
Модел. и анализ информ. систем. Т.22, №3 (2015) 392–403
c©Begicheva A. K., Lomazova I. A., 2015

DOI: 10.18255/1818–1015–2015–3–392–403
UDC 517.9

Does Your Event Log Fit the High-Level Process
Model?1

Begicheva A. K., Lomazova I. A.

National Research University Higher School of Economics
Myasnitskaya str. 20, Moscow, 101000, Russia

e-mail: ilomazova@hse.ru, akbegicheva@edu.hse.ru

received June 28, 2015

Keywords: Petri nets, high-level process models, event logs, process mining,
conformance checking

Process mining is a relatively new field of computer science, which deals with
process discovery and analysis based on event logs. In this paper we consider the
problem of models and event logs conformance checking. Conformance checking is
intensively studied in the frame of process mining research, but only models and
event logs of the same granularity were considered in the literature. Here we present
and justify the method of checking conformance between a high-level model (e.g.
built by an expert) and a low-level log (generated by a system).

The article is published in the author’s wording.

Introduction
Process mining [1] is a new technology, that provides variety of methods to discover,
monitor and improve real processes by extracting knowledge from event logs. Conformance
checking [1, 8, 7, 3] is one of the most prominent process mining tasks. It is needed for
diagnosis and quantifying discrepancies between observed and modeled behavior. There
are many software products which allow us to use methods of Process Mining. ProM
[6] is an open-source tool supporting many techniques of Process Mining, which are
represented as plug-ins. Due to a flexibility of this environment it can be used both for
research and applications.

Conformance checking uses both an event log and a model, and compares observed
behavior written in the log with the behavior produced by the model. The general goal is
to find discrepancies between them to improve a model. Conformance checking techniques
can also be used for measuring the performance of process discovery algorithms (that

1This study was carried out within the National Research University Higher School of Economics’
Academic Fund.

392

Does your event log fit the high-level process model? 393

restores a model on the basis of a known log) and to repair models that have not got a
well alignment with the real behavior of the process.

There are four evaluation criteria in conformance checking: fitness, precision, gene-
ralization and simplicity. Fitness shows at what extent traces from the event log can be
reproduced by the model. Among the other quality criteria, fitness is the most related
to the conformance. An obvious approach to measure fitness is to count the fraction of
cases that can be "parsed completely"(i.e. the proportion of cases corresponding to firing
sequences leading from [start] to [end]). Fitness can range from 0 to 1. It is supposed
that fitness is equal to 1, if the log perfectly fits the model.

More subtle methods for measuring fitness are based on the replay approach [8].
When measuring fitness by replaying, we do not stop replaying a trace when we face a
problem, but continue replaying the trace, and record a count of all missing tokens and
all tokens that are pending at the end.

When working with business processes we typically use detailed logs, which present
the full report about sequences of executed activities. Since in most information systems
logs are generated automatically, keeping detailed records is not a problem. However,
large and detailed models are not good to deal with. Such models are not clear and
readable for experts. Experts prefer working with more abstract (high-level) models.
More abstract models are easier to construct, understand and analyze. Process models
developed by people are, as a rule, not very large and abstract from technical details.
The problem has been studied in the literature only for discovering abstract models from
low-level event logs. In [4, 5] methods for discovering abstract models based on finding
behavior patterns in event logs were proposed. Thus checking conformance of an abstract
model and a low-level event log generated by an information system is an important and
challenging problem.

In this paper we consider process models represented by workflow nets – a special
class of Petri nets for workflow modeling [2]. In an abstract model each separate activity
represents a sub-process built from a set of more refined activities. A history of a detailed
process behavior is recorded in low-level logs. We present a algorithm for checking
conformance between an abstract model and a low-level event log. The algorithm is
proved to be correct for perfectly fitted logs. Software implementation of the algorithm
is developed as a plug-in for ProM. The algorithm was tested on groups of input data
with different characteristics and types of noise.

The paper is organized as follows. In Section II we give a motivating example of
handling a request for a compensation within airline in terms of Petri nets. Section III
contains some basic definitions and notions, including Petri nets, event log, perfect fitness
and refinement. In Section IV we present a method for checking conformance between an
abstract model and a low-level log. We also give a justification of this method by proving
its correctness in the case of perfect fitness. Experiments that confirm the adequacy of
our algorithm on imperfect data are described in Section V. Section VI contains some
conclusions.

