1, n we need to
define sets Θk of possible processor arrival moments t to point k during voyage λ+. Only
for the values t belonging to Θk, we need to construct sets E(k, t) when calculating with
the help of recurrent relations (15) – (20). The sets Θk are defined to the extent that
index k values diminish. It is obvious, that when k = 1 the only possible value of t is
γ0,1, i.e. Θ1 = {γ0,1}. Let us denote as Mk+1(Nk+1) the set of the possible values of the
processor arrival moments to point k + 1 in voyage λ+ when object ok was respectively
served during λ+(λ−). It is obvious that

Mk+1 = {µ∗k : µ∗k = max(θ, rk) + τk + γk,k+1, θ ∈ Θk};

Nk+1 = {ν∗k : ν∗k = θ + γk,k+1, θ ∈ Θk};

Θk+1 = {Mk+1 ∪Nk+1},where k = 1, 2, . . . , n− 1. (22)

E x a m p l e 2. It is required to discover a full set of efficient estimates pertaining to
problem 2 with the parameters values and the penalty functions given in Table 1.

Table 1: Modelling parameters, Example 2

j τj rj γj−1,j γj,j−1 ϕj(t)
1 1 1 2 2 0
2 1 10 1 1 max{t− 3, 0}
3 1 14 10 10 max{10(t− 15), 0}
4 1 14 1 1 max{15(t− 16), 0}

Firstly, for each value k(k = 1, n) we need to find the sets Θk of possible moments t
of the processor arrival to point k in voyage λ+. It is apparent that the only possible
value of t when k = 1 is γ0,1 = 1, i.e. Θ1 = {2}. According to (22), we find that:
Θ2 = {3, 4},Θ3 = {13, 14, 21},Θ4 = {14, 15, 16, 22, 23}.

Then with the help of formulas (15) –(20) we calculate values E(k, t). The established
estimates are shown in Table 2. For each estimate the triple index is given: the number of
the estimate (revealed when calculating), the estimate number used to have the current
estimate constructed, and the voyage in which the object ok is served. For example,
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the record (a, b)i,j,+ means that the estimate (a, b) of number i is constructed from the
estimate having number j, and object ok is served in voyage λ+. Similarly the record
(a, b)i,j,− means that the estimate (a, b) of number i is constructed from the estimate
having number j, and the object ok is served in voyage λ−. This information will
be further used when we construct servicing strategy, which assures particular criteria
values.

Table 2 filled in from right to left. Firstly, we fill in the cells of the fourth column
(k = 4) with the help of (15). Here we assume that all estimates for k = 4 are constructed
from the dummy estimate of number 0 and we take into account that the last object is
always served in voyage λ+. We thus gain as follows:

E(4, 14) = {(ϕ4(max(14, r4) + τ4),max(14, r3) + τ3)} = {(ϕ4(14), 15)} = {(0, 15)}1,0,+.

Similarly, we define values:
E(4, 15) = {(0, 16)}2,0,+, E(4, 16) = {(15, 17)}3,0,+, E(4, 22) = {(105, 23)}4,0,+,

E(4, 23) = {(120, 24)}5,0,+.
Filling in the required cells for k equaling to 3, 2 and 1 is executed with the help

of (16) – (20). Example of set E(3, 13) construction illustrates the calculations based on
the above relations. E(3, 13) = eff(P (3, 13)∪Q(3, 13)) in accord with (20). Set P(3,13)
is defined starting with value µ∗3 calculation:

µ∗3 = µ3 + γ3,4 = max(t, r3) + τ3 + γ3,4 = max(13, 14) + 1 + 1 = 16.

Thus calculating value P (3, 13) we will use the only estimate (15, 17) of set E(4, 16).
According to (16) and (17) we obtain P (3, 13) = {(ϕ3(max(13, r3)+τ3)+15, 17+γ4,3)} =
{(ϕ3(15) + 15, 18)} = {(15, 18)}.

Set Q(3, 13) is defined starting with value ν∗3 calculation: ν∗3 = t+ γ3,4 = 13 + 1 = 14.
Thus, during calculations we will use estimates from set E(4, 14) = {(0, 15)}. According
to (18) and (19) we get:

Q(3, 13) = {(ϕ3(max(15+γ4,3, r3)+τ3)+0,max(15+γ4,3, r3)+τ3)} = {(ϕ3(17), 17)} =
{(20, 17)}.

Finally we obtain: E(3, 13) = eff
(
(15, 18) ∪ (20, 17)

)
= {(15, 18), (20, 17)}.

The consecutive number 6 is assigned to the estimate (15, 18), which is constructed
on the basis of the estimate having number 3, the calculations with the help of (17)
correspond to object o3 servicing in voyage λ+. The record has been entered in the table
cell as (15, 18)6,3,+.

Succeeding number 7 is assigned to the estimate (20, 17), the estimate being construct-
ed from the estimate of number 1, and the calculation using formula (19) corresponds
to object o3 servicing in voyage λ−. The record has been entered in the table cell as
(20, 17)7,1,−.

