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The C-program verification is an urgent problem of modern programming. To apply known methods
of deductive verification it is necessary to provide loop invariants which might be a challenge in many
cases. In this paper we consider the C-light language [18] which is a powerful subset of the ISO C
language. To verify C-light programs the two-level approach [19, 20] and the mixed axiomatic semantics
method [1, 3, 11] were suggested. At the first stage, we translate [17] the source C-light program into C-
kernel one. The C-kernel language [19] is a subset of C-light. The theorem of translation correctness was
proved in [10, 11]. The C-kernel has less statements with respect to the C-light, this allows to decrease
the number of inference rules of axiomatic semantics during its development. At the second stage of this
approach, the verification conditions are generated by applying the rules of mixed axiomatic semantics
[10, 11] which could contain several rules for the same program statement. In such cases the inference
rules are applied depending on the context. Let us note that application of the mixed axiomatic semantics
allows to significantly simplify verification conditions in many cases. This article represents an extension
of this approach which includes our verification method for definite iteration over unchangeable data
structures without loop exit in C-light programs. The method contains a new inference rule for the
deifinite iteration without invariants. This rule was implemented in verification conditions generator.
At the proof stage the SMT-solver Z3 [12] is used. An example which illustrates the application of this
technique is considered.
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Introduction

C program verification is an urgent problem at the present time. Many projects (for
example [4, 5, 6, 8, 9]) suggest different solutions. But none of them contains any methods
for loop verification. As it is known, in order to verify loops we need invariants whose
construction is a challenge. So the user has to devise these invariants. In many cases it
is a difficult task.

In this paper we suggest a method of loop invariants elimination for definite iteration
of special form [14]. We extend our mixed axiomatic semantics of C-light language by a
new rule which allows verification of such loops without invariants provided by user.

C-light language [18] is a powerful subset of the C language. To verify C-light prog-
rams the two-level approach [19, 20] and the mixed axiomatic semantics method |1, 11]
were suggested.

On the first stage, we translate [17] the source C-light program into C-kernel one. C-
kernel language [19] is a subset of C-light. On the second stage, the verification conditions
are generated by applying the rules of mixed axiomatic semantics [10, 11]. The word
“mixed” means that it can be several inference rules for the same program construction
which are unambiguously applied depending on its context. In many cases the use of
specialized inference rules allows us to simplify verification conditions.

All our methods have theoretical justification. Theorems of correctness of translation
of C-light into C-kernel and soundness of the C-kernel axiomatic semantics are proven
in [17, 10].

At the proof stage, the automatic theorem prover Z3 [12] is used. Extra axioms can
be provided by the user in case the prover has failed to check whether a verification
condition is true. If all verification conditions have been proven, then the program is
partially correct. Otherwise, the user has to modify the program or its specification and
to repeat the verification process in C-light verification system [11, 16].

1. Definite Iteration over Unchangeable Data
Structures and Replacement Operation

The method of loop invariants elimination for definite iteration was suggested in [14]. It
includes four cases [13, 15]:

1. Definite iteration over unchangeable data structures without loop exit.
2. Definite iteration over unchangeable data structures with loop exit.
3. Definite iteration over changeable data structures possibly with loop exit.

4. Definite iteration over hierarchical data structures possibly with loop exit.

This paper deals with the first case.

Let us remind the notion of data structures which contain a finite number of elements.
Let memb(S) be the multiset of elements of the structure S and |memb(S)| be the power
of the multiset memb(S). For the structure S the following operations are defined:
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1. empty(S) = true iff |memb(S)| = 0.
2. choo(S) returns an element of memb(S) if —empty(S).

3. rest(S) = 5’, where S’ is a structure of the type of S and memb(S’) = memb(S) \
{choo(S)} if —mempty(S).

Sets, sequences, lists, strings, arrays, files and trees are typical examples of the data
structures.

Let —mempty(S), then vec(S) = [s1, So, . .., Sn] where memb(S) = {s1, s2,...,s,} and
s; = choo(rest'™1(9)) fori=1,2,...,n.

last(S) is a partial function such that last(S) = s,,.

A function head(S) returns a structure such that vec(head(S)) = [s1, S2, ..., Sp_1] if
—empty(S).