1. Motivating Example
Let us consider a toy model from [1], which describes handling a request for a compensation
from the airline. Here customers may request compensations for various reasons. An

394 Моделирование и анализ информационных систем Т.22, №3 (2015)

p0

p1 p2

p3 p4

p5 p6

e0

e1

e2

e3

e4

e6

e7

e5

Fig. 1. An abstract model N1 for handling compensation requests

t0

t1

t2

t3

t13 t14 t15 t16

t17 t18

t25 t26 t27

t24 t23

t21t19 t20

t22

t10t11t12

t4t5
t6

t7
t8t9

p0

p1

p2

p3

p4

p5
p6

register request
check ticket

decide

reject request

reinitiate request

pay compensation

examine thoroughly

examine casually

Fig. 2. A low-level model N2 refined from the model N1 in Fig. 1

abstract model of this process (expressed in terms of a Petri net) is presented in Fig.1.
Transitions, corresponding to activities, are pictorially represented by squares and con-
nected through other types of elements — places. Each place is represented as a circle
and models a local state of the process. A distribution of tokens in net places indicates
a total state of the system and is called a marking. A transition is enabled when each of
its input places contains a token. For example the transition e0 can fire since the initial
place p0 contains a token. When firing, a transition consumes one token from each its
input place and produces one token for each of its output places.

The process begins with registering the request (transition e0). The meaning of other
transitions is as follows: e1 — examine thoroughly, e2 — examine casually, e3 — check
ticket, e4 — decide, e5 — re-initiate request, e6 — pay compensation and e7 — reject
request.

Fig.2 presents a refined model of the same process, obtained by substitution of
detailed descriptions for abstract activities. For example, ’register request’ action is
to read the request (transition t0) and then to record it in one of two possible ways
(transition t1, or t2). To avoid congestion of activities’ names in the low-level model in
Fig.2 only places inherited from the abstract model are labeled in the picture. Low-level
transitions in Fig.2 are grouped into blocks according to the high-level activities.

We study the situation when a low-level model is not available (or even does not exist).
Given an abstract (high-level) model constructed by experts or software developers, and
an event log generated by an information system, we would like to know whether the
model conforms the real system behavior represented by the event log. A sample of such

Does your event log fit the high-level process model? 395

L = { < t0, t1, t3, t4, t5, t6, t13, t14, t7, t8, t15, t9, t16, t17, t18, t25, t26, t27 >,

< t0, t1, t3, t4, t13, t14, t5, t7, t15, t6, t8, t9, t16, t17, t18, t24, t23, t22 >,

< t0, t1, t3, t13, t10, t11, t14, t15, t12, t16, t17, t18, t24, t23, t22 >,

< t0, t2, t3, t13, t4, t14, t15, t5, t6, t7, t8, t9, t16, t17, t18, t25, t26, t27 >,

< t0, t2, t3, t4, t13, t14, t15, t5, t7, t6, t8, t9, t16, t17, t18, t24, t23, t22 >,

< t0, t1, t3, t10, t11, t13, t12, t14, t15, t16, t17, t18, t19, t20, t21, t10, t11,

t13, t14, t15, t12, t16, t17, t18, t25, t26, t27 >,

< t0, t2, t3, t13, t10, t14, t15, t11, t12, t16, t17, t18, t24, t23, t22 >,

< t0, t2, t3, t13, t10, t11, t12, t14, t15, t16, t17, t18, t19, t20, t21, t10, t13,

t14, t11, t15, t12, t16, t17, t18, t24, t23, t22 >,

< t0, t2, t3, t13, t14, t10, t11, t15, t12, t16, t17, t18, t25, t26, t27 >}.

Fig. 3. An event log L2, generated by the refined model N2 in Fig. 2

an event log for our example is shown in Fig.3. This log is generated by the low-level
model in Fig.2, and thus perfectly fits it. An abstract model and a low-level event log
cannot be directly compared, since in the model high-level events are used, and the log
contains low-level events. So, a one-to -many correspondence between high- and low-
level events is needed for checking conformance. In our example the abstract event e0
corresponds to the set {t0, t1, t2} of low-level events, e1 — to the set {t13, t14, t15}, etc.
This correspondence will be used in the algorithm for measuring conformance between
a high-level model and a low-level event log.

