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We consider a finite-dimensional model of phase oscillators with inertia in the case of star configuration
of coupling. The system of equations is reduced to a nonlinearly coupled system of pendulum equations.
We prove that the transition from synchronous to asynchronous oscillations occurs via bifurcation of
saddle-node equilibrium. In this connection the asynchronous regime can be partially synchronous
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bifurcation of homoclinic orbit both of the saddle equilibrium point and of the saddle periodic orbit. In
the case of homoclinic loop of the saddle point the synchrony appears only from asynchronous mode
without partially synchronized rotations. In the case of the homoclinic curve of the saddle periodic orbit
the system undergoes a chaotic rotation regime which results in a random return to synchrony. We
establish that return transitions are hysteretic in the case of large inertia.
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Synchronous behavior is one of ubiquitous collective phenomena in ensembles of
oscillatory systems. The Kuramoto model is arguably the most studied model that
describes synchronization [1, 2, 3|. This model captures essential features of
synchronization, observed in science and applications. Examples are arrays of coupled
Josephson junctions [4], semiconductor laser arrays [5], the ensembles of the cells in the
heart [6], Hodgkin-Huxley neurons [7], central pattern generator for animal locomotion
[8], rhythmic applause [9], pedestrian crowd synchrony on London’s Millennium bridge
[10], microwave oscillator arrays [11]| etc. For other examples, see [12], [13] and [14]. In
this paper, an analytical study of a star motif of Kuramoto oscillators is presented.
The system consists of a central node, the hub, connected to an arbitrary number
of peripheral nodes. The star configuration of ensemble of oscillators for the different
models has been studied. In [15], starting from the analysis of the topological properties
of the star configuration, some analytical considerations have been applied to derive
the bifurcation diagram of the system with respect to the parameter mismatch between
peripheral oscillators and hub and to the coupling strength. The analysis revealed that
the system may become fully synchronized (more precisely, the peripheral oscillators are
completely synchronized among each other and phase synchronized with the hub). In
the case of star-coupled ensemble of phase oscillators the analytical description of the
parameter regions of existence of different synchronous regimes has been obtained in
[16]. It was shown that peripheral oscillators compete for the synchronization with the
hub and only a given number of peripheral oscillators can win this competition.

1. Kuramoto phase model with inertia

We consider the Kuramoto phase model with inertia of N coupled phase oscillators
[17, 18]

N
ﬁez + 91 = Z i Sln i); (1)

where 6; is instantaneous phase, w; is natural frequency of the i-th oscillator, K; ; are
the entries of a coupling symmetric matrix K = {Kij}%, [ is a positive parameter
representing an inertia of oscillators. In the case f§ =0 and K;; = K, 7,5 = 1,2,..., N
the system (1) becomes the original paradigmatic Kuramoto model [1, 2, 3].

We consider the star configuration of coupling [19, 20, 21| when the matrix K has
the form

O Kl? KlN
Ko 0 - 0
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i.e. the first element is the hub of the configuration, and the system (1) reads

/

N
501 + 91 =wp + N ZKU sm(ej — 01),

=2

.. . 1 .
592 + 92 = Wy + N (Klg Sln(91 — 92)>, (2)

. ) 1
\5(9]\[ —+ 91\7 = wpn + N(KU\[ Sin(91 — 9]\7))
We introduce new variables and new parameters

Ky,
N ®)

¢i = 01 — 01, = Wi41 — Wi,

1=1,2,....,n=N —1,

where ¢; is the phase difference between the hub and each another peripheral oscillator,
A, is the frequency mismatch of (i+1)’s peripheral oscillator and the first hub oscillator.
Using (3) we rewrite the system (2) in the form

Bg'zél + (ﬁl = Ay — (2a;8in ¢y + agsin gy + - - - + a,, sin ¢,,),
Boa + p2 = Ay — (ar sin ¢y + 2agsin g + - - - + ay, sin ¢y,), (4)

ﬁén + gzﬁn = A, — (a1 sin ¢y + agsin g + « - - + 2a, sin ¢,).

