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Software-defined networks (SDN) are a novel paradigm of networking which became an enabler
technology for many modern applications such as network virtualization, policy-based access control and
many others. Software can provide flexibility and fast-paced innovations in the networking; however,
it has a complex nature. In this connection there is an increasing necessity of means for assuring its
correctness and security. Abstract models for SDN can tackle these challenges. This paper addresses
to confidentiality and some integrity properties of SDNs. These are critical properties for multi-tenant
SDN environments, since the network management software must ensure that no confidential data of one
tenant are leaked to other tenants in spite of using the same physical infrastructure. We define a notion
of end-to-end security in context of software-defined networks and propose a semantic model where the
reasoning is possible about confidentiality, and we can check that confidential information flows do not
interfere with non-confidential ones. We show that the model can be extended in order to reason about
networks with secure and insecure links which can arise, for example, in wireless environments.
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Introduction

The traditional approach to the networking assumes that a network is constructed
using vendor-specific hardware which is tightly coupled with a proprietary software
which implements distributed protocols. Protocols can provide various services including
topology discovery, routing, access control, quality of service and other features. Network
operators must install these devices and configure every protocol they intend to use.
This tight integration of forwarding and control functionality within proprietary devices
restricts innovations and slows down introduction of new network services to modern
networks. Bringing open standards and programmability to networks are key points of
introduction of software-defined networks (SDN).

Software-defined networks have drawn a lot of attention in recent years and provide
a rich set of concepts for centralized management of modern networks. The main aim
of SDNs is to provide general principles of packet forwarding and to decouple control
software from forwarding devices. This makes it possible to bring innovations to networks
without changing the underlying hardware just relying on a well-defined standard collec-
tion of packet-processing functions that forms the body of the OpenFlow standard [9].
Software controller provides a centralized management and orchestration of the whole
network inspecting network packets and installing forwarding rules to switches under
management.

However, the standard does not solve security problems which are the great challenge
in todays networking [12]. The centralized control of SDN can benefit in enforcing
security strategies, however, the lack of models makes this problem challenging [4].
We can discuss the security of SDN in three dimensions: integrity, availability and
confidentiality. The integrity assumes that no data is corrupt due to internal or external
events or misconfiguration. This problem was in the focus of study in [1] where the
authors propose a model checking-based approach to find configuration inconsistencies
that can lead to network partitioning. The availability property means that data are
available when needed. At some extent this property is achieved by load balancing in
SDN [8].

The confidentiality considers that secret data cannot be inferred by an attacker or
unintentionally. This policy can be imposed by using access control lists, encryption etc.
One of the recent attempts that introduce access control lists to SDN is [5]. However,
access control does not prevent leaks of confidential data through improperly configured
or buggy software [11]. The confidentiality property can be seen in a broad sense, so we
focuse on the end-to-end confidentiality. We assume that an attacker can observe non-
confidential entities of the network and has a limited access to the network infrastructure.
The confidentiality can be achieved at some extent when network resources are separated
from each other in slices [7], however, slices isolate flows in the network, thus, are too
restrictive. Software nature of network control in SDN is a cause for a try to apply
security methods that are developed for programming languages [11].

There is an extensive work on semantic foundations of networking programming
languages that can provide a solid basis for reasoning about networks. One of the first
attempts was Frenetic language [6] that provided abstractions for SDN programming
and means for combining these abstractions in a meaningful and consistent way. The
NetKAT project [2] defined a semantics that can help to prove reachability in networks
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(which is an integrity property) and address several security properties at once, however,
the decision procedure for this formalism has PSPACE complexity. Focusing only on
confidentiality may reduce complexity of verification. The confidentiality property was
investigated for programming languages [11] and implemented for model [3] and industry-
level languages [13]. This approach is based on rigorous semantic rules that impose
restrictions on information flows in programming languages.