2. Preliminaries
In this section we give some basic notions and definitions used the paper.

Let S be a set. By S∗ we denote the set of all finite sequences (words) over S.
S = S1 ∪ S2 ∪ . . . ∪ Sn is a partition of S iff ∀i, j ∈ [1, n] : Si ⊆ S and Si ∩ Sj = ∅.

A multiset m over a set S is a mapping m : S → Nat, where Nat is the set of natural
numbers (including zero), i.e. a multiset may contain several copies of the same element.

Definition 1 (Petri net). Let P and T be disjoint finite sets of places and transitions
and F : (P ×T)∪(T ×P)→ Nat. Then N = (P, T, F) is a Petri net. Let A be a finite set
of activities. A labeled Petri net is a Petri net with a labeling function λ : T → A ∪ {ε}
which maps every transition to an activity (a transition label) from A, or a special label
ε, corresponding to an invisible action.

A marking in a Petri net is a function m : P → Nat, mapping each place to some
natural number (possibly zero).

For a transition t ∈ T a preset •t and a postset t• are defined as the multisets over P
such that •t = {p|F (p, t) 6= 0} and t• = {p|F (t, p) 6= 0} for each p ∈ P .

A transition t ∈ T is enabled in a marking m iff ∀p ∈ P m(p) ≥ F (p, t). An enabled
transition t may fire yielding a new marking i. e. m′(p) = m(p) − F (p, t) + F (t, p) for

396 Моделирование и анализ информационных систем Т.22, №3 (2015)

nn nn
i if f

Extended WF-net t+(N)WF-net N

- -

ti tf
s

Fig. 4. An extending WF-net with initial and final transitions

each p ∈ P (denoted m t→ m′).
A Workflow net is a (labeled) Petri net with two special places: i and f . These places

are used to mark the beginning and the ending of a workflow process.

Definition 2 (Workflow net). A (labeled) Petri net N = (P, T, F, λ) is called a workflow
net (WF-net) iff

1. There is one source place i ∈ P and one sink place f ∈ P s. t. •i = f • = ∅;

2. Every node from P ∪ T is on a path from i to f .

3. The initial marking in N contains the only token in its source place.

By abuse of notation we denote by i both the source place and the initial marking in
a WF-net. Similarly, we use f to denote the final marking in a WF-net N , defined as a
marking containing the only token in the sink place f .

Let N = (P, T, F, λ) be a WF-net. Then we define the extended WF-net (EWF-net)
N ′ = (P ′, T ′, F ′, λ′) as follows: P ′ = P, T ′ = T ∪ {ti, tf}, and F ′ = F ∪ {〈ti, i〉, 〈f, tf〉},
where ti, tf are new (not occurring in P, T) nodes. The new transitions ti, tf are labeled
with invisible activity ε in N ′, all other transitions in N ′ have the same labels as in
N . The initial marking in an extended WF-net contains no tokens. Thus an extended
WF-net may start a new case at any moment (cf. Fig.4).

Event logs keep a history of process executions.

Definition 3 (Event log). Let A be a finite set of activities. A trace σ (over A) is a
finite sequence of activities, i.e., σ ∈ A∗. An event log L (over A) is a finite multi-set
of traces, i.e. L ∈M(A∗).

In this paper we study conformance checking. Given a model and an event log we
would like to compare the process model behavior and the behavior recorded in the
event log. Several metrics for conformance checking were defined in the literature [1].
Among the most important metrics is fitness. Informally speaking, fitness measures the
proportion of behavior in the event log possible according to the model.

Definition 4 (Perfect fit). Let N be a WF-net with transition labels from A, an initial
marking i, and a final marking f . Let σ be a trace over A. We say that a trace σ =

a1, . . . , ak perfectly fits N iff there exists a sequence of firings i = m0
t1→ . . .

tk→ mk+1 =
f in N , s.t. the sequence of activities λ(t1), λ(t2), . . . , λ(tk) after deleting all invisible
activities ε coincides with σ. A log L perfectly fits N iff every trace from L perfectly fits
N .

Does your event log fit the high-level process model? 397

Petri nets can be extended by adding a hierarchy as it is done e.g. in Colored Petri
nets (CPN) [9]. Hierarchy allows to develop more compact and readable models. In the
case of two-level hierarchy there are two models of one process: a high-level (abstract)
model and a low-level (refined) model. The high-level model is a model with abstract
transitions. An abstract transition refers to a Petri net sub-process, which refines the
activity represented by this transition. The low-level model can be obtained from an
abstract model by substituting subprocess models for abstract transitions.