The phase synchronization of oscillators in the model (1) is defined as an attractor
of the system (4) which trajectories (¢3(t), ¢5(t)) satisfy the conditions

Wf(t”<€7<¢f(t)>:Ovi:1’27"'7n7 (5>

where () denotes the mean value, and parameter ¢ < 7/2 is a measure of synchronization.
Respectively, the steady trajectories (¢%(t),¢?(t)) of the system (4) defining
asynchronous mode of the oscillators in (1) satisfy the condition

(P3(t)) #0,i=1,2,...,n. (6)

The mutual synchronization of the peripheral oscillators is characterized by the
rotation numbers .
o 93 ()
Tij

Jm o1 (t)
The main candidate for synchronous state of the system (1) is the stable equilibrium
point of the system (4).
The phase space of the system (4) written in Cauchy form with coordinates (¢;,y; =
$;),i=1,2,...,n,is the cylinder G = {R" x T"}.
From the boundness of the right parts in (4) follows the next

i, =1,2,...,n. (7)

Statement 1. The solid torus Gy = {¢; € S', |y;| < A; + Na,i =1,2,...,n}, Gy C G,

where @ = {max }ai, is the absorbing domain of the system (4).
i€{1,2,..,n
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Equilibria of the system (4) are the solutions of the system

MS =T, (8)
where
21 - 1
1 2 - 1
M = ) ,
1 1 - 2
S = column(ay sin @1, agsin ¢g, . .., a, sin ¢, ), I' = column(Aq, Ag, ..., A,).

Since det M =n+ 1 = N the system (8) has a unique solution
aising; = A;, i =1,2,....n, (9)

where A, are the entries of the column M~'T, and (9) reads

"IN A,
no =13 (2=, (10)

7 ]7
The system (9) for |A;| < a; has 2" equilibria in G. The principal equilibrium
corresponding to the synchronous mode is the point O(¢], o5, ..., ), ¢ = arcsin Aa; !
All the rest equilibria coordinates are obtained from O by changing qb;; to ¢, =m— gb;:,
k=1,2,...,n.
The stability of the equilibria is defined by the variational linear system of ODE
(¢ = &7 + )

6&:’1 + 11.31 + 20&1.731 + 0y + -+ Ty, = 0,
BTy + To + 171 + 20079 + - - - + oz, = 0, (11)
Bin + Tn + 11 + aTy + -+ 20,7, = 0,

— + 2 _ A2 — - 2 _ A2
where a; = a;cos ;" = y/ai — A? (or a; = a;cos ¢, = —r/a; — A?).

We seek a solution of the system (11) in the form z; = ¢;e?* and obtain the next
characteristic equation for the system (11)

o 1 -+ 1
1 oy -+ 1

det | . . 1 =0, (12)
1 1 On

where o; = (8p? + p + 20;)a; .
Hence, the equilibrium O is stable, i.e. the complete synchronization regime is stable,

when the real parts of 2n roots of the equation (12) for a; = y/a? — A? are negative.
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Let us consider the particular case of the system (4)

a; =1/a? — A? =a = const,i =1,2,...,n, (13)

This condition implies the uniform coupling in the system (4): a; = a, A; = A. In this
case A; = A/N, and o; = \/a? — (A/N)? = a, and 0, = o. In this case the equation
(12) takes the form

(c—1)"Yo+n—-1)=0. (14)
Then 0 — 1 = 0 gives the equation
Bp* +p+a=0, (15)
and 0 +n — 1 = 0 leads to the equation
Bp*+p+ Na=0. (16)

From (15) repeated (n — 1) times and (16) we conclude that the real parts of all the
roots of the equation (12) are negative and therefore the equilibrium O is asymptotically
stable. In this case from equation (2) we obtain the following expression for frequency of
complete synchronization

N
wé =N Zwi. (17)
i=1

It’s easy to verify that in homogeneous case (13) all the rest equilibria are saddles with
different dimensions of unstable manifolds.

Hence, we proved the next statement
Theorem 1. Let for A; = A, a; = a the following condition holds
|A| < Na. (18)

Then the system (4) has the stable equilibrium point O, corresponding to the synchronous
mode of the system (1) when the hub oscillator synchronizes the enclosing ones.

Corollary 1. The stability of the equilibrium point O is preserved for small mismatch
la; — | < p due to its structural stability. For large mismatch the stability conditions
one can derive using (12).

Corollary 2. The system (4) has no equilibrium points if |A;| > a; at least for one
i=i€{1,2,...,n}.

Indeed, in this case the system (9) has no solution, and the synchronization loss
occurs due to disappearance of the stable equilibrium O via saddle-node bifurcation.
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2. The uniform coupling in star configuration
of Kuramoto model

Consider the case of uniform coupling when a; = a = const, A, = A = const, but rewrite
the system (4) in another form

Boi+ ¢ =A—asing; —bY sing;,i=12...n, (19)

j=1
where new parameter b > 0 is not necessary equal to a.