Let S7 and S, be structures. Then we can define a concatenation operation con(Si, Ss)
as follows:

1. con(Sy, S2) = Sy if empty(Sy).

2. choo(con(S1,53)) = choo(Sy) and rest(con(Sy,S2)) = con(rest(Sy), S2)
if mempty(S7).

Consider the statement
for x in S do v := body(v, x) end

where S is a structure, x is the variable of the type of S element, v is the vector of loop
variables which does not contain x and body represents the loop body computation, does
not modify x and S and terminates for each x € memb(S). The loop body can contain
only the assignment statements and the i f statements, possibly nested.

The operational semantics of such statement is defined as follows. Let vy be the vector
of initial values of variables from v. If empty(S) then the result of the iteration v = vy.
Otherwise, if vec(S) = [s1, S2,..., 58y, then the loop body iterates sequentially for x
taking the values s, s9,...,,.

To express the effect of the iteration let us define a replacement operation

rep(v, S, body) = v,

where vy = v if empty(S), v; = body(v;_1,s;) for all i = 1,2,... n if mempty(S).

A number of theorems which express important properties of the replacement opera-
tion was proved in [13, 14, 15]. Let us mention the most important of them.

Theorem 1. rep(v, con(Si, Sz), body) = rep(rep(v, Sy, body), Sz, body).

Theorem 2. —empty(S) = rep(v, S, body) = body(rep(v, head(S), body), last(S)).

2. The Inference Rule and Its Implementation
There is no for statement in C-kernel. The loop for (e1; ez; e3) B; is translated first into

the while statement e;; while (e2) {B;e3; }; and then the common inference rule of the
mixed axiomatic semantics is applied:
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E,SPF{P}eyi;{INV}
E,SP+{INV A cast(val(ea, M D), type(ez),int) # 0} B;es;{INV'}
E,SP+ {INV A cast(val(ea, M D), type(es),int) = 0} A;{Q}
E,SPt+ {P}eq; {INV}while (e2) {B;es} A;{Q}

Here P is precondition, () is postcondition, I NV stands for loop invariant, A are program
statements after the loop.

E is the environment [10] which contains an information about current function (its
identifier, type and body) which is verified, an information about current block and label
identifier if goto statement occurred earlier.

SP is program specification which includes all preconditions, postconditions and
invariants of loops and labeled statements.

The function cast performs type casting according to ISO C standard, the function
val calculates the value of the expression es, the function type returns the type of e.

The meta-variable M D defines the values stored in memory [1, 10].

Now we can introduce the special inference rule for definite iterations:

E,SPF {3 Plv<v) Nv=rep(,S, body)} A;{Q}
E,SPt {P}for xin S do v := body(v,x) end A;{Q}

We use forward tracing: we move from the program beginning to its end and eliminate
the leftmost operator (on the top level) applying the corresponding rule. The correctness
of this rule can be proved by modification of the proof for backward tracing from [14].

The implementation of this rule extends our verification conditions generator which
is based on mixed axiomatic semantics of C-kernel [1, 10].

Note that the common rule adds at least two verification conditions and the rule for
definite iteration does not increase the number of verification conditions for a program.

In C-light there is no such statement as for x in S do v := body(v,x) end. So in
fact the generator of verification conditions must be able to determine z, S, v and body
in a loop of a form for (e;;es; e3) B;.

Depending on the data structure S we have to introduce several inference rules for
each case. For example if S is a subset of integers we have the following rule:

E,SPF {3 P(v<+ ') ANv=rep(v,(j,j+ ¢, j+2¢c...),body)} A {Q}
E,SPH{P}for (i=ji<k;i=i+c;)v=body(v,i); A{Q}

Here 1, 7, k, c are integers. In the case when ¢ > k or ¢ = ¢ — ¢ the rule looks similarly.

Every time when there is no invariant provided by the user before the for statement
the generator of verification conditions tries to apply one of the inference rules suggested
by our method. When it fails an error is raised and the user has to provide an invariant
himself.

3. Example

To demonstrate the application of our method of loop invariants elimination let us
consider the following program. It iterates over an array of integers and for given integer
computes the number of entries to this array.

