
Моделирование и анализ информационных систем. Т. 22, № 4 (2015), с. 563–577
Modeling and Analysis of Information Systems. Vol. 22, No 4 (2015), pp. 563–577

c⃝Kharitonov D.I., Golenkov E.A., Tarasov G.V., Leontyev D.V., 2015

DOI: 10.18255/1818-1015-2015-4-563-577

UDC 519.681.2

A Method of Sample Models of Program Construction
in Terms of Petri Nets

Kharitonov D.I., Golenkov E.A., Tarasov G.V., Leontyev D.V.

Received September 1, 2015

In the article a method of automated construction of Petri nets simulating the behaviour of
imperative programs is considered from the formal point of view. Petri net samples with certain
characteristics are necessary in programming new algorithms for program analysis; in particular, they
can be used for developing or optimizing algorithms of Petri nets compositions and decompositions,
building the reachability tree, checking invariants and so on. The generation process consists of two
stages. At the first stage, construction templates for a resulting net and parameters for construction are
described. With the help of these parameters it is possible to regulate the final size and the absolute
or relative amount of certain structures in the resulting net. At the second stage, iterative process of
automated net construction is used for Petri net generation of any size, limited only by an available
computer memory. In the first section of the article the minimum necessary definitions are given and a
new version of Petri nets composition operation by places is introduced. Commutative and associative
properties of introduced binary operation allow to synchronize any number of Petri nets in arbitrary
order. Then construction template is defined as a marked Petri net with input and output interfaces
and rules for templates composition using this interfaces. A number of construction templates can
be united in a collection, for which the evolution rules are defined. The completeness property of a
collection guarantees that the collection evolution results in a Petri net that simulates the imperative
program behavior. The article provides a version of the construction templates complete collection and
an example of Petri net simulating sequential imperative program construction.

The article is published in the author’s wording.

Keywords: program model, control flow model, Petri net object
For citation: Kharitonov D.I., Golenkov E.A., Tarasov G.V., Leontyev D.V., "A Method of Sample Models of Program
Construction in Terms of Petri Nets", Modeling and Analysis of Information Systems, 22:4 (2015), 563–577.

On the authors:
Kharitonov Dmitry Ivanovich, orcid.org/0000-0003-3359-2383, PhD, senior researcher,
Institution of Russian Academy of Sciences Institute of Automation and Control Processes Far Eastern Branch of the
RAS, 5 Radio str., Vladivostok, Russia, 690041, e-mail: demiurg@dvo.ru

Golenkov Evgeny Alexandrovich, orcid.org/0000-0002-8148-3504, PhD, senior researcher,
Institution of Russian Academy of Sciences Institute of Automation and Control Processes Far Eastern Branch of the
RAS, 5 Radio str., Vladivostok, Russia, 690041, e-mail: golenkov@dvo.ru

Tarasov Georgiy Vitalievich, orcid.org/0000-0001-8855-7388, research officer,
Institution of Russian Academy of Sciences Institute of Automation and Control Processes Far Eastern Branch of the
RAS, 5 Radio str., Vladivostok, Russia, 690041,
Far-Eastern Federal University, 8 Suhanova st., Vladivostok, Russia, 690950, e-mail: george@dvo.ru

Leontiev Denis Valerievich, orcid.org/0000-0002-5116-3008, postgraduate student,
Institution of Russian Academy of Sciences Institute of Automation and Control Processes Far Eastern Branch of the
RAS, 5 Radio str., Vladivostok, Russia, 690041,
Far-Eastern Federal University, 8 Suhanova st., Vladivostok, Russia, 690950, e-mail: devozh@dvo.ru

Acknowledgments:
This work was supported by the Russian academy of sciences fundamental research program “Fundamental problems of
mathematical modelling”, project 0262-2014-0157.

563

564
Моделирование и анализ информационных систем. Т. 22, № 4 (2015)

Modeling and Analysis of Information Systems. Vol. 22, No 4 (2015)

Introduction
Automatics and machinery in the modern world more and more relies on software. In
many areas of human activity software errors may cost human lives. For example, in 2000
an erroneous calculation of the radiation dose led to several deaths [4]. However, among
the variety of existing programs only very few have been formally verified, proving their
correctness. This situation caused by the necessity of the human intellect to describe
the programs examined in terms suitable to analysis. Petri nets are one of the few
formal languages allowing to automate the process of software systems behavior models
construction. In some cases, Petri nets are extremely suitable for modeling due to the
distributed nature of the systems described, such as the development of multimedia
streams scenarios [11]. In other cases, Petri nets analysis tools meet the stated objectives,
like in the development of the process managing web services [9]. Software engineering
and Petri nets crossed several times in the past resulting in interesting ideas in both
areas [6]. Certain steps have been done by the authors of this article towards imperative
programs modeling [7,17,18]. Nevertheless, there is a serious concern that the advantages
of Petri nets as a formalism for distributed systems description with a clear graphical
presentation will be lost, when describing the programs of actual complexity. At first,
nets with more than a thousand of elements can not be represented on the screen or
on the printed page in a readable form. At second, more significantly, nets analysis
algorithms, for example, reachability tree construction algorithm, are to be adapted for
Petri nets with a large number of elements. The classic reachability tree construction
algorithm [1] for the nets greater than of 105 places and transitions requires more than
10Gb of memory that can be considered is a threshold for personal computers. In the
international competition “Model Checking Contest @ Petri Net” for the comparison of
Petri nets analysis tools a set of predefined models is used, and in 2015 the largest, by
the number of places and transitions, model had about 34 thousand elements [20]. This
number of elements corresponds to the Petri nets modeling imperative programs of less
than 10 thousand lines of code, while the larger software systems can have hundreds
of thousands of lines. For the adaptation of the algorithms dealing with Petri nets and
their quality investigation there is a demand for the nets with a predefined number of
elements and with known properties. The authors concluded that automatic generation
of such nets is an important issue.