Lemma 1. The system (19) has the invariant manifold M : {uy = uy = - -+ = u, = u}
where u; = (@5, ¢; = y;), dim M = 2. The dynamics in the manifold M is determined by
the pendulum equation

Bo+¢=A—asing, (20)

where o = a + bn.
Indeed, each equation (19) after substitution u; = w becomes one and the same
equation (20), and any trajectory of the system (19) with uniform initial condition u; =

u? € M, does not leave M.
The local stability of the manifold M is defined by the variational equation

B+ & = cosg[—a& — b &, (21)

j=1
where &, = ¢; — ¢ and ¢ is driven by the system (20).
First we present well known [22, 23, 24| bifurcational diagram and qualitative phase

a
pictures of the pendulum equation (20) which for new time ¢’ = , / —¢ and new parameters

A= (af)~2 v = A/a takes the form
b+ Ap+sinp = 7. (22)

For A > 0 the bifurcations in this equation are saddle-node for |y| = 1 and the
homoclinic loop encircling the cylinder (¢,y = ¢) at |y| = ,(\), where v, () is Tricomi
curve satisfying the conditions

4
Y1,(0) = 0;7,(0) = ;;VZ(A) > 0,0 < X< Ag; (23)

’yh()\) = 07 A > )\sny (24)
where the value A, ~ 1.2 corresponds to the homoclinic loop of the saddle-node. The

condition 7;,(0) = — one can obtain using averaging method for small parameters A

and v in (22), and increasing property, v;(A) > 0, of the function v = ~,()\) follows

from clockwise rotation of the vector field (¢ = y,9) given by the equation (22), while
parameter A increases.
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For the parameters 3, a, A of the equation (20) the bifurcations read

1A = oy ((Ba)~'?) (25)
is the homoclinic bifurcation, and
Al=a (26)
is the saddle-node bifurcation.

Lemma 2. The system given by the equation (20)

O=y,Py+y+asing=A (27)

in the phase cylinder G = {¢ € S',y € R'} has the following phase portraits:
1) In the parameter domain

dy = {|A] < oy ((Be) ")}

the system (27) is globally asymptotically stable (Fig.1,S) such that the stable focus

(or node) Of(¢py = arcsin—,y; = 0) attracts the whole cylinder besides the stable
a

separatrices of the saddle Og4(¢s =T — ¢g,ys = 0).
2) In the parameter domain

dy : {am((Ba) ™) < |A] < a, (Ba) ™2 < A},

the system (27) is bistable: it has the stable focus (node) and the unique stable limit cycle
le(d = ¢c(t),y = y.(t)) encircling the cylinder; the basins of the focus and the cycle are
separated by the stable separatrices of the saddle (Fig.1,B).
3) In the parameter domain
ds : {|A| > a}

the system (27) has the unique limit cycle attracting the whole cylinder (Fig.1,R).

04l B e

02r

Fig. 1. Phase portraits of the system (20) for different value of parameters

Fig.1 corresponds to A > 0. For A < 0 the phase portraits are the same for the
reverse coordinates (¢,y) — (—¢, —y).
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Consider the local stability of the trajectories I*(¢*(¢), y¥*(t)) in the invariant manifolds
M, especially of the limiting set, which consist of the stable focus (node) O(¢,0), the
saddle Og(¢s,0) and limit cycle l.(¢c, ye).

Obviously, the stability along the manifold M is defined by the variational equation
of the equation (20) (¢ = ¢* + &)

BE+ €+ acos*(t)E =0,a = a+nb, (28)

which obviously determines type of the equilibria stability and for the limit cycle, ¢* = ¢.,
gives one zero and one negative (div(¢,7) = —(Sa)~"/? < 0) Lyapunov exponents.

The variational equation (21) for original system (19) along the manifold M, i.e.
along the vector (1,1,...,1) gives the same equation (28).

