
Моделирование и анализ информационных систем. Т. 22, №6 (2015), с. 750–762
Modeling and Analysis of Information Systems. Vol. 22, No 6 (2015), pp. 750–762

c©Drobintsev P.D., Kotlyarov V.P., Voinov N.V., Nikiforov I. V., 2015

DOI: 10.18255/1818-1015-2015-6-750-762

UDC 004.4’2

Model Oriented Approach
for Industrial Software Development

Drobintsev P.D., Kotlyarov V.P., Voinov N.V., Nikiforov I. V.

Received October 21, 2015

The article considers the specifics of a model oriented approach to software development based on the
usage of Model Driven Architecture (MDA), Model Driven Software Development (MDSD) and Model
Driven Development (MDD) technologies. Benefits of this approach usage in the software development
industry are described. The main emphasis is put on the system design, automated code generation for
large systems, verification, proof of system properties and reduction of bug density. Drawbacks of the
approach are also considered. The approach proposed in the article is specific for industrial software
systems development. These systems are characterized by different levels of abstraction, which is used
on modeling and code development phases. The approach allows to detail the model to the level of
the system code, at the same time store the verified model semantics and provide the checking of
the whole detailed model. Steps of translating abstract data structures (including transactions, signals
and their parameters) into data structures used in detailed system implementation are presented. Also
the grammar of a language for specifying rules of abstract model data structures transformation into
real system detailed data structures is described. The results of applying the proposed method in the
industrial technology are shown.
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1. Model based technologies

One of the most perspective approaches to modern software product creation is usage of
model oriented technologies both for software development and testing. Such technologies
are called MDA (Model Driven Architecture) [1,2], MDD (Model Driven Development)
[2] and MDSD (Model Driven Software Development) [3]. All of them are mainly aimed
to design and generation of application target code based on a formal model.

The article is devoted to specifics of model oriented approaches usage in design and
generation of large industrial software applications. These applications are characterized
by multilevel representation related to detailing application functionality to the level
where correct code is directly generated.

The idea of model oriented approach is creation of multilevel model of application
during design process. A set of possible models transformations is presented in Fig. 1.
This model is iteratively specified and detailed to the level when executable code can
be generated. On the design stage formal model specification allows using verification
together with other methods of static analysis with goal to guaranty correctness of the
model on early stages of application development.

Fig. 1. Designing multilevel model of application

Statistics collected in companies which are using such approaches shows [4] that
model-oriented techniques are usually used on system testing phase (up to 80% of
projects) with the main goal - functional testing (up to 96%). The reason of such
company’s behavior is complexity of system testing for big industrial projects, which is
based on huge efforts spent on quality guarantying [5]. To resolve this problem software
developing companies are trying to reduce efforts for tests creation and simplify tests
execution process. Usually reduction of testing efforts is linked to communication with
customers because only customer of software has deep knowledge about domain specifics
and model oriented approach helps to simplify such communications.

Researchers also consider that more than 80% [4] of model-oriented approaches
use graphical notations, which simplifies working with formal notations for developers.
Requirements for testers and customer representatives knowledge are reduced by this
way and process of models developing is also simplified.

The following advantages of model-oriented approaches in comparison with manual
test development methods can be found in research papers [4]:

• increasing productivity and reduction of efforts on development;

• systematic reuse of verified templates and solutions which leads to reduction of
bugs density in generated code;

• analyzing and proving formal models properties on early stages of design.
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Among drawbacks of the approach the following can be listed:

• different levels of detailing in multilevel formal model and real generated code
which may lead to distortion of verified semantics during model detailing;

• complexity (impossibility in some cases) of aggregate proving the multilevel detailed
model properties;

• complexity of multi criteria optimization while selecting balanced architecture of
software application.

2. Drawbacks of models usage

The main drawback of formal models using in software products development is high
level of model abstraction in comprising with a real system. At the stage of model
design developers tend to specify only major behavior scenarios and data structures
which affect the behavior, ignoring the implementation details. Usage of formal models
on this stage allows to prove the correctness of system behavior in accordance with
specifications, miscellaneous system’s properties and to generate a set of test scenarios
providing complete coverage for specified criteria.