Material in the article is presented in the next way. The first section provides the
minimum of the necessary definitions and a simple Petri nets composition operation
by places is introduced. The second section describes the notion of the construction
template and defines the rules of Petri nets automatic generation. The third section
provides a complete set of construction templates and an example of generation of Petri
net simulating behaviour of imperative program. Finally, conclusions on the applicability
the method proposed are drawn.

1. Simple Petri net composition by places
Let A = {a1, a2, ..., ak} is a set. Multiset on set A is a function µ : A → {0, 1, 2, . . . },
that assigns a non-negative integer to each element of the set A. Multiset is conveniently
written as a formal sum n1a1+n2a2+ ...+nkak or Σniai, where ni = µ(ai) is the number

Kharitonov D.I., Golenkov E.A., Tarasov G.V., Leontyev D.V.
Sample Models of Program Construction ... 565

of occurrences of the ai ∈ A in the multiset. Normally, when recording the sum, its zero
elements ni = 0 are omitted. The arithmetical sum and difference of multisets µ1 and µ2

are defined, respectively, as

(µ1 + µ2)(a) = µ1(a) + µ2(a),

(µ1 − µ2)(a) =

{
µ1(a)− µ2(a), если µ2(a) ≤ µ1(a);

0, otherwise.

Comparing multisets µ1 and µ2 it is right to write: µ1 ≤ µ2, if ∀a ∈ A : µ2(a) ≤ µ1(a),
and µ1 ≥ µ2, if ∀a ∈ A : µ2(a) ≥ µ1(a). If ni = 0 for all i, then this multiset will be
denoted as 0. We will also write that a ∈ µ, if ∃n > 0 : (a, n) ∈ µ. The set of all finite
multisets on the set A will be denoted as M(A).

Let’s define a sequence s on the set A as a function N0 → A ∪ ∅, associating with a
positive integer one element of the set A or the empty set element ∅, if the number is
greater than the size of the sequence |s|. The sequence is written as (ai)

n
i=0 or shorter

(ai). Sequence element ai is written as the function value of integer argument s(i). The
set of all finite sequences in the set A is written as (A). Let’s also define a linearly ordered
subset B of the set A with a linear order relation ≺A as (bi | ∀i < j ≤ n ⇒ bi ≺A bj).
Linearly ordered subset is written as [bi]

n
i=0 or shortly [bi]. The set of all finite linearly

ordered subsets of the set A is written as [A].

Definition 1. Petri net is a tuple Σ = ⟨S, T, •(), ()•⟩, where

1. S — a finite set of places;

2. T — a finite set of transitions such that S ∩ T = ∅;

3. •() : T → M(S) — input incidence function;

4. ()• : T → M(S) — output incidence function.

Multisets •t and t• are called input and output multisets of transition t ∈ T accordingly.

Definition 2. Formal union of Petri nets.
Let us given two Petri nets Σ1 = ⟨S1, T1,

•()1, ()
•
1⟩ and Σ2 = ⟨S2, T2,

•()2, ()
•
2⟩. Formal

union of the Petri nets Σ1 and Σ2 is the net Σ = Σ1 ⊕ Σ2 = ⟨S, T, •(), ()•⟩, such that

S = S1 ∪ S2, T = T1 ∪ T2.

•(t) =

{
•(t)1, if t ∈ T1;
•(t)2, if t ∈ T2.

(t)• =

{
(t)•1, if t ∈ T1;

(t)•2, if t ∈ T2.

Petri nets defined in such a way quite rarely used for modeling real systems, because
as the number of places and transitions increases so raises the complexity of model
perception as a whole. To simplify modeling of complex systems the compositional
approach to build whole model from the simpler models of its subsystems is widely

566
Моделирование и анализ информационных систем. Т. 22, № 4 (2015)

Modeling and Analysis of Information Systems. Vol. 22, No 4 (2015)

used in practice. The most widely used is a nets composition by transitions [3, 14], but
there are variations of nets composition operations by places [10], and also by places and
transitions [15]. We introduce the operation of Petri nets composition by places using
the scheme proposed in articles [2,5]. In our case, the goal is to minimize the algorithmic
complexity of the operation implementation.

Definition 3. Simple access point by places to Petri net.
Let’s call the tuple ι = ⟨idι, ϱι⟩ simple access point by places to Petri net Σ = ⟨S, T, •(), ()•⟩,
where idι — unique identifier of access point, а ϱι ∈ [S] — linearly ordered subset of places,
used by access point.