The annotated (in SMT-LIB v2 syntax of Z3) C-kernel program has the form:
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/* (assert (> length 0)) */
int count(int key, int* arr, int length)

{
auto int result = 0;
for (i = 0; i < length; i =1i + 1)
if (arr[i] == key) result = result + 1;
return result;
+

/* (assert (= result (COUNT key a O (- length 1)))) */

The function COUNT returns the number of entries of key to arr from arr[j] to
arr[k]. It is defined recursively as follows:

(declare-fun COUNT (Int (Array Int Int) Int Int) Int)

(assert
(and
(forall ((j Int) (k Int))
(implies
(> j k)
(= (COUNT key arr j k) 0)
)
)
(forall ((j Int) (k Int))
(implies
(and
=ik
(= (select arr k) key)
)
(= (COUNT key arr j k) 1)
)
)
(forall ((j Int) (k Int))
(implies
(and
(=] k)
(not
(= (select arr k) key)
)
)
(= (COUNT key arr j k) 0)
)
)
(forall ((j Int) (k Int))
(implies

(and
(< j k)



Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
778 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

(= (select arr k) key)

)
(=
(COUNT key arr j k)
(+ (COUNT key arr j (- k 1)) 1)

)
)
)
(forall ((j Int) (k Int))
(implies
(and
(< j k)
(not (= (select arr k) key))
)
(=
(COUNT key arr j k)
(COUNT key arr j (- k 1))
)
)
)

The first conjunct describes the case when the second bound is greater then the first
bound. The second and the third conjuncts defines the behavior of COUNT when the
length of arr is equal to 1. The fourth conjunct increases the value of COUNT by 1 in
the case when the entry of key was found at the index k. Otherwise COUNT is equal
to COUNT from j to k — 1 as it is defined by the last conjunct.

73 is the SMT-solver but we are interested in verification conditions validity, not
satisfiability. So the verification conditions generator produces the negation of the verifi-
cation condition:

(assert
(not (forall ((key Int) (arr (Array Int Int)) (length Int))
(implies
(exists ((result!l Int))
(and
(> length 0)
(= result!l 0)
(= result (rep result arr length))
)
)

(= result (COUNT key arr O (- length 1)))
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And then we expect the answer “unsat” which means that the negation is unsatisfiable
so the verification condition is true.

Also the generator produces the recursive definition of the rep function for this
program:

(declare-fun rep (Int (Array Int Int) Int) Int)

(assert (and (forall ((i Int))
(implies
(<1 0)
(= (rep result arr i) 0)

)
(forall ((i Int))
(implies

i0)
(rep result arr i) 0)

~
Il

)
(forall ((i Int))
(implies
(and
(< 0 1)
(= (select arr (- i 1)) key)

)
(=
(rep result arr i)

(+ (rep result arr (- i 1)) 1)
)

)
(forall ((i Int))
(implies
(and
(<0 1)
(not
(= (select arr (- i 1)) key)

)
(=

(rep result arr i)
(rep result arr (- i 1))

)
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Unfortunately Z3 does not support proofs by induction. In this example it goes into
infinite loop without any answer. During our experiment we substituted constants for
length in the verification condition, and it turned out that for example for length = 15
it took 70 seconds for Z3 to provide the desired answer “unsat” running on AMD Athlon
IT X2 245 processor at 2.9 GHz with 4 gigabytes of RAM.

4. Conclusion

This paper represents an extension of the system for C-light program verification. In
the case of definite iteration over unchangeable data structures without loop exit this
extension allows to generate verification conditions without loop invariants.

This generation is based on the new inference rule for the C-light for statement which
introduces the replacement operation. It expresses definite iteration in special form.

K. Rustan M. Leino suggested a rewriting strategy and a heuristic for when to apply
it to verify simple inductive theorems [7]. We plan to use this tactic in our generator of
verification conditions.