As a model of the system and its implementation in the code vary significantly, the
semantics of test scenarios generated from abstract model may differ from corresponding
behavior observed in the real system. Therefore automatic check of system functioning
correctness is impossible.

There are two ways to solve this issue.
The first one is developing of a detailed model which is as close to system program

implementation as possible. In this case it is impossible to provide check of complete
detailed model of industrial system (even of medium complexity) due to limitations of
modern verification toolsets.

The second one is creating an abstract model of such complexity which does not
prevent applying toolsets for proving behavioral properties. Further the abstract model
can be detailed to the level of real system in such a way that proved properties will be
spread on the detailed model. This method satisfies model based software development
technology when applied iteratively and guarantees storing proved system properties up
to code level.

When control flow is being detailed traditional elements of model control flow structu-
ring can be used. Model fragments which shall be detailed are relocated into separate
structural element (for example, an instance of class method). Then its analysis and
formalization of its behaviors, which include specifying fragments of alternative and
concurrent behavior, fragments of behavior limited by timer, fragments of behavior
specific for exceptions and interruptions can be performed.

When data flow is being detailed formalization of new data structures, signals and
transactions is performed. Each data structure can be represented by several nested
structures of lower level. Signals in the system can be separated into several compound
signals and actions of real system. New transactions can be added to the system to
provide data consistency. Also detailing of one system signal into complete communication
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protocols between components becomes possible. This means that a communication
protocol can be represented by only one signal on the abstract level while in the real
code this protocol can be specified by a set of incoming and outgoing signals.

3. Levels of behavioral models development
One of high level languages for system formal model specification is Use Case Maps
(UCM) [6, 8]. It provides visible and easy understandable graphical notation. Further
abstract models will be specified in UCM language to demonstrate proposed approach
in details. Also considered is VRS/TAT technology chain [7], which uses formal UCM
models for behavioral scenarios generation.

Traditional steps of formal abstract model development in UCM language are the
following:

1. Specifying main interacting agents (components) and their properties, attributes
set by agent and global variables.

2. Introducing main system behaviors to the model and developing diagrams of agent’s
interaction control flow.

3. Developing internal behaviors for each agent and specifying data flow in the system.

Undoubted benefit of UCM language is possibility to create detailed structured
behavioral diagrams. Structuring is specified both by Stub structural elements and reused
diagrams (Maps), which are modeling function calls or macro substitution. Unfortunately,
standard UCM language deals with primitive and abstract data structures, which are
not enough to check implementation of a real system. This drawback is compensated
by using metadata mechanism [8]. But metadata does not allow detailing data flow to
more detailed levels. That’s why for creating detailed behaviors it is proposed to use the
following vertical levels of abstractions during behavioral models development (Fig. 2).

Another benefit of UCM usage is possibility to execute model verification process.
UCM diagrams are used as input for VRS/TAT toolset which provides checks for specifica-
tions correctness. These checks can detect issues with unreachable states in the model,
uninitialized variables in metadata, counterexamples for definite path in UCM, etc. After
all checks are completed the user gets a verdict with a list of all findings and a set of
counterexamples which show those paths in UCM model which lead to issue situations.
If a finding is considered to be an error, the model is corrected and verification process
is launched again. As a result after all fixes a correct formal model is obtained which can
be used for further generation of test scenarios.

After formal model of a system has been specified in UCM language, behavioral
scenarios generation is performed. Note that behavioral generator is based not on concrete
values assigned to global variables and agents attributes, but on symbolic ones which
reduces significantly the number of behavioral scenarios covering the model. However
symbolic test scenarios cannot be used for applications testing as executing behavioral
scenarios on the real system requires concrete values for variables. So the problem of
different level of abstraction between model and real system still exists. In VRS/TAT
technology concretization step [9] is used to convert symbolic test scenarios. On this step
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Fig. 2. Abstraction levels during developing behavioral scenarios

ranges of possible values for variables and attributes are calculated based on symbolic
formula and symbolic values are substituted with concrete ones. But concretization of
abstract model’s behavioral scenarios is not enough for their execution, because on this
stage scenarios still use abstract data structures which differ from data structures in real
system. As a result conversion of concretized behavioral scenarios of abstract UCM level
into scenarios of real system level was integrated into technology chain for behavioral
scenarios generation.

