*Моделирование и анализ информационных систем.* Т. 22, № 4 (2015), с. 453–463 *Modeling and Analysis of Information Systems.* Vol. 22, No 4 (2015), pp. 453–463

©Бондаренко В. А., Николаев А. В., Шовгенов Д. А., 2015 **DOI:** 10.18255/1818-1015-2015-4-453-463 УДК 519.16 + 514.172.45

## Полиэдральные графы задач об остовных деревьях при дополнительных ограничениях

Бондаренко В. А.<sup>1</sup>, Николаев А. В.<sup>2</sup>, Шовгенов Д. А.<sup>1</sup>

получена 30 июля 2015

Исследуются полиэдральные графы двух задач о минимальном остовном дереве при дополнительных ограничениях. В первой задаче речь идет об отыскании дерева с минимальной суммой весов ребер среди всех остовных деревьев, количество висячих вершин которых не превосходит заданную величину. Во второй задаче дополнительное ограничение заключается в предположении о том, что степени всех вершин искомого дерева не превосходят заданную величину. Обе рассматриваемые задачи в варианте распознавания являются NP-полными.

В работе изучаются многогранники указанных задач и их графы. Устанавливается, что в обоих случаях распознавание смежности вершин этих графов представляет собой NP-полную задачу. Несмотря на это, удается получить сверхполиномиальные нижние оценки плотности (кликового числа) этих графов, которые характеризуют временную трудоемкость в широком классе алгоритмов, использующих линейные сравнения. Приведенные результаты свидетельствуют о принципиальном отличии комбинаторно-геометрических свойств рассматриваемых задач от классической задачи о минимальном остовном дереве.

Ключевые слова: остовное дерево, полиэдральный граф, плотность графа, NP-полная задача, гамильтонова цепь

**Для цитирования:** Бондаренко В. А., Николаев А. В., Шовгенов Д. А., "Полиэдральные графы задач об остовных деревьях при дополнительных ограничениях", *Моделирование и анализ информационных систем*, **22**:4 (2015), 453–463.

**Об авторах:** Бондаренко Владимир Александрович, orcid.org/0000-0002-5976-3446, д-р физ.-мат. наук, профессор, Ярославский государственный университет им. П.Г. Демидова,

ул. Советская, 14, г. Ярославль, 150000, Россия, e-mail: bond@bond.edu.yar.ru

Николаев Андрей Валерьевич, orcid.org/0000-0003-4705-2409, канд. физ.-мат. наук, Ярославский государственный университет им. П.Г. Демидова, ул. Советская, 14, г. Ярославль, 150000, Россия, e-mail: werdan.nik@gmail.com

Шовгенов Джамболет Азаматович, orcid.org/0000-0003-2022-4514, аспирант, Ярославский государственный университет им. П.Г. Демидова, ул. Советская, 14, г. Ярославль, 150000, Россия, e-mail: djsh92@mail.ru

#### Благодарности:

<sup>1</sup>При поддержке гранта РФФИ № 14-01-00333.

<sup>2</sup>При поддержке гранта Президента Российской Федерации МК-5400.2015.13.

#### 1. Введение

Значительное число работ, связанных с вычислительной сложностью комбинаторных задач, направлено на изучение геометрических объектов, ассоциированных с задачами. Чаще всего такими объектами являются многогранники задач и графы этих многогранников. В частности, плотность полиэдрального графа (размер максимальной клики) задачи служит нижней оценкой вычислительной сложности в широком классе алгоритмов, основанных на линейных сравнениях. Более того, выяснилось, что эта характеристика полиномиальна для известных полиномиально разрешимых задач и сверхполиномиальна для труднорешаемых (см., например, [1–3]).

Хорошо известны задачи, которые в общей постановке полиномиально разрешимы, однако при введении дополнительных ограничений становятся NP-полными. Иногда происходит обратное: задача является NP-полной, однако введение дополнительных ограничений даёт возможность сконструировать для нее эффективный алгоритм. В связи с этим возникает вопрос: как введение дополнительных ограничений влияет на характеристики полиэдрального графа задачи?