In this paper we propose a framework for checking confidentiality on-the-fly for
modern SDNs that are conformed to the OpenFlow standard. We introduce a set of
semantic rules that help us to verify that controller application does not allow non-
confidential information flows. We assume that network consists of high and low security
nodes and latter we extend our concept to a model of network that can contain secure
and insecure links.

Consider a simple model of a software-defined network. Let us assume that the
network consists of endpoints or hosts that generate data traffic and a set of unified
intermediate nodes forwarding the traffic. These forwarding devices are OpenFlow
switches that conform to standard [9]. There is a single node representing a controller
application that manages all the switches by using secure channels. Thus, a network can
be represented as a graph where the nodes are either hosts or switches, and the edges
are links.

The OpenFlow switch contains a set of physical or logical ports which are interfaces
for passing packets between the switch and the network. According to specification [10]
the OpenFlow switch consists of an OpenFlow channel, one or more flow tables, and
a group table. The OpenFlow channel is used for managing the switch and for passing
relevant data about the traffic under management to the controller. Flow tables provide
means for forwarding and processing packets. The controller can add, update or modify
flow entries in flow tables. Such an entry consists of match fields, counters and a set of
instructions to apply to matching packets. The group table enables additional methods
of forwarding by representing a set of ports as a single entity. Thus, group tables do not
represent a fundamentally different abstraction and can be modeled via flow tables. So,
we exclude group tables out of consideration.

Each arriving packet is matched to flow table entries starting from the first one. If the
match is found, instructions associated with this flow entry are executed. If the packet is
mismatched to each table entry, the outcome depends on the table-miss flow entry. Such
a packet can be passed to the controller, dropped or handed to the next flow table. We
will assume that the packet is passed to the controller.

The match field is a predicate which partitions the set of all flows passing through
the network. Standard [10] proposes that matching field is a conjunctive predicate where
each conjunct can impose conditions on various packet headers including Ethernet, IP,
TCP, etc. Each flow has a source and a destination host. Thus, the matching field can
be modeled as msrc ∧mdst, where msrc and mdst are conjuncts for matching the source
and destination hosts of the flow, respectively.

Counters are variables that contain statistical information about flows. Since counters
have no direct impact on forwarding, exclude them out of consideration.

Let us consider instructions that can be executed if a packet is matched to a flow
table entry. The standard proposes that instructions are lists of actions. Some of these
actions are required to be implemented by switch designers and the rest are optional.
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The actions are executed in the order specified by the list and are applied immediately
to the packet. We consider only the following actions:

• Output(port). This action specifies the port to which the associated packet will be
forwarded.

• Drop. The packet can be discarded from the network using this action.

• Set. The optional set action allows to modify packet header fields, such as IP and
MAC addresses, various tags, etc.

• Delete. This action deletes flow entries according to a match.

We limit ourselves to considering only listed actions when trying to capture most
relevant OpenFlow processing features and not to overwhelm the model.

The packet processing model is the following. Upon receiving an incoming packet p,
the controller emits an ordered list of match fields each of which is paired with an action.
This list is installed to the switch.

The controller software implements specific network applications. There are a lot
of them. For example, the controller can implement a simple hub application where it
installs such forwarding rules to a switch, so an incoming packet is flooded to all switch
ports except for an ingress port. Other applications include a learning switch, where
the controller determines what subnets are reachable from different switch ports and
it installs forwarding rules in such a manner that the incoming packet goes to a port
from which its destination host is reachable, otherwise it is flooded. The controller can
implement various security checking policies, for example, allowing to forward a packet
from authenticated hosts and dropping packets from other hosts.

1. End-to-end Security Model for SDN
The controller application gathers all the information about the network under manage-
ment. So, we can assume that the security level of each endpoint is known. The security
level can be revealed using some kind of a protocol or can be defined ad-hoc. For the
sake of simplicity we assume that there are two security levels of endpoints: high and
low. Since a host is identified by the IP address, we can think that the controller can
map the space of IP addresses of the network under management into a set of security
levels. Denote a security level of a host h as h : low or h : high.