The next step will be the case of loop invariants elimination for changeable data
structures possibly with loop exit.
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DJIMMUHANNS MHBAPUAHTOB IUKJIOB JJI1 (PMHUTHOM MTepaIuu
HaJT Hem3MeHsIeMbIMHU CTPYKTypamMu JaHHbIX B Cu mporpammax

Mapgscos W. B.!, Hemomusamuit B. A.
noayuena 26 oxkmabps 2015

Bepudwukarus C-rporpamm sBISIETCS aKTyaJbHON TPOHIEMON COBPEMEHHOTO TPOrPAMMUPOBAHMIS.
st mprMeHeHnsT U3BECTHBIX METOJIOB JIeJlyKTHBHON BepUMDUKAIME HEOOXOIMMO AHHOTHPOBATH ITUKJIBI
[IOCPEJICTBOM MHBAPUAHTOB, YTO BO MHOI'UX CJIyUYasaX sIBJIAETCS TPYIHON 3ajadeii. B 9Toll cTaTbe MbI
paccmarpuBaeM sa3bik C-light, KOTOpBIi sIBJIsIeTCS BBIPA3UTEIBLHBIM TOJIMHOXKECTBOM si3bika C, cooTBeT-
crByromero cranmapty [SO. dnsa sepudukarmu C-light nmporpamMm Hamu ObLIM TIPEITIOKEHBI IBYXYPOB-
HeBblit ozxox [19, 20] n MeTox cMmermaHHON akcmoMaTHdecKoil cemanTuxu |1, 3, 11]. Ha nepsoit craanu
sToro mogxoaa ucxomnas C-light mporpamma Tpancaupyercst [17] B mporpammy Ha sizbike C-kernel [19],
KOTOPBI sIBJIsIeTCsl oAMHOKeCTBOM s3bika C-light. TeopeMa 0 KOPPEKTHOCTH 3TON TPAHC/ISIKA ObLIA
nokazana B [10, 11]. ITo cpasrennto ¢ C-light B sisbike C-kernel MeHbIe omepaTopoB, UTO MO3BOJISET
YMEHBIIUTH YUCJIO TPABUJI BBIBOJA MPU Pa3paboTKe aKCHOMATUIEeCKOl cemanTuku. Ha BTOpoil crajun
9TOTO TOAXOJa Jist mporpaMM Ha st3bike C-kernel mopoxKmarorTcst ycsioBUSI KOPPEKTHOCTH TI0 TPABHU-
JIaM CMEITaHHON aKcmoMaTnieckon cemanTuku [10, 11|, KoTopast MOXKeT comepKaTh HECKOIBKO MPABUIT
BBIBOJIA JIJIsl OJHON W TOM Ke MPOrpaMMHONM KOHCTPYKIMA. B Takux ciIydasx IpaBuja BBIBOJIA IIPUMeE-
HSIIOTCS OJIHO3HAYHO B 3aBUCHUMOCTU OT KOHTEKCTA. 3aMETUM, YTO BO MHOTUX CJIyYasiX UCIIOJIbL30BAHUE
CMEIAHHOW aKCMOMATHYIECKON CEMAHTUKHU MTO3BOJISET YIPOCTUTH YCJIOBHS KOPpeKTHOCTH. B 3T0it cra-
The MPEJCTABJICHO PACIIUPEHUe JAHHOTO IMOJIX0J/ia, KOTOPOEe BKJIIOYAET HAIIl METO, BepUMUKAIUU JJIsd
dUHUTHOI UTEpaIuu HaJl HEM3MEHSIeMBIMI CTPYKTYPaMU JaHHBIX 0e3 BbIXoJa u3 Teja mukiaa B C-light
mporpamMmMax. JIaHHBIA MeTOJ, CONEPKUT HOBOE IPABUJIO BBIBOJA JIJIsi TAKUX (PUHUTHBIX HTeparmii 6e3
UHBAPUAHTOB. DTO MPABUJIO OBLIO PEATIM30BAHO B TeHEpaTOpe yCIoBuil KoppekTHocTn. Ha cramum moka-
3aTenbcTBa ucnosbayercss SMT-permarens Z3 [12]. PaccmoTpen npumep, WITIOCTPUPYIONIHI IPUMEHEHNE
JIAHHOTO MOIXO0/1A.

CraTbsi mpejicTaBjsieT coDON pacIupeHHyo Bepcuio nokJagsa #Ha VI MexynapomnoMm cemuHape
“Program Semantics, Specification and Verification: Theory and Applications”, Kazaus, 2015.
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