Ниже рассматриваются задачи комбинаторной оптимизации, являющиеся задачами на графах и допускающие следующую постановку: задан реберно-взвешенный граф G = (V, E) и некоторое множество T его подграфов, требуется найти подграф из T, имеющий минимальный (или максимальный) вес, под которым понимается сумма весов входящих в него рёбер.

Минимальное остовное дерево (minimum spanning tree, MST). В этой классической задаче требуется найти в связном графе G остовное дерево с минимальным весом.

Задача об остовном дереве полиномиально разрешима, например, алгоритмами Прима и Краскала [4].

Минимальное остовное дерево с ограничением на число висячих вершин (leaf constrained minimum spanning tree, LCST). В этой задаче требуется найти в связном графе G(V, E) дерево минимального веса среди всех остовных деревьев, у которых число вершин степени 1 не превосходит заданную величину k < |V|.

Минимальное остовное дерево с ограничением на число висячих вершин в подграфе (restricted-leaf-in-subgraph minimum spanning tree, RLSST). Заданы связный граф G, некоторое подмножество U его вершин и положительное целое k < |U|, требуется найти в G остовное дерево минимального веса, не более kвисячих вершин которого принадлежат множеству U.

Минимальное остовное дерево с ограничением на множество висячих вершин (set version of leaf constrained minimum spanning tree, SVST). Для связного графа G(V, E) и некоторого подмножества U его вершин требуется найти в G остовное дерево минимального веса, все висячие вершины которого принадлежат множеству U.

Минимальное остовное дерево ограниченной степени (degree constrained minimum spanning tree, DCST). В этой задаче требуется найти дерево минимального веса среди всех остовных деревьев, степени вершин которых не превосходят заданную величину k.

В отличие от простой задачи об остовном дереве, для всех приведенных выше

задач уже проверка существования в графе G хотя бы одного остовного дерева, удовлетворяющего дополнительным ограничениям, является NP-полной задачей [5, 6].

Значительное число работ посвящено построению приближенных алгоритмов для задач об остовном дереве с ограничениями на число листьев и степени вершин [6–8]. В частности, можно выделить линейный 2-аппроксимационный алгоритм для двойственной задачи поиска остовного дерева с максимальным числом внутренних узлов [9] и полиномиальный алгоритм построения остовного дерева с максимальной степенью вершин k + 1 и суммарным весом, не превышающим веса оптимального остовного дерева со степенями вершин не более k [10].

#### 2. Многогранник задачи

Рассмотрим упомянутую выше общую задачу на графе G = (V, E) с множеством *T* его подграфов. Пусть |V| = n, обозначим через *d* количество ребер полного графа:

$$d = |E| = \frac{n(n-1)}{2}.$$

Рассмотрим пространство  $\mathbb{R}^d$ , координаты точек в котором ассоциированы с ребрами графа G. Для каждого элемента t из T составим его характеристический вектор  $x = x(t) \in \mathbb{R}^d$ , положив равными единице значения тех координат, которые соответствуют ребрам, принадлежащим t, а значения остальных координат примем равными нулю. Совокупность характеристических векторов обозначим через X. Рассмотрим вектор  $c \in \mathbb{R}^d$ , составленный из весов ребер графа G. Тогда поставленная задача является задачей оптимизации линейной функции (c, x) на конечном множестве X.

Обозначим через M(X) многогранник задачи: M(X) = convX. Полиэдральным графом задачи называется граф многогранника, множеством вершин которого служит множество геометрических вершин (в данном случае это X), а множеством ребер – совокупность геометрических ребер, то есть множество одномерных граней. Для описания графа многогранника полезно следующее утверждение (см., например, [11]).

**Лемма 1.** Две вершины многогранника M смежсны тогда и только тогда, когда они строго отделяются от множества остальных его вершин. Или, другими словами, две вершины x и y многогранника M являются несмежными тогда и только тогда, когда их некоторая выпуклая комбинация совпадает с некоторой выпуклой комбинацией остальных вершин, то есть найдутся такие  $\alpha \ge 0, \beta \ge 0, \gamma_z \ge 0,$ для которых

$$\alpha x + \beta y = \sum \gamma_z z,$$
  
$$\alpha + \beta = \sum \gamma_z = 1,$$

u суммирование производится по всем вершинам, отличным от x u y.