In the transverse direction to the manifold (transversally to the vector (1,1,...,1))
the system (21) takes the form

B + ;i + acos @™ (t)n; = 0, (29)

where 1, = & — &1, 1 = 1,2,...,n — 1, and ¢*(¢) is driven by the equation (20).
The equation (29) similarly to (12) determines the stability of the focus (node) Oy in
the transverse direction and unstability of the saddle O, in the transverse direction.
The equation (29) for the trajectories ¢*(¢) from the basin of node Oy lying in the band

lp| < g, providing cos ¢*(t) > 0, at least for (3a)~'/2 > \,, guarantees the local stability

of this part of the manifold M. The transverse stability of the limit cycle is defined by
the equation (29) for ¢* = ¢.(t). Since ¢c(t) = y.(t) > 0 the phase ¢.(t) rotates and the
term cos ¢.(t) in (29) changes the sign thereby creating a problem of the cycle transverse
stability. We solve it in the case when |A| = (8a)~'/2 +¢, for small enough £ > 0. In this
case the cycle just appearing from the homoclinic loop of the system (27) passes a small
neighborhood of the saddle Oy and therefore spends the most time (of order 1/¢) in the
neighborhood |¢ — ¢,| < &. Since cos ¢ < 0, due to (29) the limit cycle [. is born being
unstable.
From above reasoning we conclude

Statement 2. 1) If the Lyapunov-Floquet exponents from (29) for ¢*(t) = ¢.(t) are
negative then the asynchronous mode is such that the peripheral oscillators are
synchronized with rotation numbers equaled 1.

2) The homoclinic bifurcation of the system (19) leads to an asynchronous mode of
the peripheral oscillators.

For sufficiently large inertia such that (3a)~'/2 < \,,, the transition from coherence
to incoherence of oscillators is hysteretic. When the frequency difference A increases
the transition from the stable equilibrium Oy (coherence) to the rotation mode in the
solid torus Gy (incoherence) occurs via the saddle-node bifurcation |A| = a. Obviously,
this rotation mode can be the stable cycle I, = (¢e(t), de(t)) in the manifold M. In this
case one observes the transition from complete phase synchronization to the synchronous
state of the peripheral oscillators being asynchronous to the hub oscillator with mean
frequency difference (¢.(t)). When the frequency difference A decreases from large values
corresponding to the rotation mode at the bifurcation of homoclinic orbit of the saddle
|IA] = ay,((Ba)~'/?) the reverse transition to the complete synchronization due to
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Statement 2 occurs only from the asynchronous mode of the peripheral oscillators. Note
that this hysteretic behaviour being similar to the transitions in the Josephson junction
model [25] was discussed in the recent paper [26].

3. Nonsymmetric coupling

We consider the general case of nonsymmetric coupling but, as an example, for three
oscillators in the star configuration. Similarly to symmetrical case (2), (4) we obtain the
system

e : , (30)
Pada + P2 + azsin g = Ay — by sin ¢,
where f3; o are different inertias of peripheral oscillators, a; 2, by 2 are the coupling matrix
entries, and A are frequency differences. Our goal is to introduce several parameter
domains exhibiting different simple and complicated dynamics of the system (30).

{51&1 + <b1 + aysin¢; = Ay — by sin ¢,

3.1. Equilibria
The system (30) has four equilibria in the region
Ay <6 (31)
where ALQ = a21012 — b12A21, 6 = aras — b1be, defined by the equation
sin ¢y 0 = 51725_1, (32)

giving solutions ¢{§‘) similarly to (9). For §; = 5, = (3 the stability of the equilibria in
this case is defined by the equation

0% +ro+ o0 =0, (33)
where r = ajaq+asqs, ag 2 = cos ¢f§", o = Bp*+p. Due to (33) the principal equilibrium

Os(¢7, ¢3) is stable and three other equilibria are saddles.

3.2. Comparison systems
We rewrite the equations (30) in the form of the systems
¢31,2 = Y1,2, (34)
51,2@1,2 = A1,2 — Y12 —A12 sin ¢1,2 - b1,2 sin ¢2,17
Introduce two comparison 2D systems (see [27] and ref. within) for each subsystem
in (34) A7)
Blyl = AZ + bl — Y; — a; 81 Qbi,

i = 1,2, acting in 2D-cylinder G = R! x S!. The systems A;r(f) are the system (27) with

A; =A; b, 1 =1,2, standing for A.
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The vector projection of the system (35) on the cylinder (¢,y) is rotated clockwise
(counterclockwise) relatively to the vector of A (A;, respectively) in the half-cylinder
(¢,y > 0) and vise versa in the half-cylinder (¢,y < 0). Now we depict the separatrices
of the saddles and cycles simultaneously for the systems A and A;. The unstable
(stable) separatrices form the strips between them-sparatrix channels g¥ (g7 respectively).
Introduce the intersection ¢g¢ = g¥#Ng;, called the saddle cell [27], the annulus K bounded
by the stable cycles of the system A; and A;, and the absorbing domain g;” bounded

)
by unstable separatrices of the systems A; and A;, and segments ¢ = const (see Fig.