The name “simple point of access” is used to distinguish this access point from the
ones introduced in the articles [2,5]. Further in the text instead of the full name “simple
access point by places” abbreviation “simple access point” may be used or even just
“access point”.

Definition 4. Merge of Petri net simple access points.
Let us given Petri net Σ1 = ⟨S1, T1,

•()1, ()
•
1⟩ and two its simple access points ι1 =

⟨id1, ϱ1⟩, ι2 = ⟨id2, ϱ1⟩, such that |ϱ1| = |ϱ2| и ϱ1 ∩ ϱ2 = ∅. Then merge operation of
simple access points ι1 and ι2 of Petri net Σ1 forms new net Σ = Σ1|ι1ι2 = ⟨S, T, •(), ()•⟩,
so that

1. S = Sconst ∪ Ssyn, where

• Sconst = S1 \ (ϱ1 ∪ ϱ2),

• Ssyn = {⟨ϱ1(i), ϱ2(i)⟩ | 0 ≤ i ≤ |ϱ1|},

and there is a mapping surjection between a source and a finite set of places

Υι1
ι2

: S1 → S, such that Υι1
ι2
(s) =


s, ∀s′ ∈ Sconst

s′ = ⟨s, ϱ2(i)⟩, ∀s = ϱ1(i) ∈ ϱ1

s′ = ⟨ϱ1(j), s⟩, ∀s = ϱ2(j) ∈ ϱ2.

2. T = T1,

3. ∀t ∈ T, s ∈ Sconst :
•(t)(s) = •(t)1(s) и

∀t ∈ T, s = ⟨s′, s′′⟩ ∈ Ssyn : •(t)(s) = •(t)1(s
′) + •(t)1(s

′′),

4. ∀t ∈ T, s ∈ Sconst : (t)
•(s) = (t)•1(s) и

∀t ∈ T, s = ⟨s′, s′′⟩ ∈ Ssyn : (t)•(s) = (t)•1(s
′) + (t)•1(s

′′),

5. ∀s ∈ Sconst : M0(s) = M01(s),
∀s = ⟨s′, s′′⟩ ∈ Ssyn : M0(s) = M01(s

′) +M01(s
′′).

Less formally merge of Petri nets simple access points by places performs “joining”
of places, used by the access points, on the principle “one access point place merge
another access point place with the same sequence number”. Transitions of the original
net do not change, and the arcs are restored from the original net, connecting transitions
with the mapping of the original incident places. Using a list representation of places,
transitions and arcs sets, software implementation of the access points merge operation

Kharitonov D.I., Golenkov E.A., Tarasov G.V., Leontyev D.V.
Sample Models of Program Construction ... 567

can be performed along with copying elements from original to destination nets in no
more than O(N) CPU operations where N is the number of elements in the original net.
The mapping between the source and a finite set of places allows also to convert other
simple access points by places not involved in the merge operation.

Definition 5. Let us given Petri net Σ = Σ1|ι1ι2, resulting from the simple access poing
merge of the net Σ1. Then simple access point ι = ⟨idι, ϱι⟩ by places of net Σ is the
convertion of access point ι′ = ⟨id′ι, ϱ′ι⟩ by places of net Σ1 as the result of merging, if
id′ι = idι and ∀i ⇒ ϱι(i) = Υι1

ι2
(ϱ′ι(i)).

In practice, two Petri nets merge operation is more frequently used, which is defined
as follows.

Definition 6. Binary Petri nets merge operation by simple access points.
Let us given two Petri nets Σ1 = ⟨S1, T1,

•()1, ()
•
1⟩, Σ2 = ⟨S2, T2,

•()2, ()
•
2⟩ and two their

simple access points by places ι1 = ⟨id1, ϱ1⟩, ι2 = ⟨id2, ϱ2⟩, such that |ϱ1| = |ϱ2|. Then
Petri nets Σ1 and Σ2 merge operation by simple access points ι1 and ι2 forms new net
Σ = Σ1 ⊕

ι1 ι2
Σ2 ≡ (Σ1 ⊕ Σ2)|ι1ι2.

Software implementation of the binary Petri nets merge operation can be performed,
similarly to unary, in no more than O(N1 + N2) CPU operations, where N1 and N2

are numbers of elements of the original nets. Taking into account the above-described
conversion of simple access points by places, let’s assume that source net access points
are applicable to the net resulting from merging. Then merge operations properties can
be written that follow directly from the definitions:

1. Unary operation commutativity

Σ|ι1ι2 = Σ|ι2ι1

indicates that the result of merging the access point does not depend on the access
points order.

2. Binary operation commutativity

Σ1 ⊕
ι1 ι2

Σ2 = Σ2 ⊕
ι2 ι1

Σ1

allows not to worry about the order of nets in the operation.

3. Unary operation associativity

Σ|ι1ι2 |
ι3
ι4
= Σ|ι3ι4 |

ι1
ι2

allows to perform a number of merge operations over one net in any order.

4. Binary operation associativity

Σ1 ⊕
ι1 ι2

Σ2 ⊕
ι3 ι4

Σ3 = (Σ1 ⊕
ι1 ι2

Σ2) ⊕
ι3 ι4

Σ3 = Σ1 ⊕
ι1 ι2

(Σ2 ⊕
ι3 ι4

Σ3)

allows to merge several Petri nets in random order.