4. Data structures conversion

In behavioral scenarios data structures are mainly used in signals parameters. Consider
an example of converting signal structure of UCM level into detailed structures of real
system for the signal "CONFIGURE".

Fig. 3. Description of the "CONFIGURE" signal
in metadata of the "init" UCM element
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In UCM model the element "init" contains metadata with the signal "CONFIGURE"
and two signal parameters of UCM level: "ack1" and "ack2". Fig. 3 contains metadata
of the UCM element "init" including description of a signal of UCM level.

There are two types of signals in UCM model: incoming to an agent and outgoing
from an agent. Incoming signals are specified with the keyword "in" and can be sent
either by an agent or from outside the system specifying with the keyword "found".
Outgoing signals are specified with the keyword "out" and can be sent either to an agent
or to outside the system specifying with the keyword "lost".

Fig. 4. Description of the "ACM_CAP_IP_ABS" signal in metadata
of the "recfwdACM_CAP_IP" UCM element

As an example in UCMmodel the element "recfwdACM_CAP_IP" contains metada-
ta with the outgoing signal "ACM_CAP_IP_ABS" and the signal parameter "reccod"
of UCM level. This signal shall be sent after the signal "ACM_CAP_IP_ABS" with
the parameter "code" received from the agent "g". Fig. 4 contains metadata of the UCM
element "recfwdACM_CAP_IP" including description of a signal of UCM level. The
outgoing signal can be used only inside of "do" section as reaction of the system on some
event.

(a) (b)

Fig. 5. Symbolic (a) and concrete (b) test scenarios
containing the signal "CONFIGURED"

Based on high level UCMmodel symbolic behavioral scenarios are generated containing
data structures described in metadata of UCM elements. Fig. 5(a) contains symbolic
test scenario where the agent "Terminal#t" receives the signal "CONFIGURED". In
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symbolic scenarios actual names of UCMmodel agents specified in metadata are used. For
example, the agent "Gateway#g" is the source of the signal "ACM_CAP_SL" and the
agent "Terminal#t" is the destination. While the source of the signal "CONFIGURE"
is outside the system.

Symbolic behavioral scenario is input data for concretization module which substitu-
tes symbolic parameters with concrete values. In current example the parameters "ack1,
ack2" are substituted with values "FLIP" and "FLIP". Fig. 5(b) contains concrete
behavioral scenario. Fig. 6 contains another example of concretization where integer
parameters are substituted together with parameters of string type. For example, the
symbolic parameter "Speed Value" in the signals "Current Speed" and "Display Speed"
(Fig. 6(a)) is concretized with value "15" (Fig. 6(b)).

(a) (b)

Fig. 6. Symbolic (a) and concrete (b) test scenarios
containing string and integer parameters

Note that after concretization interacting agents are not changed in any way. To
convert concrete data structures into detailed structures a developer shall specify the
rules of structures conversion: for each signal of UCM model a corresponding conversion
condition (Lowering Condition) and detailed signal (Lowered Signal) are specified.

To keep proved system properties there are following limitations on the conversion:

• rules which allow separating constants into several independent parts (sets of
variables) are prohibited;

• separating fields of variables values is prohibited;

• converting abstract signal into a protocol if this protocol is not represented by
verified template is prohibited;

• only constant template values or values obtained at concretization step are allowed;

• violating consistent communication protocol is prohibited.

Fig. 7 contains the rule for converting the signal "CONFIGURED" into the signal
"CONFIGURED_SIG_ST" for all occurrences of this signal in test scenario. This
condition is specified by the keyword "any" in the rule.
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Fig. 7. Rule for converting the signal "CONFIGURED"
into the signal "CONFIG_SIF_ST"

Specification of conversion rules is based on the grammar of conversion language.
Common view of the grammar for converting signals of abstract level into detailed level
in BNF form is shown in Fig. 8.