#### 3. Многогранник задачи об остовном дереве

Полное внешнее описание многогранника  $MST_n$  задачи об остовном дереве для графа G(V, E) на n вершинах известно и имеет вид

$$\sum_{e \in E} x_e = n - 1,\tag{1}$$

$$\sum_{e \in E(S)} x_e \le |S| - 1, \forall S \subset V,$$
(2)

$$x_e \ge 0, \forall e \in E. \tag{3}$$

Если ввести дополнительные переменные, систему (1)–(3) можно переписать в эквивалентном виде с полиномиальным  $(O(n^3))$  числом ограничений, что позволяет решать задачу в том числе полиномиальными алгоритмами линейного программирования [12].

Полиэдральный граф многогранника  $MST_n$  полностью описан, точное значение плотности приведено в работе [13].

**Теорема 1.** Плотность полиэдрального графа многогранника  $MST_n$  полиномиальна по n и равна

$$\omega(MST_n) = \left\lfloor \frac{n^2}{4} \right\rfloor.$$

# 4. Остовное дерево с ограничением на число висячих вершин

В отличие от общей задачи полное внешнее описание многогранников задач об остовном дереве с ограничениями на число листьев не известно. Формулировка задач в виде целочисленного линейного программирования получается дополнением системы (1)–(3) ограничениями

$$\sum_{e \in \delta_v} x_e + (|\delta_v| - 1) y_v \le |\delta_v|, \forall v \in V,$$
(4)

$$x_e, y_v \in \{0, 1\}, \forall e \in E, v \in V,$$

$$(5)$$

где  $\delta_v$  – множество ребер, инцидентных вершине v, и дополнительные переменные  $y_v$  соответствуют висячим вершинам [14].

Данная формулировка используется, как правило, для задачи оптимизации числа висячих вершин

$$\sum_{v \in V} y_v \to \max(\min).$$

Вариант с оптимизацией веса остовного дерева можно получить, дополнив систему (1)–(5) неравенствами

$$\sum_{v \in V} y_v \leq k$$

для задачи с простым ограничением на число висячих вершин  $(LCST_{n,k})$ ,

$$\sum_{v \in U} y_v \le k$$

для задачи с ограничением в подграфе  $(RLSST_{n,U,k})$ , и

$$\forall v \in V \backslash U : y_v = 0$$

для задачи с ограничением на множество листьев  $(SVST_{n,U})$ .

Рассмотрим задачу о минимальном остовном дереве с ограничением на число висячих вершин. Пусть |V| = n, k – разрешенное количество висячих вершин. Построим остовное дерево t специального вида. Выберем две вершины u, w из V и набор  $V_{uw}$  из k вершин, часть  $V_u = \{v_1, \dots, v_s\}$  из которых соединим ребрами с вершиной u, а остальные  $\{v_{s+1}, \dots, v_k\} = V_w$  – с вершиной w. Оставшиеся n - k - 2вершины соединяются ребрами только друг с другом либо с вершинами u и w так, чтобы в результате образовалось остовное дерево (Рис. 1).



Рис. 1. Конструкция остовного дерева с k листьями Fig. 1. Spanning tree construction with k leaves

**Лемма 2.** Граф  $t_h$ , получаемый из дерева t отбрасыванием вершин  $v_1, v_2, \dots, v_k$ (вместе с ребрами  $(v_i, u)$  и  $(v_j, w)$ ), является гамильтоновой цепью на n-k оставшихся вершинах.