568
Моделирование и анализ информационных систем. Т. 22, № 4 (2015)

Modeling and Analysis of Information Systems. Vol. 22, No 4 (2015)

2. Construction templates in terms of Petri nets
With the use of simple access points by places to Petri nets and composition operations,
introduced in the previous section, we formulate object-oriented approach to the
automatic generation of Petri nets. This approach based on the concept of the construction
template.

Definition 7. A template of imperative construction in terms of Petri nets (for short
PN-template) is the tuple X = ⟨Σ, I, O,M0⟩, where

1. Σ = ⟨S, T, •(), ()•⟩ — Petri net, called object structure;

2. I = {ι1, ι2, . . . , ιn} — the set of simple access points, called input interface;

3. O = {ϕ1, ϕ2, . . . , ϕn} — the set of simple access points, called output interface;

4. M0 ∈ M(S) — initial marking.

An imperative construction template is a marked Petri net, having part of the places
assigned for merging with “superior” nets as the input interface, and another part of the
places - to merge with the “subordinate” nets as the output interface. Let’s formalize
construction templates merge operation, “superior” nets are built with the help of.

Definition 8. Formal union of PN-templates.
Let us given two imperative construction templates X1 = ⟨Σ1, I1, O1,M01⟩ and X2 =
⟨Σ2, I2, O2,M02⟩. Formal union of X1 and X2 is the template X = X1⊕X2 = ⟨Σ, I, O,M0⟩,
such that

Σ = Σ1 ⊕ Σ2, I = I1 ∪ I2, O = O1 ∪O2, M0 = M01 +M02.

Operation of PN-templates formal union makes new template by simple union of the
sets and markings of the initial templates. To change the structure of the template the
merge operation of simple access points is used.

Definition 9. Merge of PN-template simple access points.
Let us given a PN-template X1 = ⟨Σ1, I1, O1,M01⟩ and two its simple points ι ∈ I1, ϕ ∈
O1, where ι = ⟨id1, ϱ1⟩, ϕ = ⟨id2, ϱ2⟩ and Σ1 = ⟨S1, T1,

•()1, ()
•
1⟩. If subsets of places of

both simple access points have equal cardinality |ϱ1| = |ϱ2|, than merge of simple access
points operation of imperative construction X1 by simple access points ι и ϕ forms new
template X = ⟨Σ, I, O,M0⟩, where I = I1 \ {ι}, O = O1 \ {ϕ} and Σ = Σ1|ιϕ.

Merge of a PN-template simple access points operation (in unary form) is denoted as
X = X1|ιϕ.

More common used, and usefull for us, binary form of templates merge operation is
defined by consecutive application of the two above operations.

Definition 10. PN-templates merge operation by simple access points.
Let us given two construction templates X1 = ⟨Σ1, I1, O1,M01⟩, X2 = ⟨Σ2, I2, O2,M02⟩
and two their access points ι ∈ I1, ϕ ∈ O2, where ι = ⟨id1, ϱ1⟩, ϕ = ⟨id2, ϱ2⟩. And
subsets of places of both simple access points have equal cardinality |ϱ1| = |ϱ2|. Then
templates X1 and X2 merge operation by simple access points ι and ϕ forms new template
X = ⟨Σ, I, O,M0⟩, so that X = (X1 ⊕X2)|ιϕ.

Kharitonov D.I., Golenkov E.A., Tarasov G.V., Leontyev D.V.
Sample Models of Program Construction ... 569

Now it is possible to formulate the necessary requirements to imperative construction
templates in order to build program simulations in terms of Petri nets.

Definition 11. PN-templates collection.
A set Π = {Xi = ⟨Σi, Ii, Oi,Mi⟩} is called PN-templates collection, if:

1. There is the start template Xo ∈ Π, such that Mo > 0, |Io| = 0, |Oo| ≥ 0.

2. There are building templates: |{Xk | Xk ∈ Π, |Ik| = 1, |Ok| > 0}| ≥ 1.

3. All simple access point in the input interfaces has a pair in the output interfaces,
and vice versa:

• ∀Xi ∈ Π, ϕ ∈ Oi → ∃Xj ∈ Π, ι ∈ Ij : |ϕ| = |ι|,

• ∀Xi ∈ Π, ι ∈ Ii → ∃Xj ∈ Π, ϕ ∈ Oj : |ϕ| = |ι|.

Practically, a templates collection - is a system in which the result of the start
template merging with any of the others gives a new start template.

Definition 12. PN-templates collection evolution.
PN-templates collection Πn+1 = {Xn+1

0 , X1, ..., Xk} is an evolution of PN-templates
collection Πn = {Xn

0 , X1, ..., Xk}, if ∃ ι, ϕ, such that Xn+1
0 = Xn

0 ⊕
ι ϕ

Xi.

It should be noted that the software implementation of templates collection evolution
can be made, using a list representation of Petri net elements sets, in no more than O(N)
CPU operations, where N - the number of elements in the final net. To do this, at each
step of the evolution, instead of creating new start template, all changes should be done
in current one. Then, in each of the binary merges from O(N1+N2) CPU operations only
O(N2) operations, related to copying second net elements and “gluing” places, remain.