2), i = 1,2. We select three pairs of parameter domains dy; = df; U dy;, where d,;(_),
k=1,2,317=1,2, are domains di, k = 1,2,3 from Lemma 2 with A; = A; +b;, a;
and f3;, i = 1,2, standing for A, a and 3 respectively. Both systems A and A; have
the same qualitative phase portraits in each of these domains d;, k¥ = 1,2, 3, forming
mutual arrangement of the saddle channels, annulus and absorbing domain depicted in
Fig.2. Using the above geometric structures we obtain the following findings.

Theorem 2. Let the parameters of the system (34) be in the domain d, = dy; Udy, when

the comparison systems AT(_) and A;(_) form the same structure of Fig.2-1. Then the
equilibrium point O (@7, d3) is globally asymptotically stable. Herewith three oscillators
are globally synchronized.

Proof. The system (34) has no entire trajectories besides the saddles in the domains

g7 X g5, 979 X g7 5. It follows from Lyapunov-Chetaev function for monotone functions

sin ¢ » at the intervals of ¢; 5 for gf(; ) in the system (34). The domain g© = g; U gy is

the attracting domain of the trajectories of the system (34) (besides the stable manifolds
of the saddles) for the parameter region di; U dj2 due to the directing property of the
comparison systems (see Fig.2-1). The stability of the locally stable point Of in the
globally attracting domain g* can be derived with the Lyapunov function using the
monotonicity of sin ¢; 5 in the square ¢ 2 — ¢f2| < ¢ corresponding to g'.

Theorem 3. Let the parameters of the system (34) be in the domain ds = ds; U dag,
when the comparison systems AT(_) and A;(_) form the same structures of Fig.2-3.
Then the solid torus K= = K$ x K§ attracts all the trajectories of the system (34). The

nonwandering set of trajectories in K s rotating and defines the asynchronous mode
of the oscillators.

This statement immediately follows from the simple structure of Fig.2-3 forcing all
trajectories of the system (34) to enter K

Theorem 4. Let the parameters of the system (34) be in the domain dy = doy Udsy with
the same structures of comparison systems (Fig.2-2). Then the system (34) is fourfold-
stable, that is, it has four separate components of limiting set in four absorbing domains
o =t s s
g+7 K ) Mf:gerKw M;:g;XKl

Proof. In the parameter domain dy a trajectory of the system (34) given by a solution
b = Bilt, 8%, %, 85, 48), i = Gi(t, 6%, u%, 65, 98), i = 1,2, with initial conditions (67, y?) €
g (K?),i=1,2, is such that due to the comparison principal the coordinates of the first
(second, respectively) subsystem remain in the first (second, respectively) absorbing
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domain, (¢;, %) € g (K?), i = 1,2, for any t > 0. This implies that in R? x T? the
trajectory of the system (34) with any initial point in the domain g+ (EJF, MIL, M;,
respectively), stay in these domains for any ¢ > 0.

T
. X ro—
WERE WM e
W NI N N n

(1) (2) (3)

Fig. 2. Illustration of the comparison system (35)

3.3. Bifurcational transitions

First we note that in all cases of system the bifurcations of equilibria are simple and
occur via the saddle-node when the frequency differences increase. In order to exhibit the
complicated bifurcations leading to emergence of chaos we consider the reduced system
(30) for by = 0 corresponding to the unidirectional coupling of one of the peripheral
oscillators. The second ("master") equation in (30) has the pendulum dynamics and
in the simple case |As| > ap which we consider has the unique rotating limit cycle
¢c(t) = ¢e(t +T) (see Lemma 2). The first ("slave") equation is the pendulum one as
well but it is driven by periodic force —b; sin ¢.(t). Using the results from [25, 27| we
obtain the next

Theorem 5. 1) In the parameter region by = 0, |Ag| > as, |A1] < a3 —by the system (30)
in the solid torus g7 X K5 has a unique saddle cycle l; which stable W and unstable W'
manifolds lie in the channels Wy C gi x K35, W{* C gi x K5 and have mutual arrangement
corresponding for dyy to Fig.2-1 and for di5 to Fig.2-2.