The remaining estimates entered in table 2 have been calculated in a similar manner.
The empty cells of Table 2 correspond to the unfeasible pairs (k, t).

Thus we have revealed that set E(1, 2) contains one estimate only. According to (21),
the single efficient estimate in the considered example is (41, 32); thus, there has been
defined an optimal strategy for both criteria considered here. The estimate indices that
have been entered in Table 2 allow easy finding the strategy, which generates the estimate:
objects 1, 3, 4 to be served in the direct voyage; object 2 to be served in the return voyage.
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Table 2: E(k, t) values

t\k 1 2 3 4
2 (41, 30)13,12,+
3 (41, 29)10,6,−

(45, 28)11,7,−
4 (41, 29)12,6,−
13 (15, 18)6,3,+

(20, 17)7,1,−
14 (15, 18)8,3,+ (0, 15)1,0,+
15 (0, 16)2,0,+
16 (15, 17)3,0,+
21 (190, 25)9,5,+
22 (105, 23)4,0,+
23 (120, 24)5,0,+

To estimate the computational complexity of the proposed algorithm we denote the
maximum of the values γj−1,j, γj,j−1, τj, j = 1, n, by Q, and the maximum of the values rj
by Q∗, j = 1, n. It is evident that servicing objects of the set On = {o1, o2, . . . , on} can be
accomplished not later thanM = 3Q+Q∗. The second coordinate of every estimate taken
from any set E(k, t) does not exceed M . Hence there are not more than M estimates in
each set E(k, t). The number of estimates of each set P (k, t) and Q(k, t) constructed for
E(k, t) calculation also does not exceedM . Consequently, we need no more than linearly
depending on M number of the elementary operations for each set E(k, t) synthesis.
The first argument in the sets E(k, t) can take n values, the second argument – no
more than M values. The upper bound for the number of constructed sets E(k, t) is
the product nM . Thus, the number of elementary operations necessary to construct the
set E is bounded above by the value of nM2 order. So the proposed algorithm of efficient
estimates synthesis in problem 2 is pseudo-polynomial.

5. Computational complexity of the problem 3

It is known [21], that if all ready dates rj are equal to zero and the individual penalty
functions ϕj(t) are linear, j = 1, n, then problem 3 has polynomial solution. However,
one cannot avoid the fact as follows.

Theorem 2. If all individual penalty functions are linear and there exists the single
object with non-zero ready date, then problem 3 is NP -hard.

The proof is that NP -complete partition problem [15] has to be polynomially-time
reduced to problem 3 that satisfies the theorem conditions. The partition problem is
given as follows. There exists a finite set of natural numbers W = {w1, w2, . . . , wn}; the
question arises whether it is possible to split this set into two disjoint subsets so that the
sum of the numbers from the first subset is equal to the sum of the numbers from the
second subset. The positive answer obviously necessitates the condition under which the
number from the set W does not exceed the half of the sum of all numbers . It should be
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also noted that the problem remains NP -complete in the case when all elements of the

set W are even numbers. Further we assume that
n∑
i=1

wi = 2U , all wi are even numbers

and wi < U , i = 1, n.
The initial data of the partition problem allow us to construct a problem where

processor P during the successive voyages λ+ and λ− is to serve stationary objects
o1, o2, . . . , on+2 located in one-dimensional working zone L; the object oi is assumed
to be located at point i, the values γi−1,i, γi,i−1, i = 1, n+ 2 are purported equaling
to 1. The objects o1 and on+2 of the set On+2 = {o1, o2, . . . , on+1, on+2} are considered
as "significant"; the remaining ones being assumed "ordinary". Servicing duration of
an ordinary object oi+1 is assumed to be equal to wi, i = 1, n; hence the total time
expenditure for servicing all ordinary objects is equal to 2U . Servicing periods of significant
objects are the following: τ1 = U+1, τn+2 = 1. Individual penalty functions for significant
objects are defined by the formulas: ϕ1(t) = t; ϕn+2(t) = Dt, where D is sufficiently large
constant, its value to be defined below. The individual penalty functions of the ordinary
objects are supposed to be identically equal to zero. Each object oj, j = 1, n+ 1 is
assumed to be ready for servicing starting from the moment t = 0; assuming that
rn+2 = (n+ 2) + U .

Servicing of the significant object on+2 may commence at the moment rn+2 if and
only if the processor consumes the time that does not exceed U envisaged for servicing
the remaining objects in the direct voyage, bearing in mind that all movements of the
processor in this voyage use up n+ 2 units of time.

Let us assume that servicing of the object on+2 commences at the moment rn+2. Then
the object penalty is equal toD(n+3+U); the object o1 is not served in the direct voyage,
and time consuming service of the ordinary objects under the given circumstances equals
to U − ε time, where ε is a number from the set {0, 1, . . . , U}. The fact that servicing
of the object o1 is accomplished at the moment T = 2n+ 3U + 5 + ε is easily calculated
for the case. The total penalty for all objects involved equals to D((n+ 3) + U) + T .