Finally, with regard to the program behaviour simulations building, it is possible to
formulate the final requirements to PN-templates set.

Definition 13. Complete PN-templates collection.
PN-templates collection Π = {Xi = ⟨Σi, Ii, Oi,Mi⟩} is considered to be complete, if:

1. All templates have no more than one access point in input interface: ∀Xi ∈ Π →
|Ii| ≤ 1.

2. There is sufficient number of terminator templates:
∀Xi ∈ Π, ϕ ∈ Oi → ∃Xj ∈ Π, ι ∈ Ij : |Oj| = 0, |ϕ| = |ι|. 1

Definition 14. The resulting template.
Template X = ⟨Σ, I, O,M0⟩ is called the resulting temlate, if |I| = 0, |O| = 0.

1 Theoretically, the existence condition of sufficient number of terminator templates can be refined
to reduce the number of templates. So, if there is some set of terminator templates, then can be built a
set consisting of all the possible merges of initial terminators with building templates, and the resulting
set tested for sufficiency.

570
Моделирование и анализ информационных систем. Т. 22, № 4 (2015)

Modeling and Analysis of Information Systems. Vol. 22, No 4 (2015)

With a complete collection of templates as defined in 13, it is possible, using a merge
by access points operation 10, to build the resulting template of any predefined size. It is
easy to verify that, using start template, each merge operation will result in a new start
template that does not have an input interface. Available building templates and access
point pairs in interfaces allow to continue build procedure. And merging start template
with terminator templates reduces the amount of access points in output interface at the
start template until it becames the resulting template.

3. A generation example of Petri net simulating
imperative program

Consider as an example the generation of Petri net simulating the behavior of a simple
sequential imperative program. The complete collection Πx = {X1..X10} consisting of ten
templates is used to build sample net. Let us give drawings of templates and describe each
of them in order. The following designations are used in templates representations. Petri
net describing the structure of the template is placed in a rectangle. Petri nets are drawn
using usual graphical notation in the form of a bipartite directed graph, where places
are represented by circles and transitions — by rectangles. Places and transitions are
connected by arcs representing input and output incidence functions. At the boundaries
of the rectangle, framing template structure, the symbolic images of simple access points
by places are drawn in the form of a circles with a sign of the interface it is belonged
inside. In this article, all access points of the input interface are placed on the top edge
of the rectangle, and all of the output — on the bottom edge. Each place of the access
point ordered subset of places is connected by a thin dotted line with the symbol of the
access point. Formal descriptions of the template input and output interfaces and its
marking are placed inside the rectangle.

X1=<∑1,I1,O1,M1>

SA SB SC

tA
Out

I1=0

O1={<ida,{SB,SC}>}

M1 = SA

X2=<∑2,I2,O2,M2>

SBSA SC

tA
Out

In

I2={<id1,{SA,SC}>}

O2={<ida,{SB,SC}>}

M2 = 0

Fig 1: Templates of process (left) and linear section (right)

Figure 1 shows first two templates. The first template X1, called the process template,
is modelling begin and end of a sequential process. This is the only start template with
a nonzero marking in the described collection, it has no input interface. The initial place
with the token is the starting point of the program model, where the program begins
its work, and the only transition in template simulates start of the process. Template
X2, called linear section, simulates simple mathematical expression in the imperative
program, it differs from start template by absence of marking and presence of input
interface.

Next template X3 is drawn on figure 2 and designed to simulate the behaviour of
cycles in the imperative program. First access point of the template input interface is

Kharitonov D.I., Golenkov E.A., Tarasov G.V., Leontyev D.V.
Sample Models of Program Construction ... 571

X3=<∑3,I3,O3,M3>

SBSA SE SFSC SD

tA tB tC tD

SG

tE

In

Out Out

O3={<ida,{SC,SD}>,<idb,{SF,SG}>}

I3={<id1,{SA,SG}>}

M3 = 0

Fig 2: Template of cycle

used to form the cycle body. And second access point - to continue the program after
the cycle.

X5=<∑5,I5,O5,M5>

SBSA SC

SE SF

tA tB

SD

In

OutOut

X4=<∑4,I4,O4,M4>

SBSA
tA

In

I4 = {<id1,{SA,SB}>}

O4 = 0

M4 = 0
M5 = 0

I5={<id1,{SA,SD}>}

O5={<ida,{SE,SF}>,<idb,{SC,SD}>}

Fig 3: Templates of stub (left) and function call (right) constructions

At the left side of the figure 3 terminator template X4, called stub, is represented.
This template has only one access point of a pair of places in input interface and no
access points in output interface, so after the merging with this template the resulting
net would have one access point less in output interface. At the right side of the figure
there is template X5, modelling function call in the imperative program. This template
has a single access point in input interface and two access points in the output interface.
The first access point of the output interface is designed to form the body of the function,
the second access point — to continue the program after the function call.