Доказательство. Граф  $t_h$  является остовным деревом на множестве вершин  $V \setminus V_{uw}$ . Поэтому у него по меньшей мере две висячие вершины. Ими могут быть только u и w, так как любая другая вершина из  $V \setminus V_{uw}$ , оказавшись висячей в дереве  $t_h$ , останется таковой и в дереве t. Но лимит висячих вершин исчерпывается множеством  $V_{uw}$ . Следовательно,  $t_h$  является остовным деревом, у которого ровно две висячие вершины: u и w. Поэтому  $t_h$  – цепь, проходящая через все вершины из  $V \setminus V_{uw}$ , для которой u и w – концевые вершины.

Зафиксируем множества  $V_u$  и  $V_w$  и рассмотрим совокупность  $T_k$  всех остовных деревьев описанного вида с k висячими вершинами. По лемме 2 каждое такое дерево

содержит цепь  $t_h$  с концевыми вершинами u и w, проходящую через все вершины из  $V \setminus V_{uw}$ . Верно и обратное: каждой цепи указанного вида соответствует дерево из  $T_k$ . Обозначим через  $HC_{uw}$  выпуклую оболочку характеристических векторов гамильтоновых цепей  $t_h$  между вершинами u и w.

**Лемма 3.** Вершины x и y многогранника  $LCST_{n,k}$ , отвечающие деревьям из  $T_k$ , несмежны тогда и только тогда, когда несмежны соответствующие им вершины  $x_h$  и  $y_h$  многогранника  $HC_{uw}$ .

Доказательство. Предположим, что вершины  $x_h$  и  $y_h$  многогранника  $HC_{uw}$  несмежны. Воспользуемся леммой 1, тогда найдутся неотрицательные  $\alpha, \beta, \gamma_z$ , для которых  $\alpha + \beta = \sum \gamma_z = 1$  и выполнено условие:

$$\alpha x_h + \beta y_h = \sum \gamma_z z_h, \ z_h \in H_{uw}.$$
 (6)

Каждой гамильтоновой цепи из  $H_{uw}$  однозначно соответствует остовное дерево из  $T_k$ . Дополняя (6) равенствами для компонент, соответствующих ребрам  $(v_i, u)$  и  $(v_j, w)$ , получим равенство

$$\alpha x + \beta y = \sum \gamma_z z, \ z \in T_k,$$

означающее, что вершины x и y многогранника  $LCST_{n,k}$  несмежны.

Пусть теперь вершины x и y несмежны, тогда найдутся неотрицательные  $\alpha, \beta, \gamma_z$ , для которых  $\alpha + \beta = \sum \gamma_z = 1$  и

$$\alpha x + \beta y = \sum \gamma_z z.$$

У точек x и y, все координаты, соответствующие ребрам, инцидентным вершинам  $v_1, v_2, \dots, v_k$ , совпадают, так как эти ребра фиксированы для остовных деревьев из  $T_k$ , а значит, они совпадают и у точек z, что позволяет перейти к равенству

$$\alpha x + \beta y = \sum \gamma_z z, \ z \in T_k.$$

Каждому остовному дереву из  $T_k$  однозначно соответствует гамильтонова цепь между вершинами u и w из  $H_{uw}$ . Таким образом,

$$\alpha x_h + \beta y_h = \sum \gamma_z z_h, \ z_h \in H_{uw},$$

и вершины  $x_h$  и  $y_h$  многогранника  $H_{uw}$  несмежны.

Доказанная лемма 3 дает возможность воспользоваться свойствами задачи коммивояжера для изучения многогранника  $LCST_{n,k}$ . Для этого достаточно учесть следующий простой факт: две вершины многогранника  $HC_{uw}$  гамильтоновых цепей смежны тогда и только тогда, когда в многограннике задачи коммивояжера смежны вершины, соответствующие гамильтоновым циклам, образованным при отождествлении крайних вершин в одну. Таким образом из леммы 3 и известного результата X. Пападимитриу [15] следует

**Теорема 2.** Задача распознавания несмежности вершин многогранника  $LCST_{n,k}$  является NP-полной.

Несмотря на сложность описания графа многогранника  $LCST_{n,k}$ , можно получить сверхполиномиальную нижнюю оценку его плотности.