For further discussion we need means for reasoning about sets of hosts. The network
itself or its subnets aggregates hosts with different security levels. Define security predi-
cates exists and forall that will give us a security type for a set of hosts {h1, . . . , hn}
as shown in Fig. 1.

If the set of hosts is homogeneous, i.e. all hosts have the same security level, the
predicate forall can be typed with the same security type as any host in the set. On
the other hand, the exists predicate is high only if the set contains a high host. This
predicate can not be typed as low and it will be seen later that we only need to check a
possibility to reach a high security host.

One of the primary functions of the controller is routing that is essentially reasoning
about reachability in networks. Model the network as a graph, so we are forced with
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{h1 : low, . . . , hn : low}
` forall(h1, . . . , hn) : low

(1)
{h1 : high, . . . , hn : high}
` forall(h1, . . . , hn) : high

(2)

{h1, . . . , hn : ∃hi : high}
` exists(h1, . . . , hn) : high

(3)

Fig 1. Security types for sets of hosts

deducing reachable hosts from a given switch. Thus, we define a function reachable(s, p)
that evaluates a set of hosts reachable from a switch s if we first go to the port p. It
is not easy to calculate reachability in real networks since the network can be dynamic
because of mobility of hosts and installed forwarding rules. However, a superset of the
set of reachable hosts can be computed using breadth-first search on a network graph.
More accurate algorithms that take into account network policies can be found in [2].

The data plane of the network is represented by switches that use flow tables for
implementation of network policies. Each flow table entry contains a matching field that
is modeled as a predicate match = msrc ∧ mdst. We define the functions src and dst
that map a predicate to a set of source and destination hosts, respectively, such that the
predicate is true.

The next part of the model is a packet processing context. When the OpenFlow switch
can not match the packet to any flow table entry, the model assumes that the packet
is forwarded to the controller. The controller can examine headers of the packet and
determine the host that emitted the packet. Security type of the host implies the packet
processing context so we can analyze whether the controller generates a secure response
to the packet or not.

A security-type system can help to reason about the security type of a single inter-
action between a switch and a controller. Figure 2 presents typing rules for instructions
that can be installed to a switch s by the controller in response to a packet pkt. We can
use the presented security-type system for inferring a type of the interaction. If the type
can be inferred, the interaction is secure, otherwise it allows leaks of confidential data.

Let us consider a proposed set of typing rules in more detail. Rule 4 assigns a type for
a packet processing context in such a way that the context pc agrees with the security
type of the source host of the packet pkt. The packet processing context is a virtual
action in the list formed by the controller.

For the Drop action (rule 5) we strictly isolate flows of different security levels, that
is, the source host of the flow must correspond to the context of the action. Such a type
setting prevents interference between packet processing contexts and actions of different
security levels. Violation of this can lead to a covert channel when low hosts discover
that a high host installs Drop action by observing occasional drops. Setting low type to
the Drop action ensures that under the low security packet processing context a drop
can occur only for low security flows. Non-interference property holds even if we allow a
low security packet processing context to drop high security flows since no information
about high security flows can be inferred. However, we discard this and guarantee that
integrity for high security flows can not be broken by low hosts.
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` forall(src(pkt)) : pc

[pc] ` pkt
(4) ` forall(src(match)) : pc

[pc] ` match×Drop
(5)

` exists(dst(match)) : high ` exists(reachable(s, port)) : high

[high] ` match×Output(port)
(6)

` forall(src(match)) : low

[low] ` match×Output(port)
(7)

` forall(dst(match)) : high

[high] ` match×Delete
(8) ` forall(src(match)) : low

[low] ` match×Delete
(9)

` forall(src(match)) : low ` forall(src(pattern)) : low

[low] ` match× Set(pattern)
(10)

` forall(src(match)) : high
` forall(dst(pattern)) : high
` forall(src(pattern)) : high