X6=<∑6,I6,O6,M6>

SB

SC

SF

SA SD SE

tA

tB

tC

In

Out Out Out

M6 = 0

I6={<id1,{SA,SD}>}

O6={<ida,{SC,SD}>,<idb,{SF,SD}>,<idc,{SD,SE}>}

Fig 4: Template of branching operator construction

572
Моделирование и анализ информационных систем. Т. 22, № 4 (2015)

Modeling and Analysis of Information Systems. Vol. 22, No 4 (2015)

Figure 4 depicts template X6 that models an imperative programming language
branching operator construction. This template has one simple access point in the
input interface, consisting of the begin and end places of the template. Three access
points in the output interface, each consisting of a pair of places, are designed to simulate
the program parts of then branch, else branch, and to continue the program after the
branching operator.

X7=<∑7,I7,O7,M7>
SD

SA tB
tA SB SC

SE SF
OutOutOut

In
M7 = 0

I7={<id1,{SA,SF}>}

O7={<ida,{SB,SD,SE}>,<idb,{SC,SD}>,<idc,{SE,SF}>}

X8=<∑8,I8,O8,M8>SA tA
SESB In

M8 = 0

O8 = 0

I8={<id1,{SB,SA,SE}>}

Fig 5: The main template of switch (right) and completing as default case (right)

Templates X7, X8, X9, X10 simulate parts of syntax construction switch of imperative
programming languages: main template — begin and end of the construction, completing
template as default case, templates to continue after break operator and continue without
break operator accordingly. This templates are shown of figures 5 and 6. Main template
X7 have one access point of a pair of places in input interface and three access points
in output interface, designed to continue switch construction, building body of the first
execution case of switch construction and to continue program after switch operator. The
access point for the continuation of the switch construction has three places, and other
two access points — two. Template X8 has a single access point of the input interface of
three places and no output, so it is the terminator for the switch construction, because
after the merge operation of the switch construction with template X8 addition of new
cases will be impossible.

X9=<∑9,I9,O9,M9>
SB tA

SC
SDSA

SE
tA
In
Out OutM9 = 0

I9={<id1,{SB,SA,SE}>}

O9={<ida,{SB,SD,SE}>,<idb,{SC,SD}>}

X10=<∑10,I10,O10,M10>
SB tB

SC
SDSA

tA SE
OutOut

In
M10 = 0

I10={<id1,{SB,SA,SE}>}

O10={<ida,{SB,SD,SE}>,<idb,{SC,SD}>}

Fig 6: Templates of switch - continue after break operator (left), continue without break
operator (right)

Figure 6 shows two options X9, X10 of adding a new case to the switch construction.
It is due to the single access point of three places in the input interface, this templates
can be merged only with a templates from the set of switch construction template. The
output interface of these templates has two access points: first access point of three

Kharitonov D.I., Golenkov E.A., Tarasov G.V., Leontyev D.V.
Sample Models of Program Construction ... 573

places is designed for the developing of the switch construction, second access point of
two places – for constructing the case control flow. Thus, to simulate the behavior of
the program in the switch construction it is necessary to use the main switch template,
merge it step by step with the required number of cases templates and finish by merging
with completing template.

S1
t1 S10

t7
S6

S2 t3
t2 S4 S5

S7
t5 S8 S9 t6
t9 S11 S12t10

t4
t8
t12

S3
t11

t13

A=X1
S1 S2 S3

t1 Out
B=X7

S6
S2 t3

t2 S4 S5
S7 S3OutOutOut

In
C=X4

S6S5
t4In

F=X4
S9S8

t8In
I=X4

S12S11
t12

In
J=X8

S12 t13
S7S4 In

E=X2
S10S7 S3

t7 Out
InD=X9

S4 t5
S8

S9S6
S7

t6
In

Out Out
G=X10
S4 t9

S11
S12S9

t10 S7OutOut
In H=X4

S3S10
t11In

Fig 7: An example of Petri Net construction

Templates collection Πx described above is a minimal collection for modelling of
imperative programs. Let’s consider the building process of Petri net simulating imperative
program, using this templates collection. For the example of the net building the next
templates were used: the process, the switch with three different branches and the stub.
Figure 7 shows the diagram of the net construction, with the next used conventions:

• Each template is framed by a rectangle and signed by the ordinal character of the
English alphabet and template number. English character indicates the order of

574
Моделирование и анализ информационных систем. Т. 22, № 4 (2015)

Modeling and Analysis of Information Systems. Vol. 22, No 4 (2015)

the templates merge operations that represents the evolution 12 of a templates
collection.

• The lines between simple access points by places show what access points are used
in merge operation.

• All access points of the input interface are placed on the upper edge of the rectangle,
and of the output — at the bottom. Therefore, the order of templates merging
coincides with the rules of reading - from top to bottom, left to right.

• For convenience all the places and transitions of construction templates are renamed
to coincide with the resultant places and transitions.

Bottom part of the figure shows the result of templates evolution. This net is similar in
behavior to the real program, consisting for the most part of a switch operator, which
has three branches: the upper branch with break operator, the middle branch without
break operator (without break operator the process continues in next branch) and the
default branch.

4. Conclusion
Automatic Petri nets generation is quite often used in the modeling of objects of different
application areas, for example, in railway interlocking design [16], large scale biological
networks [12], semiconductors manufacturing [8], flexible manufacturing systems [13].
Typically, the description of the object in terms of domain-specific languages is used as
the input data for translate procedure, that builds model of the object in terms of Petri
nets. The authors proposed a new statement of the problem, when the input data, and
the final result are described by Petri nets. Publications conforming that formulation
have not yet been met by the authors.