**Теорема 3.** Плотность полиэдрального графа многогранника  $LCST_{n,k}$  задачи об остовном дереве с ограничением на число висячих вершин сверхполиномиальна по n:

$$\omega(LCST_{n,k}) \ge 2^{(\sqrt{\left\lfloor \frac{n-k-1}{2} \right\rfloor} - 9)/2}.$$

Для доказательства теоремы 3 достаточно воспользоваться леммой 3 и нижней оценкой плотности полиэдрального графа многогранника  $TSP_n$  задачи коммивояжера для n городов (см. [1, 2]):

$$\omega(TSP_n) \ge 2^{(\sqrt{\left\lfloor \frac{n}{2} \right\rfloor} - 9)/2)}.$$

Задачи с ограничениями в подграфе и на множество висячих вершин исследуются аналогично. В первом случае для  $RLSST_{n,U,k}$  достаточно взять вместо графа Gего подграф на вершинах U и построить соответствующую конструкцию остовного дерева. Во втором случае для  $SVST_{n,U}$  достаточно в рассматриваемой конструкции отождествить множество листьев  $V_{uw}$  с множеством U.

**Теорема 4.** Задача распознавания несмежности вершин многогранника  $RLSST_{n,U,k}$  является NP-полной.

**Теорема 5.** Плотность полиэдрального графа многогранника  $RLSST_{n,U,k}$  задачи об остовном дереве с ограничением на число висячих вершин в подграфе сверхполиномиальна по мощности множества U:

$$\omega(RLSST_{n,U,k}) \ge 2^{(\sqrt{\left\lfloor \frac{|U|-k-1}{2} \right\rfloor} - 9)/2}.$$

**Теорема 6.** Задача распознавания несмежности вершин многогранника  $SVST_{n,U}$  является NP-полной.

**Теорема 7.** Плотность полиэдрального графа многогранника  $SVST_{n,U}$  задачи об остовном дереве с ограничением на множество висячих вершин сверхполиномиальна по n:

$$\omega(SVST_{n,U}) \ge 2^{\left(\sqrt{\left\lfloor\frac{n-|U|-1}{2}\right\rfloor}-9\right)/2}.$$

## 5. Задача об остовном дереве ограниченной степени

Теперь обратимся к задаче о построении минимального остовного дерева, степени вершин которого не превосходят некоторого параметра k. Как и для задачи с ограничением на число висячих вершин полное внешнее описание многогранника  $DCST_{n,k}$  не известно [8]. В форме целочисленного линейного программирования задача получается дополнением системы (1)–(3) ограничениями

$$\sum_{e \in \delta_v} x_e \le k,$$
$$x_e \in 0, 1, v \in V.$$

Для n > 2 и k > 1 обозначим через

$$s = \left\lfloor \frac{n-2}{k-1} \right\rfloor$$

и построим дерево t специального вида. Разобьем множество вершин на s подмножеств вида  $V_i = \{v_i, v_{i,1}, \dots, v_{i,k-2}\}$  по k-1 вершине в каждом. Все оставшиеся вершины, которых будет от 2 до k+1, разобьем на два подмножества  $V_0 = \{v_0, v_{0,1}, \dots, v_{0,p}\}$  и  $V_{s+1} = \{v_{s+1}, v_{s+1,1} \cdots, v_n\}$ . Рассмотрим конструкцию следующего вида: в каждом подмножестве  $V_i$  все вершины соединяются ребрами только с вершиной  $v_i$  (Рис. 2). Отметим, что степени вершин  $v_0$  и  $v_{s+1}$  по построению не могут превосходить k.



Рис. 2. Конструкция остовного дерева, степени вершин которого не превосходят k Fig. 2. Spanning tree construction with k-bounded vertex degree

**Лемма 4.** Граф  $t_h$ , получаемый из дерева t отбрасыванием вершин  $v_0$ ,  $v_{s+1}$  u  $v_{i,j}$ вместе c ребрами  $(v_{i,j}, v_i)$ , является гамильтоновой цепью c концевыми вершинами  $v_1$  u  $v_s$ .