Fig. 8. Grammar of the conversion rules language

Based on the specified conversion rule each abstract signal in concrete behavioral
scenario is processed and in case the signal satisfies to a conversion rule it is converted into
detailed signal. Fig. 9 contains executable scenario with the detailed signal "CONFIG_-
SIG_ST" which can be used for testing. Note that on this stage system agents are joined
into two instances – TAT and SUT, which is required for testing process.

Fig. 9. The detailed signal "CONFIG_SIG_ST" of the real system

To exclude limitations on conversion of signals with templates usage the following
techniques can be used. In case of some particular signal is converted into a set of
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signals (protocol) which are used as parameters variables verified on previous phase
then combined conditions shall be used. In Fig. 10 (a) a signal with four parameters is
presented. Consider that based on a template the signal shall be substituted into a set
of signals.

(a)

(b)

Fig. 10. Initial signal before (a) and after (b) conversion

Fig. 10 (b) contains a diagram with substituted signal. To verify correctness of such
substitution a special filters shall be added into target code of application and test.

Another case when signal parameter is separated into parameters of two signals as
presented in Fig. 11 (a,b).

(a)

(b)

Fig. 11. Initial signal before (a) and after (b) parameters separation

The same solution with filter in target code of application and test can be used. The
filter shall check that correctness of the model was not broken via generation of ranges
for parameters of separated signals.
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Usage of approach with filters allows to raise limitations of lowering conversion
connected to maintenance of model correctness.

5. Overall scheme of conversion

Implemented module of behavioral scenarios conversion takes the concrete behavioral
scenarios and specified rules of conversion as an input and the output is behavioral
scenarios of the real system level which can be used for testing. Overall scheme of
conversion is shown in Fig. 12.

Fig. 12. Test scenarios conversion scheme

Detailing stage is based on the grammar of data structures conversion rules described
in Fig. 8 and conversion algorithm. The specific feature of test automatic scenarios
detailing to the level of real system is storing of proved properties of the system obtained
in process of abstract model verification.

6. Templates

Often similar conversion rules are required for different signals. Templates can be used
to simplify this approach. A developer can define a template of detailed signal, specify
either formula or concrete values as a parameter of detailed signal and then apply this
template for all required signals. For each case of template usage a developer can specify
missed values in the template, change the template itself or modify its structure without
violating specified limitations. Templates mechanism simplifies significantly the process
of conversion rules creation.

Consider the process of templates usage. Templates are created in separate editor
(Templates Editor). In Fig. 13 the template "template_0" is shown which contains
detailed data structures inside and the dummy value "value_temp" which shall be
changed to concrete values when template is used.

When a template of data structure is ready, it can be used for creation of conversion
rules. Fig. 14 represents usage of the template "template_0" with substituted concrete
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Fig. 13. Example of the template "template_0"

Fig. 14. Applying the template "template_0" for the signal "CONFIG_SIG_ST"

values of signal parameters instead of the dummy value "value_temp" which then will
appear in behavioral MSC scenario.

Note that in conversion rules editor complex data structures are represented with
formatted text which makes parameters and values more readable than in linear represen-
tation of MSC scenario.

Templates usage reduces efforts on creation and coding complex data structures on
25%-30% and reduces possibility of introducing extra bugs because of user inaccuracy.