This paper formally describes the method of Petri nets generation on the base of
templates, having input and output interfaces in form of sets of simple access points
by places, that allows templates merging. A distinctive feature of the method proposed
is low computational complexity, since to implement the Petri nets merge operation it
is necessary to perform a simple copy of nets elements with the subsequent gluing of
beforehand known pairs of places. In the second half of this article a complete templates
collection is given and a generation example of Petri net, simulating the behavior of
an imperative program. A templates collection used to generate Petri nets, defines the
behavior characteristics of the resulting network, so the method proposed has a certain
flexibility, which allows to use it not only to build examples of imperative program
models, but also to generate other different by behavior Petri nets. In particular, the
authors see one of the interesting direction of the proposed method development in its
adaptation to generate nets used for verification of analysis tools in “Model Checking
Contest @ Petri Net”.

Kharitonov D.I., Golenkov E.A., Tarasov G.V., Leontyev D.V.

Sample Models of Program Construction ... 575

References
[1] Peterson, James Lyle, Petri Net Theory and the Modeling of Systems, Prentice Hall, 1981,

290 pp.

[2] Anisimov N.A., Kovalenko A.A., “Towards Petri Net Calculi based on Synchronization
via Places”, Proc. of the 1995 IEEE Symposium on Parallel Algorithms/Architecture
Synthesis, IEEE Press, Japan, 1995, 264–270.

[3] Best, Eike and Devillers, Raymond and Koutny, Maciej, Petri Net Algebra, Springer-Verlag
New York, Inc., USA, 2001.

[4] International Atomic Energy Agency, A Panel of Experts (2001), Investigation of an
Accidental Exposure of Radiotherapy Patients in Panama/Report of a Team of Experts,
26 May – 1 June, 2001 (PDF), Austria: International Atomic Energy Agency, Vienna,
2001.

[5] Anisimov N.A., Golenkov E.A., Kharitonov D.I., “Kompozitsionnal’nyy podkhod
k razrabotke parallel’nykh i raspredelennykh sistem na osnove setey Petri”,
Programmirovanie, 2001, № 6, 30–43, (in Russian).

[6] Denaro G. and M. Pezzè, “Petri nets and software engineering”, Lectures on Concurrency
and Petri Nets, 3098, Springer-Verlag, 2004, 439–466.

[7] Golenkov E.A., Sokolov A.S., “Metod avtomaticheskogo postroeniya modeli parallel’noy
programmy v terminakh setey Petri”, Vychislitel’nye metody i programmirovanie, 6:2
(2005), 77–82, (in Russian).

[8] Mueller Ralph et al., “Automatic Generation of Simulation Models for Semiconductor
Manufacturing”, Proceedings of the 39th Conference on Winter Simulation: 40 Years! The
Best is Yet to Come, WSC ’07, IEEE Press, Piscataway, NJ, USA, 2007, 648–657.

[9] Desel J., “Controlling Petri Net Process Models”, Web Services and Formal Methods, 4th
International Workshop, WS-FM (2007, Brisbane, Australia, September 28-29, ed. Marlon
Dumas and Reiko Heckel), 2008, 17–30.

[10] Laure Petrucci, “Aggregating views for Petri net model construction”, In Proc. workshop
on Petri Nets and Distributed Systems (PNDS08, associated with Petri Nets 2008), 2008,
17–31.

[11] Abdelghani Ghomari, Chaabane Djeraba, “Modelling Multimedia Synchronization using
a Time Petri Net Based Approach”, Advances in Petri Net: Theory and Applications,
eds. Tauseef Aized, Intech, 2010, http://www.intechopen.com/books/advances-in-petri-
net-theory-and-applications/modeling-multimedia-synchronization-using-a-time-petri-
net-based-approach-.

[12] Chen Ming et al., “Petri net models for the semi-automatic construction of large scale
biological networks”, Natural Computing, 10:3 (2011), 1077–1097.

[13] Ballarini P. et al., “Petri Nets Compositional Modeling and Verification of Flexible
Manufacturing Systems”, In 7th Annual IEEE Conference on Automation Science and
Engineering (CASE 2011), 2011.

[14] Alekseyev Arseniy et al., “Improved Parallel Composition of Labelled Petri Nets”, ACSD,
eds. Caillaud, Benôıt and Carmona, Josep and Hiraishi, Kunihiko, IEEE Computer
Society, 2011, 131–140.

[15] Ivan Petko and Stefan Hudák, “General composition for high level Petri nets and its
properties”, Central Europ. J. Computer Science, 2:3 (2012), 222–235.

[16] Durmus M. S., Yildirim U., Soylemez M.T., “Automatic Generation of Petri Net
Supervisors for Railway Interlocking Design”, Control Conference (AUCC), 2012 2nd
Australian, IEEE, 2012, 180–185.

[17] Tarasov G.V., Kharitonov D.I, Golenkov E.A.., “Ob odnom predstavlenii funktsii
v modeli imperativnoy programmy, zadannoy setyami Petri”, Modelirovanie i analiz
informatsionnykh sistem, 18:2 (2011), 18–38, (in Russian).