[high] ` match× Set(pattern)
(11)

[pc] ` A [pc] ` B

[pc] ` A;B
(12)

Fig 2. Security-type system for SDN

The Output(port) action type depends heavily on the matching condition (rules 6–
7). If the match forwards traffic to high security hosts, there must be a high security
host reachable from the port. In this case the security context of Output(port) is high.
If the source of the traffic is a low security host, it can be forwarded anywhere and the
security context of this action is low. The Output(port) action can not be typed if the
match condition specifies that traffic from high security hosts must be forwarded to a
low security host. If this is the case, forall(src(match)) can not be typed as low and
exists(dst(match)) can not be typed as high implying that premises for both rules do
not hold.

Rules 8–9 for Delete action guarantee that the eviction of flows from the flow table
of the switch is done in the respective security context. So, a low packet can not be a
reason to remove high matches and vice versa.

Rule 10 guarantees that any low security flow can not become a high security flow
by changing the source address of the packet. By imposing this condition we achieve a
certain level of integrity since a low packet can not become a high packet that may later
influence other high security flows. Rule 11 assures that a high security flow stays high
providing no information leak to the low security plane. In both rules we denote as a
pattern the data that have to be written to the packet header.

The controller can respond with several actions at once, thus we must have means for
inferring a security type for a list of actions. This can be done using rule 12 that assigns
a security type for a composition. Here, A and B can be either single actions or lists of
actions.

The proposed rules constitute a security-type system which describes what security
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type must be assigned to a list of actions. This list of actions is formed by a controller
in response to a packet incoming from the switch. The packet specifies the first action
in the list called a packet processing context. If the whole list can be typed using the
proposed security-type system, the list ensures non-interference among flows of different
security levels and fulfills some integrity properties.

This security-type system can be further extended to SDNs with insecure links. We
can define an insecure link as a channel that can not be trusted since they are exposed to
everyone like Wi-Fi medium or may be public channels shared by various tenants. This
setting leads to a new confidentiality violation since high data traffic may be forwarded to
an insecure link. It could be noted that any link can be secured using traffic encryption.
We propose the following extension to our model. Let us assume that every link has a
security level (high for secure links and low for insecure ones) and it is known to the
controller. It is the same that we did for endpoints. Also we must provide means of
reasoning about secure paths in the network.

Let us define a function reachables(s, port) that calculates a set of hosts that are
reachable via paths such that every link in the path is secure. Since the controller has
the information about the network graph, it can be done using breadth-first search or
taking into account current network policies [2].

Since a confidentiality flaw can occur when high traffic is forwarded to an insecure
link, we must only refine rule 6 that is used for inferring the type for Output action
considering high traffic. We propose the following change:

` exists(dst(match)) : high ` exists(reachables(s, port)) : high

[high] ` match×Output(port)
(13)

Thus, we allow high traffic only to those switch ports that start with a secure link
and have the possibility to reach the destination host using a secure path.

This shows that the proposed model can be used as a basis for reasoning about various
aspects of confidentiality in software-defined networks.

2. An Example of the Model Application

high host low host

10.0.0.1

10.0.0.2

10.0.0.3

10.0.1.1 10.0.1.2

10.0.2.1

10.0.2.2

1 2 3

4

OpenFlow switch

Fig 3. A sample network with high and low security hosts
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We consider a learning switch application as an example. The switches in the network
initially have no flow entries and forward incoming packets to the controller. The controller
examines each packet and stores in the internal database the source address of the
packet along with the port from where it was received. The port and packet headers are
forwarded to the controller as an OpenFlow packet in message. Next time the switch
receives the packet destined to the address that was seen earlier, the controller can infer
the port to which the packet must be forwarded. If the port can not be determined, the
packet is flooded to all the switch ports.