Definition 5 (Substitution). Let N1 = (P1, T1, F1, λ1) be a WF-net, t ∈ T be a transition
in N1. Let also N2 = (P2, T2, F2, λ2) be an EWF-net with the initial and final transitions
ti, tf correspondingly. We say that a WF-net N3 = (P3, T3, F3, λ) is obtained by a substi-
tution [t→ N2] of N2 for t in N1 iff P3 = P1∪P2, T3 = T1∪T2\{t}, F3 = F1∪F2\{(p, t) |
p ∈ •t} \ {(t, p) | p ∈ t•} ∪ {(p, ti) | p ∈ •t} ∪ {(tf , p) | p ∈ t•},

Definition 6 (Refinement). Let N,Nr be two WF-nets with sets of activities A,Ar
correspondingly. Let A = a1, a2, . . . , an, and Ar = A1

r ∪ A2
r ∪ . . . ∪ Anr be a partition of

Ar into n subsets, and N1, N2, . . . Nn be EWF-nets with sets of activities A1
r, . . . , A

n
r

correspondingly. We say that Nr is a refinement of N via substitutions [a1 → N1
r , a2 →

N2
r , . . . an → Nn

r] iff Nr can be obtained from N by simultaneous substitutions of N i
r for

all t s.t. λ(t) = ai.

3. Algorithm for Checking Conformance between an
Abstract Model and a Low-Level Event Log

The idea of the algorithm is as follows. To check conformance between an abstract model
and a low-level log, we first transform the given log into a log over abstract activities. For
this purpose, each low-level activity in the log is replaced by a name of the sub-process
(an abstract activity) it belongs to. As a result we get a log over the set of abstract
activities.

Traces in this log may contain several sequential occurrences of the same abstract
activity, since there are several steps corresponding to this activity in the low-level trace.
Then the next step is to get rid of “stuttering"by replacing several sequential occurrences
of the same activity with just one.

However, this is still not enough to start checking conformance using known methods.
Note, that when we have two concurrent sub-processes, represented by two concurrent
abstract activities in an abstract model, stuttering sequences may interleave. To overcome
this problem we transform an abstract model into a model allowing stuttering of each
abstract activity. This is done by adding loops to transitions in the abstract model.

Now we describe the algorithm for checking conformance between an abstract model
and a low-level log more precisely.

Algorithm 1. (Checking conformance between a high-level model and a low-level
event log).

Let N = (P, T, F, λ) be a WF-net corresponding to an abstract model of a process
over a set of activities A, and let Lr be an event log (a finite multiset of traces) over a
set Ar of low-level activities. Let also δ : Ar → A be a function that maps each low-level
activity to a certain high-level activity from A.

398 Моделирование и анализ информационных систем Т.22, №3 (2015)

L = { < e0, e1, e3, e1, e3, e1, e4, e7 >,< e0, e1, e3, e1, e3, e1, e4, e6 >,

< e0, e3, e2, e3, e2, e4, e6 >,< e0, e3, e1, e3, e1, e4, e7 >,< e0, e1, e3, e1, e4, e6 >,

< e0, e2, e3, e2, e3, e4, e5, e2, e3, e2, e4, e7 >,< e0, e3, e2, e3, e2, e4, e6 >,

< e0, e3, e2, e3, e4, e5, e2, e3, e2, e3, e2, e4, e6 >,< e0, e3, e2, e3, e2, e4, e7 >}.

Fig. 5. The ’abstract’ event log L1 obtained by converting the log L2 in Fig. 3

Step 1. Convert Lr into an event log L over the set of activities A by replacing each
activity a ∈ Lr in each trace with the activity δ(a).

Step 2. Get rid of ’stuttering’ in L by replacing for each trace each substring consisting
of the same repeating activity with one occurrence of this activity.

Step 3. Check whether there are traces in L with with more than one (not consecutive)
occurrences of the same activity. If there are no such traces, go to the Step 5,
otherwise go to the Step 4.

Step 4. For a trace σ ∈ L, let Bσ be the set of activities which have more than one
occurrence in σ, and let B ⊆ A be the set of all activities with multiple occurrences
in L, i.e. B = ∪σ∈LBσ.