Доказательство. По построению степени вершин  $v_1$  и  $v_s$  не могут быть меньше k-1, а степени вершин  $\{v_2, \dots, v_{s-1}\}$  меньше k-2. Так как степени вершин в дереве t не могут превосходить k, то граф, получаемый после отбрасывания вершин, может быть только гамильтоновой цепью, соединяющей  $v_1$  и  $v_s$ .

Рассмотрим совокупность  $T_k$  всех остовных деревьев описанного вида. По лемме 4 каждое такое дерево содержит цепь  $t_h$  с концевыми вершинами  $v_1$  и  $v_s$ , проходящую через вершины  $\{v_2, \dots, v_{s-1}\}$ . Верно и обратное: каждой цепи указанного вида соответствует дерево из  $T_k$ . Обозначим через  $HC_{1s}$  выпуклую оболочку характеристических векторов гамильтоновых цепей между вершинами  $v_1$  и  $v_s$ .

**Лемма 5.** Вершины x и y многогранника  $DCST_{n,k}$ , отвечающие деревъям из  $T_k$ , несмежны тогда и только тогда, когда несмежны соответствующие им вершины  $x_h$  и  $y_h$  многогранника  $HC_{1s}$ .

Доказательство проводится аналогично доказательству леммы 3. Как следствие получаем следующие утверждения. **Теорема 8.** Задача распознавания несмежности вершин многогранника  $DCST_{n,k}$  является NP-полной.

**Теорема 9.** Плотность полиэдрального графа многогранника  $DCST_{n,k}$  задачи об остовном дереве ограниченной степени сверхполиномиальна по s:

$$\omega(DCST_{n,k}) \ge 2^{(\sqrt{\left\lfloor \frac{s-1}{2} \right\rfloor} - 9)/2}.$$

#### 6. Заключение

Таким образом, общая задача о минимальном остовном дереве и задачи с дополнительными ограничениями на число висячих вершин и степени вершин имеют принципиально отличные полиэдральные характеристики. Для классической задачи известны полиномиальные алгоритмы, построено полное внешнее описание многогранника с полиномиальным числом неравенств, полностью описан полиэдральный граф задачи, и установлено, что его плотность полиномиальна по размерности пространства. При этом задачи с дополнительными ограничениями являются труднорешаемыми, для них не найдено полного внешнего описания соответствующих многогранников, полиэдральные графы задач являются крайне сложными: даже проверка смежности вершин является NP-полной задачей, плотности графов сверхполиномиальны по размерности пространства.