Algorithm 1 Learning switch algorithm
1: pkt← packet arrived to the controller
2: port← from which port pkt received
3: if find(src(pkt)) is null then
4: push (src(pkt), port)
5: end if
6: fport← find(dst(pkt))
7: if fport is null then
8: for all switch port i other than port do
9: emit (src(pkt),dst(pkt))×Output(i)
10: end for
11: else
12: emit (src(pkt), dst(pkt))×Output(fport)
13: emit (dst(pkt), src(pkt))×Output(port)
14: end if

A simple algorithm for the learning switch is shown as Algorithm 1. The input data
for the algorithm is an incoming packet pkt and the port port from which it has been
received. The controller maintains an internal database which can be implemented as a
hash which supports the following operations:

• push(address, port). The operation creates a mapping between the address and the
port in the internal database.

• find(address). This is a query to the database which returns port number associated
with address and null if there is no such an association.

There is an emit operator in our language which appends the action to the list of
instructions destined to the switch. The list is sent to the switch when the algorithm is
stopped. Then we can analyze the list and find if it is secure or not.

Algorithm 1 checks whether a mapping between a source address of pkt and port
exists. If there is no such mapping, it writes it in lines 3–5. Thereafter, we try to find if
we have learned the port to which we can forward the packet pkt (line 6). If no such a port
exists then we flood the packet to all ports except ingress port (lines 8–10). Otherwise,
we emit forwarding rules which set up a duplex channel between source and destination
hosts of the packet (lines 12–13). We assume that entries responsible for flooding packets
will be eventually evicted from switches and replaced by direct forwarding entries.

Recall the network from Fig. 3. Assume that the controller database is empty and
there is no forwarding rules at switches, so each switch sends a packet in message to



Chaly D. Ju., Nikitin E. S., Antoshina E. Ju., Sokolov V.A.
End-to-end Information Flow Security Model for Software-Defined Networks 743

the controller upon a packet receipt. The security flaw arises even when the first packet
travels from any high security host. For example, if the host 10.0.0.2 sends a packet pkt
to the host 10.0.2.1, the following list of rules will be emitted by the controller to the
switch 1 according to lines 8–10 of Algorithm 1:

(10.0.0.2, 10.0.2.1)×Output(1)
(10.0.0.2, 10.0.2.1)×Output(3)
(10.0.0.2, 10.0.2.1)×Output(4)

The first instruction installs the rule which forwards all packets from high security
host 10.0.0.2 to a low security host 10.0.0.1. Let us try to discover a security type of
packet pkt processing.

First, by rule 2 we can infer that

10.0.0.2 : high

` forall({10.0.0.2}) : high

Since src(pkt) = {10.0.0.2} using rule 4, the following holds

` forall({10.0.0.2}) : high
[high] ` pkt

Next, we should discover the type of the action (10.0.0.2, 10.0.2.1) × Output(1).
Let us denote as match = (10.0.0.2, 10.0.2.1), src(match) = {10.0.0.2}, dst(match) =
{10.0.2.1} and the reachable(s, port) = {10.0.0.1}. Thus,

` exists(src(match)) : high

but
6` exists(reachable(s, port)) : high

6` forall({10.0.0.2}) : low

so the premises for rule 6 not hold.
Likewise,

6` ∀(src(match)) : low,

hence we can not infer the only premise for rule 7. Thus, the considered action can not
be typed, so the whole list can not be typed.

Algorithm 2 proposes an enhanced version of the learning switch. This version is
free from many security leaks but let us analyze it formally. The algorithms breaks into
two parts. The first one is represented by lines 8–19 where packets from low sources are
processed. If the output port can not be identified, the packet is flooded to all ports of
the switch (lines 9–11), otherwise forwarding rules are installed to the switch. These rules
include the one which redirects packet pkt to the destination host (line 13 and another
which either create a channel with the opposite direction (line 15) or sets the action to
Drop if the opposite forwarding rule forms a route from high host to low host (line 17).
The second part of the algorithm processes packets from high sources (lines 21–31). If
the destination for such a high packet is a low host, we drop the packet (line 22). If the