For each transition t labeled with an activity from B in the net N add a loop, as
follows:

• add two new transitions to T in N : a transition tε labeled by the invisible
action ε and a transition t′ labeled by λ(t) ;

• add a new place p′ to P in N ;

• add new arcs (tε, p
′), (p′, t′), (t′, p′), (p′, t), and for each place p ∈ •t add an arc

(p, tε).

Step 5. Measure the conformance between N (with the added loops) and L (without
stuttering) by applying one of existing algorithms (e.g. the replay algorithm).

We illustrate this algorithm by applying it to the WF-net N1 in Fig. 1 and the log
L2 in Fig. 3. First, we convert the event log L2 into a high-level log. The log obtained
as the result of this is denoted by L1 and is shown in Fig. 5.

Then we add loops to the abstract model N1 and obtain the new model N ′1, shown in
Fig. 6. Here the invisible transitions are colored in black. The model N ′a allows stuttering
of activities e1, e2, and e3.

And finally we check conformance between the model N ′1 and the log L1 by replaying
traces from L1 in N ′1. It turns out, that all traces from L1 can be exactly replayed in
N ′1, i.e. the log L1 perfectly fits N ′1. This is not by chance. The following theorem states,
that the proposed conformance checking method is correct under perfect fitness.

Theorem 1. Let N be a WF-net with transitions labeled by activities from a set A, and
let Nr be a WF-net, obtained by refining N with transitions labeled by activities from Ar.

Does your event log fit the high-level process model? 399

p0

p1 p2

p3 p4 p5

p6
e0

e1

e2

e6

e7

e5

e3

e4

e3

e1

e2

Fig. 6. The abstract model N1 after adding loops

Let also Lr ∈ M(A∗r) be an event log over the set Ar. Then if Lr perfectly fits Nr, the
output of the Algorithm 1 will be equal to 1.

The proof of this theorem is based on checking (by induction on the trace length) that
in the theorem conditions each trace from L with removed stutterings can be exactly
replayed in N with added loops. We omit the detailed proof of the theorem, since it is
rather technical and straightforward.

4. Experimental Validation of Algorithm

We have proven, that our method recognizes perfect fitness between an abstract model
and a low-level log correctly. This can be considered as a justification of the proposed
approach. However, it is not enough, since it is very important to check the method on
logs and/or models with deviations.

To ensure that the algorithm is suitable for checking conformance not only in the case
of perfect fitness, we have implemented the algorithm and run it on different input data:
event logs with noise, models with some small modifications, and models with significant
deviations.

The proposed algorithm was implemented as a plug-in named "Conformance Checking
for High-Level model and Event log, Transformation"within the ProM 6 framework [11].
Our plug-in receives a high-level process model in PNML format and a low-level event
log in XES format as an input. During the plug-in execution first the Petri net model
is visualized, then the user is asked to define a partition for the set of actions occurring
in the log and to match an abstract event (occurring in the model) to each subset of
the partition. After running the plug-in the user can apply any known algorithm for the
standard conformance checking. There are several such algorithms in ProM.

For measuring fitness the plug-in for replay-based conformance analysis (described
in [3]) was used.

The first group of experiments concerns event logs with some noise. We consider
several kinds of noise:

400 Моделирование и анализ информационных систем Т.22, №3 (2015)

Kind of noise Level of noise Low-level
fitness

High-level
fitness

adding an event

10 0,888 0,878
10 0,905 0,894
10 0,874 0,888
10 0,888 0,864

adding a new event 10 0,894 0,892
10 0,885 0,878

skipping an event

10 0,93 1
20 0,876 1
30 0,782 0,986
40 0,706 0,967
50 0,629 0,920
60 0,533 0,894

Table 1. Fitness for event logs with noise

Type of routing Low-level trace fitness High-level trace fitness
sequential 0,95 0,96
AND-split 0,97 0,96
AND-join 0,97 0,96
OR-split 0,96 0,97
OR-join 0,97 0,96

Table 2. Fitness for event logs with specific noise

1. Adding an extra record for the event occurrence in a random place in the event log
for an event presented already in the model.

2. Adding a record for the event occurrence in a random place in the event log for
some new event.

3. Skipping randomly a record for the event occurrence.

4. Adding some specific noise, significant for the conformance of the high-level model,
while not so important for the low-level conformance.

Experiments were carried out for the artificial model in Fig. 1 and its refinement in
Fig. 2. Logs with different kinds and levels of noise were generated with the help of Log
Generator plug-in [10], where the level of noise is measured as the probability of applying
a certain kind of change to records in the event log.