### Список литературы / References

- Бондаренко В. А., "Оценки сложности задач комбинаторной оптимизации в одном классе алгоритмов", Доклады Академии наук, **328**:1 (1993), 22–24; [Bondarenko V. A., "Complexity bounds for combinatorial optimization problems in one class of algorithms", Russian Academy of Sciences Doklady Mathematics, **328**:1 (1993), 22–24, (in Russian).]
- [2] Бондаренко В.А., Максименко А.Н., Геометрические конструкции и сложсность в комбинаторной оптимизации, ЛКИ, М., 2008, 184 с.; [Bondarenko V.A., Maksimenko A. N., Geometricheskie konstruktsii i slozhnost' v kombinatornoy optimizatsii, LKI, Moscow, 2008, (in Russian).]
- [3] Бондаренко В.А., Николаев А.В., "Комбинаторно-геометрические свойства задачи о разрезе", Доклады Академии наук, 452:2 (2013), 127–129; [Bondarenko V.A., Nikolaev A.V., "Combinatorial and Geometric Properties of the Max-Cut and Min-Cut Problems", Doklady Mathematics, 88:2 (2013), 516–517]
- [4] Пападимитриу Х., Стайглиц К., Комбинаторная оптимизация: алгоритмы и сложность, Мир, М., 1985, 512 с.; [Papadimitriou C. H., Steiglitz K., Combinatorial Optimization: Algorithms and Complexity, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1982.]
- [5] Гэри М., Джонсон Д., Вычислительные машины и труднорешаемые задачи, Мир, М., 1982, 416 с.; [Garey M. R., Johnson D. S., Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman & Co., New York, NY, USA, 1979.]
- [6] Rahman M. S., Kaykobad M., "Complexities of some interesting problems on spanning trees", *Information Processing Letters*, 94:2 (2005), 93–97.
- [7] Fernandes L. M., Gouveia L., "Minimal spanning trees with a constraint on the number of leaves", European Journal of Operational Research, 104:1 (1998), 250–261.
- [8] Goemans M.X., "Minimum Bounded-Degree Spanning Trees", Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, 2006, 273–282.
- [9] Salamon G., Wiener G., "On finding spanning trees with few leaves", Information Processing Letters, 105:5 (2008), 164–169.
- [10] Singh M., Lau L. C., "Approximating minimum bounded degree spanning trees to within one of optimal", Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of Computing., 2007, 661–670.
- [11] Бренстед А., *Введение в теорию выпуклых многогранников*, Мир, М., 1988, 240 с.; [Brondsted A., *An Introduction to Convex Polytopes*, Springer-Verlag, 1983.]
- [12] Martin R. K., "Using separation algorithms to generate mixed integer model reformulations", *Operations Research Letters*, **10**:3 (1991), 119–128.
- [13] Белов Ю. А., "О плотности графа матроида", Модели исследования операций в вычислительных системах, Яросл. гос. ун-т., Ярославль, 1985, 95–100; [Belov Y. A., "O plotnosti grafa matroida", Modeli issledovanija operacij v vychislitelnyh sistemah, Yaroslavl state university, Yaroslavl, 1985, 95–100, (in Russian).]
- [14] Fujie T., "The maximum-leaf spanning tree problem: Formulations and facets", Networks, 43:4 (2004), 212–223.
- [15] Papadimitriou C. H., "The Adjacency Relation on the Traveling Salesman Polytope is NP-Complete", Mathematical Programming, 14:1 (1978), 312–324.

DOI: 10.18255/1818-1015-2015-4-453-463

#### 1-Skeletons of the Spanning Tree Problems with Additional Constraints

Bondarenko V. A.<sup>1</sup>, Nikolaev A. V.<sup>2</sup>, Shovgenov D. A.<sup>1</sup>

Received July 30, 2015

In this paper, we study polyhedral properties of two spanning tree problems with additional constraints. In the first problem, it is required to find a tree with a minimum sum of edge weights among all spanning trees with the number of leaves less than or equal to a given value. In the second problem, an additional constraint is the assumption that the degree of all nodes of the spanning tree does not exceed a given value. The recognition versions of both problems are NP-complete. We consider polytopes of these problems and their 1-skeletons. We prove that in both cases it is a NP-complete problem to determine whether the vertices of 1-skeleton are adjacent. Although it is possible to obtain a superpolynomial lower bounds on the clique numbers of these graphs. These values characterize the time complexity in a broad class of algorithms based on linear comparisons. The results indicate a fundamental difference between combinatorial and geometric properties of the considered problems from the classical minimum spanning tree problem.

Keywords: spanning tree, 1-skeleton, clique number, NP-complete problem, hamiltonian chain

For citation: Bondarenko V.A., Nikolaev A.V., Shovgenov D.A., "1-Skeletons of the Spanning Tree Problems with Additional Constraints", *Modeling and Analysis of Information Systems*, **22**:4 (2015), 453–463.

On the authors: Vladimir Bondarenko, orcid.org/0000-0002-5976-3446, doctor of science, professor, P.G. Demidov Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150000, Russia, e-mail: bond@bond.edu.yar.ru, Andrei Nikolaev, orcid.org/0000-0003-4705-2409, PhD, P.G. Demidov Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150000, Russia, e-mail: werdan.nik@gmail.com Dzhambolet Shovgenov, orcid.org/0000-0003-2022-4514, graduate student, P.G. Demidov Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150000, Russia, e-mail: djsh92@mail.ru

#### Acknowledgments:

<sup>1</sup>Supported by the Russian Foundation for Basic Research, project 14-01-00333. <sup>2</sup>Supported by the President's of Russian Federation grant MK-5400.2015.1.