744
Моделирование и анализ информационных систем. Т. 22, №6 (2015)

Modeling and Analysis of Information Systems. Vol. 22, No 6 (2015)

Algorithm 2 Secure learning switch algorithm
1: pkt← packet arrived to the controller
2: port← from which port pkt received
3: if find(src(pkt)) is null then
4: push(src(pkt), port)
5: end if
6: fport←find(dst(pkt))
7: if src(pkt):low then
8: if fport is null then
9: for all switch port i other than port do
10: emit (src(pkt), dst(pkt))×Output(i)
11: end for
12: else
13: (src(pkt), dst(pkt))×Output(fport)
14: if (dst(pkt):low) then
15: emit (dst(pkt), src(pkt))×Output(port)
16: else
17: emit (dst(pkt), src(pkt))×Drop
18: end if
19: end if
20: else
21: if dst(pkt):low then
22: emit (src(pkt), dst(pkt))×Drop
23: else
24: if fport is null then
25: for all switch port i other than port and exists(i) : high do
26: emit (src(pkt), dst(pkt))×Output(i)
27: end for
28: else
29: emit (src(pkt), dst(pkt))×Output(fport)
30: emit (dst(pkt), src(pkt))×Output(port)
31: end if
32: end if
33: end if



Chaly D. Ju., Nikitin E. S., Antoshina E. Ju., Sokolov V.A.
End-to-end Information Flow Security Model for Software-Defined Networks 745

controller does not find the port to forward the packet, the packet is flooded but only to
high ports (lines 25–27), otherwise forwarding rules are installed (lines 29–30).

Let us show how security properties of Algorithm 2 can be proved. If the condition
in line 8 is true, the following holds for lines 8–19 by rule 1:

{src(pkt) : low}
` forall(src(pkt)) : low

And by rule 4:

` forall(src(pkt)) : low

[low] ` pkt
.

Assume that fport is null, the packet must be flooded to all ports except port (lines 9–
11). So, the controller emits packet out messages which can be typed using rule 7:

` forall(src(pkt)) : low

[low] ` (src(pkt), dst(pkt))×Output(i)
.

Applying rule 12, we have

[low] ` pkt [low] ` (src(pkt), dst(pkt))×Output(i)

[low] ` pkt; (src(pkt), dst(pkt))×Output(i)
.

Thus, the whole list of emitted actions is typed and these actions are safe.
Assume that fport is not null, then the controller emits an action in line 13 which

safety can be ensured using the same inference as in flooding case above. The second
action of the list depends on the security type of dst(pkt). If it is low, the action in line 15
is emitted. The security type of the action is the following:

match = (dst(pkt), src(pkt))

{src(match) : low}
` forall(src(match)) : low

(rule 1)

forall(src(match)) : low

` [low] ` (src(pkt), dst(pkt))×Output(port)
(rule 7).

Thus, the security type of all emitted actions agree, so the whole list can be typed
as low. If dst(pkt) is high (line 17), only the following can be inferred:

match = (dst(pkt), src(pkt))

{src(match) : high}
` forall(src(match)) : high

(rule 2)

` forall(src(match)) : high

[high] ` match×Drop
(rule 5).

This means that the security type of the Drop action from line 17 does not agree with
the security type of previous actions and the packet processing context which are low.
Thus, the Drop action can not be considered safe. Indeed, low packets must not trigger
packet drops originated from high security hosts. If we carefully examine the code, we
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will see that such a drop is made in line 22 when the packet processing context is high.
Hence, we can remove line 17 from our algorithm without harming the learning switch
functionality.

If the packet pkt is originated from a high security host, Algorithm 2 proceeds to
lines 21–31. The packet processing context is now high:

{src(pkt) : high}
` forall(src(pkt)) : high

(rule 2)

` forall(src(pkt)) : high

[high] ` pkt
(rule 4).