It should be noted that T ≤ 2n + 4U + 5 and we assume that D = 2n + 4U + 6.
The values thus prescribed prompt that the total penalty for all the objects does not
exceed D(n + 3 + U + 1); this is true in case the object o1 is being served in the direct
voyage or the time exceeding U is consumed for ordinary object service in the direct
voyage; otherwise, the object o1 is being served in the return voyage, and the time not
exceeding U is consumed for the ordinary object service in the direct voyage, then this
penalty is less than D(n+ 3 + U + 1).

Service problem thus constructed where total penalty criteria to be minimized, reveals
that the object o1 is to be served in the return voyage and the time U − ε is thought to
be consumed for the ordinary object service in the direct voyage. Total penalty for all
objects becomes equal to D(n+ 3 + U) + 2n+ 3U + 5 + ε. Lower estimate for the total
penalty is the value D(n + 3 + U) + 2n + 3U + 5 obtained when ε = 0 . We are in a
position to obtain this estimate provided that there is a subset of the ordinary objects
with the total servicing duration U , i.e. if the initial partition problem has a positive
answer.

The above model is mathematically reduced in the polynomially dependent time of
input data available. The theorem has thus been proved.
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6. Conclusion
Here we have presented a mathematical model of servicing where a moving processor is
to serve a set of the stationary objects positioned within the one-dimensional working
zone. We have defined the optimization problems with one and two criteria to evaluate
the quality of servicing schedules for the set of the objects. These criteria correspond to
situations arising in operative management of fuel supply to diesel-electrical complexes
afloat or dredgers.

We have developed the algorithms based on the dynamic programming and the Pareto
concept; the implementations of these algorithms have been demonstrated on numerical
examples.

We have shown that the algorithm for the problem of processing time minimization is
polynomial, and that the problem of total penalty minimization isNP -hard. Correspond-
ingly, the bi-criteria problem with the mentioned evaluation criteria is fundamentally
intractable, computational complexity of the schedule structure algorithm is exponential.

The entailing circumstances considered are not practically critical, since the number
of stationary objects does not exceed 13–15 units in existent production systems allowing
for the construction of an optimal schedule within an hour. In the meantime, there may
essentially exist larger amount of objects in production systems other than stated in view
of the considered mathematical model, and, as the case may be, it will call for efficient
heuristics approaches (see [22–25]) to seek optimization solutions.
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Построение расписаний обслуживания стационарных
объектов перемещающимся в одномерной зоне процессором

Дуничкина Н. А., Коган Д. И., Федосенко Ю. С.

Волжский государственный университет водного транспорта
603005 Россия, г. Нижний Новгород, ул. Нестерова, 5а

Московский государственный университет приборостроения и информатики
107996 Россия, г. Москва, ул. Стромынка, 20

Ключевые слова: теория расписаний, динамическое программирование,
принцип Парето, NP -трудность, многокритериальная оптимизация

Рассматривается математическая модель, в которой мобильный процессор, пере-
мещаясь в пределах одномерной рабочей зоны, реализует однофазное однократное
обслуживание рассредоточенной в пределах этой зоны совокупности стационарных
объектов. В процессе перемещений в рабочей зоне процессор совершает два рей-
са – прямой и обратный. При этом часть объектов обслуживается в прямом рейсе,
остальные объекты – в обратном рейсе. Обслуживание любого объекта нельзя на-
чать ранее предписанного ему срока. С каждым объектом ассоциирован индивиду-
альный штраф, являющийся монотонно возрастающей функцией от момента завер-
шения его обслуживания. В качестве минимизируемых критериев оценки качества
расписаний обслуживания выступают момент завершения работ по всей совокуп-
ности объектов и величина суммарного штрафа по ним. Ставятся и исследуются
оптимизационные задачи с одним и двумя критериями оценки, конструируемые
решающие алгоритмы основаны на принципе динамического программирования и
концепции Парето; последовательная их реализация продемонстрирована на чис-
ленных примерах. Показано, что алгоритм решения задачи на оптимальное быст-
родействие является полиномиальным, а задача построения расписания обслужи-
вания, обеспечивающего минимизацию величины суммарного штрафа по всем объ-
ектам, является NP–трудной. Соответственно бикритериальная задача с указанны-
ми критериями оценки относится к числу труднорешаемых, вычислительная слож-
ность алгоритма построения расписания обслуживания является экспоненциальной.
Модель описывает процессы снабжения топливом плавучих дизель-электрических
комплексов, осуществляющих русловую добычу инертных строительных материа-
лов в крупномасштабных районах речных путей. Модели и оптимизационные за-
дачи, подобные рассматриваемым, представляют интерес для таких приложений,
как управление дозаправкой топливом орбитальной группировки спутников и ма-
гистральных гражданских самолетов.

Статья публикуется в авторской редакции.
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