7. Conclusion
Proposed approach to behavioral scenarios generation based on formal models differs
from existing approaches in using the process of automatic conversion of behavioral
scenarios with abstract data structures into behavioral scenarios with detailed data
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structures used in real applications. Proposed language and overall scheme of this process
allow automating of creation a set of covering behavioral scenarios. In the scope of this
work the analyzer/editor for conversion rules of signals from abstract UCM model level
into signals of real system level was developed and called LoweringEditor. It supports the
following functionality: automatic binding between conversion rule and signal of UCM
level, conversion rules correctness checking, templates usage, highlighting the syntax of
conversion rules applying conditions specification, variables usage, libraries and external
scripts (includes) usage, splitting UCM signal or action into several signals of real
system according to communication protocol, copy/paste/remove operations, import and
export from/to storage file. Features described in the article make process of automatic
conversion powerful and flexible for different types of telecommunication applications.
Adding LoweringEditor into technology process of telecommunication software applica-
tions test automation allowed to exclude effort-consuming manual work in the cycle of
test suite automated generation for industrial telecommunication applications, increase
productivity of test generation in 25% and spread the properties proved on abstract
models into generated code of executable test sets. Excluding of manual work allows
to reduce human factor in testing process and guaranty quality of generated test suite
based on verification results.

References
[1] “Model Driven Architecture - MDA”, http://www.omg.org/mda, 2007.

[2] Pastor O. et al., “Model-Driven Development”, Informatik Spektrum, 31:5 (2008), 394–
407.

[3] Beydeda S. , Book M., Gruhn V., “Model Driven Software Development”, Springer-Verlag
Berlin Heidelberg, 2005, 464.

[4] Binder R.V., Kramer A., Legeard B., “2014 Model-based Testing
User Survey: Results”, http://model-based-testing.info/wordpress/wp-
content/uploads/2014 MBT User Survey Results.pdf, 2014.

[5] Fenton N.E., Ohlsson N., “Quantitative analysis of faults and failures in a complex software
system”, Software Engineering, IEEE Transactions on, 2000, № 8.

[6] Buhr R. J. A., Casselman R. S., “Use Case Maps for Object-Oriented Systems”, Prentice
Hall, 1995, 302.

[7] Anureev I. et al., “Tools for supporting integrated technology of analysis and verification
of specifications for telecommunication applications”, SPIIRAN works, 1 (2013), 28.

[8] Letichevsky A.A. et al., “Insertion modeling in distributed system design”, Problems of
programming, 2008, 13–39.

[9] Kolchin A. et al., “Approach to creating concretized test scenarios within test automation
technology for industrial software projects”, Automatic Control and Computer Sciences,
Allerton Press, Inc., 47:7 (2013), 433–442.



762
Моделирование и анализ информационных систем. Т. 22, №6 (2015)

Modeling and Analysis of Information Systems. Vol. 22, No 6 (2015)

DOI: 10.18255/1818-1015-2015-6-750-762

Особенности применения модельно-ориентированного
подхода при разработке промышленных приложений

Дробинцев П.Д., Котляров В.П., Воинов Н.В., Никифоров И.В.

получена 21 октября 2015

В статье рассмотрены особенности применения технологий разработки программных систем
на основе модельно-ориентированного подхода: Model Driven Software Development (MDSD), Model
Driven Architecture (MDA) и Model Driven Development (MDD). Описаны преимущества использо-
вания подходов в промышленности. Основной акцент сделан на проектирование систем, автомати-
ческую генерацию кода больших систем, верификацию, доказательство свойств систем и уменьше-
ние плотности ошибок. Приведены недостатки использования данного подхода, одним из которых
является различная степень детальности модели и реальной реализованной системы на языке про-
граммирования. В работе предлагается подход, характерный для систем, имеющих многоуровневое
представление, связанное с детализацией функциональности приложения до уровня, на котором
осуществляется прямая генерация корректного кода. Подход позволяет детализировать модель до
уровня реального кода системы, при этом сохранить проверенную семантику модели и обеспечить
проверку всей детальной модели. Детализация проводится как по потоку управления, так и по по-
току данных. Представлены шаги по преобразованию абстрактных структур данных (в том числе
транзакций, сигналов и их параметров) в структуры данных, используемых в реализации систем.
Приведена грамматика языка задания правил преобразования структур данных абстрактной мо-
дели в детальные структуры данных реальной системы и общая схема преобразования. Приведены
результаты применения предложенного метода в промышленной технологии.

Статья представляет собой расширенную версию доклада на VI Международном семинаре
“Program Semantics, Specification and Verification: Theory and Applications”, Казань, 2015.

Статья публикуется в авторской редакции.
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