In this case three possibilities can occur:

1. A Drop action is emitted (line 22):

match = (src(pkt), dst(pkt))

` forall(src(match)) : high

[high] ` match×Drop
(rule 5).

2. The packet is flooded by using the list of Output actions (lines 25–27):

` exists(i) : high (condition in line 25)

match = (src(pkt), dst(pkt)),

since condition in line 21 does not hold

{dst(match) : high}
` exists(dst(match)) : high

,

So, using rule 6 we can obtain

` exists(dst(match)) : high ` exists(i) : high

[high] ` match×Output(i)
.

3. Bidirectional forwarding is set (lines 29–30). Since both src(pkt):high and
dst(pkt):high are fulfilled and it was determined that such packets came from
ports port and fport, respectively, we can conclude that exists(port) : high and
exists(fport) : high. Using the same as shown earlier we can obtain that both
Output actions are typed as [high].

Thus, in all three cases the emitted actions are typed as high. This agrees with the
packet processing context, and we can conclude that the whole list of emitted actions
must be typed as [high]. That is the list is safe.

We have considered all the cases and all lists of actions the controller can install to a
switch. We found a case where a packet from a low security flow can trigger packet drops
from a high security flow. This shows that the proposed approach can find very subtle
security discrepancies. In the context of our application this can not be considered as a
security flaw, but it can lead to security leaks in more general settings.
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3. Conclusion
Security is challenging in networking and must be further investigated for software-
defined networks. There is a lack of formal models for making security analysis [4] and
the paper proposes the approach that is based on a formal security-type system. This
system ensures that the controller application does not violate security properties such
as confidentiality and, at some extent, integrity. We have extended the proposed system
so that can verify new confidentiality properties in case of insecure network links. The
security system can be implemented as a software module of the controller and check
whether network applications violate security properties.

There are both theoretic and practical challenges when considering SDN security.
It is interesting to explore soundness and completeness of the proposed type system.
Another fascinating problem is to introduce other security-type systems that have been
recently developed for programming languages using the proposed approach for achieving
a solid theoretical basis for static security analysis that can prove properties of an SDN
controller at the compilation stage.
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Модель безопасности информационных потоков
для программно-конфигурируемых сетей

Чалый Д.Ю.1, Никитин Е.С., Антошина Е.Ю., Соколов В.А.2

получена 21 октября 2015

Программно-конфигурируемые сети (ПКС, SDN, Software-defined Networks) являются новой
парадигмой организации сетей, которая используется во многих современных приложениях, таких
как виртуализация сети, управление доступом на основе политик безопасности и многих других.
Программное обеспечение ПКС обеспечивает гибкость и быстрый темп инноваций в сети, однако
оно имеет сложную природу, в связи с чем возникает необходимость в средствах обеспечения его
корректности и безопасности. Абстрактные модели для ПКС могут решить эти задачи. Данная ра-
бота направлена на разработку моделей безопасного взаимодействия в ПКС, акцентируя внимание
на таких свойствах безопасности, как конфиденциальность и, частично, целостность. Это крити-
ческие свойства безопасности многопользовательских сетей, поскольку программное обеспечение,
управляющее сетью, должно гарантировать, что конфиденциальные данные одного пользователя
не будут переданы другим (нежелательным) пользователям. Мы определили понятие сквозной без-
опасности в контексте ПКС и предложили семантическую модель, позволяющую сделать обосно-
ванный вывод о соблюдении конфиденциальности, и мы можем проверить, что конфиденциальные
информационные потоки не смешиваются с не конфиденциальными. Мы показываем, что модель
может быть расширена до обоснования соблюдения конфиденциальности в сетях с безопасными и
небезопасными каналами связи, которые могут возникнуть, например, в беспроводных средах.

Статья представляет собой расширенную версию доклада на VI Международном семинаре
“Program Semantics, Specification and Verification: Theory and Applications”, Казань, 2015.

Статья публикуется в авторской редакции.
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