2) There exists an interval |A1 —ayy,((Bra1)~V?)| < e corresponding to a structurally
stable homoclinic orbit to the cycle ls providing a chaotic compement of the system (30)
limiting set containing infinite numbers of saddle cycles.

8) There exist an interval linking to the bifurcational point Ay = ayy,((Brar)™V/?) +¢
for which the system (30) has a quasi-strange rotating attractor.

The proof of the theorem is based [25, 27| on the fact that when the parameter A;
increases from the values from the domain dj; (corresponding to Fig.2-1) up to the values
from the domain dy5 (corresponding to Fig.2-2) the channels g and g} as well as the
manifolds W} and W7* change their mutual arrangement causing the birth, existence
and death of the homoclinic orbits H; = W7 N Wi, Omitting the details we note the
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important property of the hysteretic bifurcational transition in the system (30). When
the parameter A; decreases the transition from asynchronous rotation to the synchrony
occurs at random values of the parameter A; from the interval corresponding to the
quasi-attractor existence. This complexity of the system (30) dynamics is similar to that
of the shunted Josephson junction [27].

Hence, the example of three oscillators exhibits the complexity of the system dynamics
which obviously is typical for the general system (1).

Finally we emphasize that the main reason of the complicated dynamics is relatively
large inertia of oscillators. Indeed, in the limiting case ;2 — 00 (A1 2 — oo for rescaled
system (22)) the system (30) reduces to the divergence-free nonintegrable system

(36)

él + ay sinq§1 + b1 Sil’lgbg = Al,
¢2 + Qg 8in Py + by sin ¢ = Ao,

In this system the parameters b; 5 increase from zero causes due to KAM theory the
invariant tori breakdowns corresponding to the "conservative chaos".
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®a3zoBas mMo/iesib KypaMoTo ¢ uHepiiueii:
oudypkanum noTepu CUHXPOHHOCTH W Iepexo/ia K Xaocy

Bensix B. H., Bosioros M. 1., Ocumnos I'. B.
noaywena 15 cenmabpa 2015

B namnoit pabore paccMaTpuBaeTcs KOHETHOMEPHAas Mojiestbh KypaMoTo ¢ nHepImeii B CIy4dae TOIo-
gorun tuma "3Be3ma". Cucrema ypaBHEHUIl CBOJUTCS K HEJUHEHHO CBSI3aHHON CHCTEME MasgTHUKOBBIX
ypaBHeHuit. MbI jIoKaKeM, 9TO Tepexo/i OT CHHXPOHHBIX K ACHHXPOHHBIM KOJIEOAHUSIM [TPOUCXOUT de-
pe3 ceIoy3I0ByI0 OudypPKAIMIO COCTOSHIS paBHOBeCHs. TakKuM 00pa30M, ACHHXPOHHBIN PEKIM MOXKET
[IPEJICTABIIATH COOON YaCTUIHO CUHXPOHHBIE BparieHus. OOpaTHbIN mepexo/] OT aCHHXPOHHOIO PEXKUMa,
K CHHXPOHHOMY IPOUCXOIUT Yepe3 OndypKaIUuio FOMOKJINHIIECKON OPOUTHI KaK CEJJIOBOIO COCTOSIHUSI
PaBHOBECHSI, TAK U CEJJIOBOU IEPUOIMIECKO OpOUTHI. B cilyuae TOMOK/JIMHMYECKONW TETIN Ceijia CHH-
XPOHHOCTHb BO3HUKAET TOJIBKO M3 ACHHXPOHHOTO PEXKMMa 0€3 YaCTUIHO CHHXPOHHBIX BpalneHuii. B ciy-
Jae TOMOKJIMHUIECKOW KPUBOH CE/I0BOI TEPUOANTECKON OPOUTHI B CHCTEME MMEET MECTO XAOTHIECKUit
PEeXKUM BpAIIeHUs], KOTOPBIl PUBOJIUT K CIYYaifHOMY BO3BPATY CHHXPOHHOCTU. YCTAHOBJIEHO, UTO IIe-
Pexobl TyIa U 0OPATHO MPOUCXOJAT C TUCTEPE3NCOM IIPU OOJIBINON UHEPIUH.

Crarbs yOIMKYyeTCsT B aBTOPCKOIN peTaKITiu.
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