The obtained results are presented in Table 1 and Table 2. Here the low-level fitness
is the fitness for an event log and the refined model, measured by direct replay-based
conformance analysis, and the high-level fitness is the fitness for the same event log and
the abstract model, computed using our algorithm.

Does your event log fit the high-level process model? 401

Changing the model Average fitness
adding a transition 1

adding an arc 0,912
adding a place 0,977

removing a transition 0,884
removing a place 0,963
removing an arc 0,969

swapping two transitions 0,702

Table 3. Fitness for models with minor structural changes

In most cases the high-level fitness values are greater than the corresponding low-level
values, since deviations on the low-level may be not noticeable on the level of abstract
model.

The cases when the high-level fitness is a little less then the low-level one can be also
explained. This can be caused by an artificial random noise inserting a low-level event
into a group of events from some different abstract activity. We believe, this case is very
rare in real-life logs.

Some information systems record not just event execution, but starting and ending
of an event. Then deviations in fixing timestamps may lead to violations in fixing events
order. Such cases we consider as a specific noise (connected with fixing timestamps),
which could be supposed to crucially influence the high-level fitness values. For imitating
this kind of noise we added noise affecting concrete routing constructions. The experiment
results in Table 2 shows that such noise is not really important.

The second group of experiments concerns small deviations in the abstract model.
Experiments were done for the same artificial abstract model. The question was the
extent to which local changes in the model affect the fitness results. To answer this
question we have measured fitness of originally perfectly fitting logs for models, obtained
from the original abstract model with local structural changes. The results are presented
in Table 3. They show the resistance of our algorithm to small structural changes in the
model. Note also, that the replay-based algorithm allows not just measure the fitness,
but also to localize log deviations in the model. The experiments show that our algorithm
localizes deviations in the same way as the original replay-based algorithm. We made
some changes in the plug-in, it allows us to verify that after our transformation the
location of noise is recognized correctly. This test also was successfully passed.

One more group of experiments concerns measuring fitness, when the level of confor-
mance between a model and an event log is far from being perfect. To check the stability
of our algorithm we compare the high-level fitness for an abstract model and an event
log, measured by our method, and the low-level fitness, i.e. the fitness of the same event
log and a refined model measured by direct replaying the log.

The results for different degrees of conformance are shown in Table 4. As expected,
here also the high-level fitness values are greater than the corresponding low-level values.
The reason is in more rough granularity of the abstract model, when some subprocess
deviations cannot reflected in the model. However, there is a good correspondence
between high-level and low-level (used as a reference) fitnesses.

402 Моделирование и анализ информационных систем Т.22, №3 (2015)

High degree
of conformance
High-
level
fitness

Low-
level
fitness

Middle degree
of conformance
High-
level
fitness

Low-
level
fitness

Low degree
of conformance
High-
level
fitness

Low-
level
fitness

case 1 0.928 0.872 0.655 0.431 0.608 0.412
case 2 0.903 0.866 0.691 0.509 0.633 0.361
case 3 0.866 0.827 0.568 0.312 0.524 0.279
case 4 0.885 0.787 0.599 0.398 0.573 0.346

Table 4. Fitness for models with different degrees of conformance

5. Conclusion
Abstract models are much more clear and more understandable than low-level models.
But information systems generate only low-level event logs, which cannot be used for
direct conformance checking. So, checking conformance of a high-level business model to
a low-level event log is very important for facilitating the work of experts on analysis
and enhancement of business information systems.

In this paper we provide a robust technique for solving this problem, which is based
on transforming both the model and the log and then applying one of already known
methods for measuring fitness. We’ve proved our method to be correct in the case
of perfect conformance between a model and an event logs. Also we had developed a
ProM plug-in which implements the proposed algorithm and tested applicability of our
technique on artificial imperfect data with noise and deviations.

References

[1] van der Aalst W.M.P., Process Mining: Discovery, Conformance and Enhancement of
Business Processes, Springer-Verlag, Berlin, 2011.

[2] van der Aalst W.M.P., van Hee K.M., Workflow Management: Models, Methods and
Systems, MIT Press, Cambridge, MA, 2002.

[3] Adriansyah A., van Dongen B. F., van der Aalst W.M.P., “Conformance Checking Us-
ing Cost-Based Fitness Analysis”, IEEE 15th International Enterprise Distributed Object
Computing Conference, 2011, 55–64.