[18] Kharitonov D., Tarasov G., “Modeling function calls in program control flow in terms
of Petri Nets”, ACSIJ Advances in Computer Science: an International Journal, 3:6 12
(November 2014), 82–91.

576
Моделирование и анализ информационных систем. Т. 22, № 4 (2015)

Modeling and Analysis of Information Systems. Vol. 22, No 4 (2015)

[19] B. Esther Sunanda, P. Seetharamaiah, “Modeling of Safety-Critical Systems Using Petri
Nets”, SIGSOFT Softw. Eng. Notes, 40:1 (2015), 1–7.

[20] Kordon F. et al., “Complete Results for the 2015 Edition of the Model Checking Contest”,
2015, http://mcc.lip6.fr/2015/results.php.

Kharitonov D.I., Golenkov E.A., Tarasov G.V., Leontyev D.V.
Sample Models of Program Construction ... 577

DOI: 10.18255/1818-1015-2015-4-563-577

Метод генерации примеров моделей программ в терминах
сетей Петри

Харитонов Д.И., Голенков Е.А., Тарасов Г.В., Леонтьев Д.В.

получена 1 сентября 2015

В данной работе рассматривается с формальной точки зрения метод построения сетей Петри,
имитирующих поведение императивных программ. Примеры сетей Петри с заданными характери-
стиками являются необходимыми в процессе программирования новых алгоритмов анализа моде-
лей программ, в частности, они могут использоваться для разработки и оптимизации алгоритмов
композиции и декомпозиции сетей Петри, построения дерева достижимости, проверки инвариан-
тов и т.д. Способ построения состоит из двух стадий. На первой стадии описываются шаблонные
конструкции, из которых будет состоять результирующая сеть, и параметры, с которыми будет
выполняться построение. С помощью этих параметров можно регулировать конечный размер, а
также абсолютное или относительное количество определённых конcтрукций в результирующей
сети. На второй стадии с помощью автоматического итерационного процесса может быть сгенери-
рована сеть Петри любого размера, ограниченного оперативной памятью компьютера. В первом
разделе статьи приводится необходимый минимум определений и вводится новый вариант опера-
ции композиции сетей Петри по местам. Свойства коммутативности и ассоциативности бинарного
вида предложенной операции позволяют сливать несколько сетей Петри в произвольном порядке.
Далее вводится понятие шаблонной конструкции в виде маркированной сети Петри, обладающей
входным и выходным интерфейсами, а также правилами композиции шаблонных конструкций с
использованием этих интерфейсов. Множество шаблонных конструкций объединяются в набор,
для которого определяются правила эволюции. Свойство полноты набора гарантирует, что в ре-
зультате эволюции набора будет получена сеть Петри, имитирующая поведение императивной
программы. В статье приводится вариант полного набора шаблонных конструкций и пример ге-
нерации сети Петри, имитирующей последовательную императивную программу.

Статья публикуется в авторской редакции.

Ключевые слова: модель программы, модель потока управления, теория сетей Петри, объект
сети Петри
Для цитирования: Харитонов Д.И., Голенков Е.А., Тарасов Г.В., Леонтьев Д.В., "Метод генерации примеров
моделей программ в терминах сетей Петри", Моделирование и анализ информационных систем, 22:4 (2015), 563–
577.

Об авторах:
Харитонов Дмитрий Иванович, orcid.org/0000-0003-3359-2383, канд. техн. наук, ст. науч. сотр.,
Федеральное государственное бюджетное учреждение науки Институт автоматики и процессов управления
Дальневосточного отделения РАН, ул. Радио, д. 5, г. Владивосток, Россия, 690041, e-mail: demiurg@dvo.ru
Голенков Евгений Александрович, orcid.org/0000-0002-8148-3504, канд. физ.-мат. наук, ст. науч. сотр.,
Федеральное государственное бюджетное учреждение науки Институт автоматики и процессов управления
Дальневосточного отделения РАН, ул. Радио, д. 5, г. Владивосток, Россия, 690041, e-mail: golenkov@dvo.ru
Тарасов Георгий Витальевич, orcid.org/0000-0001-8855-7388, науч. сотр.
Федеральное государственное бюджетное учреждение науки Институт автоматики и процессов управления
Дальневосточного отделения РАН, ул. Радио, д. 5, г. Владивосток, Россия, 690041,
Дальневосточный Федеральный Университет, ул. Суханова, д. 8, г. Владивосток, Россия, 690950, e-mail: george@dvo.ru

Леонтьев Денис Валерьевич, orcid.org/0000-0002-5116-3008, аспирант,
Федеральное государственное бюджетное учреждение науки Институт автоматики и процессов управления
Дальневосточного отделения РАН, ул. Радио, д. 5, г. Владивосток, Россия, 690041
Дальневосточный Федеральный Университет, ул. Суханова, д. 8, г. Владивосток, Россия, 690950, e-mail: devozh@dvo.ru
Благодарности:
Работа выполнена при финансовой поддержке программы фундаментальных исследований РАН по приоритетным
направлениям "Фундаментальные проблемы математического моделирования", проект № 0262-2014-0157.