[4] Bose R.P. J. C., van der Aalst W.M.P., “Abstractions in Process Mining: A Taxonomy of
Patterns. In Business Process Management”, Lecture Notes in Computer Science, 5701
(2009), 159–175.

[5] Bose R.P. J. C., Verbeek H.M.W., van der Aalst W.M.P., “Discovering Hierarchical Pro-
cess Models Using ProM”, CAiSE Forum (Selected Papers), 2011, 33–48.

[6] van Dongen B. F., Alves de Medeiros A.K., Verbeek H.M.W., Weijters A. J.M.M.,
van der Aalst W.M.P., “The ProM framework: A New Era in Process Mining Tool Sup-
port”, Lecture Notes in Computer Science, 3536 (2005), 444–454.

[7] Rozinat A., Process mining: conformance and extension, Technische Universiteit, Eind-
hoven, 2010.

[8] Rozinat A., van der Aalst W.M.P., “Conformance Testing: Measuring the Alignment
Between Event Logs and Process Models”, BETA Working Paper Series, 144 (2005),
203–210.

Does your event log fit the high-level process model? 403

[9] Jensen K., Kristensen L.M., “Coloured Petri Nets: Modelling and Validation of Concurrent
Systems”, 2009.

[10] Shugurov I., Mitsyuk A., “Generation of a Set of Event Logs with Noise”, Proc. of the
8th Spring/Summer Young Researchers’ Colloquium on Software Engineering (SYRCoSE
2014), 2014, 88–95.

[11] Verbeek H.M.W., Buijs J. C.A.M., van Dongen B. F., van der Aalst W.M.P., “Prom 6:
The process mining toolkit”, Proc. of BPM Demonstration, 615, 2010, 34–39.

Соответствует ли Ваш журнал событий высокоуровневой
модели процесса?

Бегичева А.К., Ломазова И.А.

Национальный Исследовательский Университет «Высшая Школа Экономики»
’

101000, Россия, Москва, ул. Мясницкая, 20

Ключевые слова: сети Петри, высокоуровневые модели процессов, журналы
событий, Process Mining, проверка соответствия

Process mining – это технология, которая посредством извлечения данных из
журнала событий предоставляет различные методы для исследования реального
процесса, его улучшения и контроля над ним. В данной статье мы рассматрива-
ем проблему проверки соответствия между высокоуровневой моделью процесса и
журналом событий. Проверка соответствия интенсивно изучается в рамках process
mining, но в литературе можно найти только методы, позволяющие измерить этот
показатель между логом и моделью одного уровня. В статье мы представляем ал-
горитм проверки соответствия между высокоуровневой моделью процесса (постро-
енной экспертами) и низкоуровневым журналом событий (сгенерированным систе-
мой), а также доказываем его применимость.

Статья публикуется в авторской редакции.

Сведения об авторах:
Бегичева Антонина Константиновна,

Национальный исследовательский университет «Высшая школа экономики»,
Научно-учебная лаборатория ПОИС, стажер-исследователь

Ломазова Ирина Александровна,
Национальный исследовательский университет «Высшая школа экономики»,

доктор физ.-мат. наук, профессор

	References
	Introduction
	Notation and definitions
	Helpful facts and techniques
	Integration in Hilbert space
	Derivatives of cylindrical functions
	Differential operator on a finite-dimensional space
	Strongly continuous semigroups of operators and evolutionary equations
	Properties of spaces D, X, D1

	Main results
	Family St provides a semigroup with generator L
	Feynman formula solves the Cauchy problem for the parabolic equation

	Acknowledgments
	References
	Mathematical Model And Problems Formulation
	Compact schedules and 0-schedules
	Problem 1 solving algorithm
	Problem 2 solving algorithm
	Computational complexity of the problem 3
	Conclusion
	References
	Список литературы
	Motivating Example
	Preliminaries
	Algorithm for Checking Conformance between an Abstract Model and a Low-Level Event Log
	Experimental Validation of Algorithm
	Conclusion
	References
	Список литературы
	Постановка задачи
	Существование решения
	Исследование устойчивости решения
	Случай 1.
	Случай 2.

	Расположение областей устойчивости при =0
	Список литературы
	Постановка задачи. Анализ устойчивости нулевого решения
	Характер поведения решений уравнения (1) в окрестности резонанса 1:3
	Список литературы

