
Моделирование и анализ информационных систем. Т. 22, №6 (2015), с. 783–794
Modeling and Analysis of Information Systems. Vol. 22, No 6 (2015), pp. 783–794

c©Shilov N.V., 2015

DOI: 10.18255/1818-1015-2015-6-783-794

UDC 519.711

Teaching Formal Models of
Concurrency Specification and Analysis

Shilov N.V.1

Received October 26, 2015

There is a widespread and rapidly growing interest to the parallel programming nowadays. This
interest is based on availability of supercomputers, computer clusters and powerful graphic processors
for computational mathematics and simulation. MPI, OpenMP, CUDA and other technologies provide
opportunity to write C and FORTRAN code for parallel speed-up of execution without races for
resources. Nevertheless concurrency issues (like races) are still very important for parallel systems in
general and distributed systems in particular. Due to this reason, there is a need of research, study and
teaching of formal models of concurrency and methods of distributed system verification.

The paper presents an individual experience with teaching Formal Models of Concurrency as a
graduate elective course for students specializing in high-performance computing. First it sketches course
background, objectives, lecture plan and topics. Then the paper presents how to formalize (i.e. specify)
a reachability puzzle in semantic, syntactic and logic formal models, namely: in Petri nets, in a dialect
of Calculus of Communicating Systems (CCS) and in Computation Tree Logic (CTL). This puzzle is a
good educational example to present specifics of different formal notations.

The article is published in the author’s wording.

Keywords: concurrency and parallelism, formal methods, formal models, Petri nets, calculi for
communicating systems, labeled transition systems, reachability problem, temporal logic, model checking
For citation: Shilov N.V., "Teaching Formal Models of Concurrency Specification and Analysis", Modeling and Analysis
of Information Systems, 22:6 (2015), 783–794.

On the authors:
Shilov Nikolay Vyacheslavovich, orcid.org/0000-0001-7515-9647, PhD,
A.P. Ershov Institute of Informatics Systems SD RAS,
Lavrent’ev av., 6, Novosibirsk, 630090, Russia,
e-mail: shilov@iis.nsk.su

Acknowledgments:
1Reserch is part of Program IV.39.1 "Theory and applied problems of design and implementation of efficient and faultless
program systems and information technologies".

783

784
Моделирование и анализ информационных систем. Т. 22, №6 (2015)

Modeling and Analysis of Information Systems. Vol. 22, No 6 (2015)

Introduction
One of English-to-Russian technical translation problem is about Russian equivalent for
English term concurrency. Unfortunately the term is translated as параллелизм i.e. by
the same word as parallelism. To make distinction, let us quote a talk by Dan Grossman
at Workshop on Curricula for Concurrency and Parallelism (Nevada, Oct. 17, 2010) [6]:

By parallelism, I mean using extra computational resources to solve a problem
faster. By concurrency, I mean correctly and efficiently managing access to
shared resources. While using these terms in this way is not entirely standard,
the distinction is paramount.

Rapid growth of parallel computing power raises questions about correctness (i.e.
reliability, safety, liveness, etc.) of parallel system and programs. According to the above
citation, concurrency is one of the critical issues related to the correctness of parallel
systems and programs. It makes important to introduce formal models and methods
of concurrency to Computer Science, Software Engineering and Computer Engineering
curricula. But a serious problem for curricula development is diversity of individual
notations. Another related problem is right choice of introductory, basic and/or advanced
teaching/education level.

An elective topic on Formal Models of Concurrency at Department of Information
Technology of Novosibirsk State University (IT NSU) and at Department of Applied
Mathematics of Novosibirsk State Technical University (AM NSTU) was taught in
years 2006-2012 during the second (spring) semester of graduate studies. The number
of registered students varied from 8 to 16. Typically these students were affiliated with
chairs of High-Performance Computing (IT NSU) and Parallel Computation Technologies
(AM NSTU). The primary purpose of this course was to introduce basic concepts and
means of semantic, syntactic and logic formal models of concurrency that had (already)
become classics of Computer Science.

The rest of the paper is as follows. The syllabus of the course is sketched below in the
present section; it comprises course background, objectives and topics & lecture plan. The
next section 1 introduces a puzzle that is used in the course to illustrate/study/distiguish
all formal models covered in the course. In particular, section 2 sketches how to represent
the puzzle in Petri nets (semantical formal model), section 3 — in a dialect of Calculus
of Communicating Processes (syntax modal), and section 4 — is Computational tree
Logic (logic model). Finally we discuss in brief paradigm of parallel programming in the
concluding section 5. The latest version (for fall semester of academic year 2012-13) of the
recommended reading is presented in the References section of the paper and comprises
English and Russian papers and books [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19].

0.1. Course Background

At the transition stage to cluster/multiprocessor/multicore architecture and ubiquitous
parallelism, the importance (even urgency) of specifying, developing and validating paral-
lel and concurrent behavior is increasing. Formal methods in Computer Science are
mathematical theories and techniques for a sound specification, development and verifica-
tion of soft/hard-ware. The use of formal methods is motivated by the expectation that

Shilov N.V.
Teaching Formal Models of Concurrency 785

rigorous mathematical notation and analysis help to understand better functionality and
can improve the reliability and robustness. Different formal methods have different types
of formal models: semantic models, syntax models, and logical where both syntax and
semantics play important roles.

There are numbers of formal models for concurrency, these models have different
types. First we have to point out at Petri nets as a purely semantic model. Next we
must refer to Communicated Sequential Processes (CSP), an algebraic formal language
with fixed syntax and denotational semantics. There exist several calculi that formalize
different aspects of concurrency and parallelism: the Calculus of Communicating Systems
(CCS), the Pi-Calculus for Communicating and Mobile Systems, the Ambient Calculus
and its variations for mobile agents and security, etc. Various types of dynamic, process,
and temporal logics are used for specification and verification of parallelism and concur-
rency.

The course should help Software Engineers and Applied Mathematicians to overview
the spectrum of formal models for concurrency and parallelism, get idea of different
reasoning techniques that are available for formal verification of concurrent and parallel
systems. Students are expected to be familiar with basic concepts of concurrency and
parallelism, elements of set theory and propositional Boolean logic.

0.2. Course Objectives

The course intends to help students to achieve the following objectives:

• to understand why we need formal models for concurrency and to know the concept
of syntax, semantic and logic formal models;

• to use different formal models of concurrency for modeling concurrent and parallel
systems;

• to comprehend definition of Petri nets and to learn reachability and boundedness
properties and algorithms for Petri nets;

• to learn syntax and basic semantics of Communicated Sequential Processes (CSP);

• to become acquainted with the Calculus of Communicating Systems (CCS), the
Pi-Calculus, and the Ambient Calculus;

• to learn the concept of Labeled Transition Systems (LTS) and to understand why
LTS are used for semantics of different formal models;

• to become acquainted with the concept of bisimulation for LTS and to know about
Hennessy-Milner logic and its relations to bisimulation;

• to become familiar with syntax and semantics of Computation Tree Logic (CTL)
and its use for specification and verification of properties of LTS;

• to discuss ways of introduction of formal models of concurrency and parallelism
into Software Engineering practice.

786
Моделирование и анализ информационных систем. Т. 22, №6 (2015)

Modeling and Analysis of Information Systems. Vol. 22, No 6 (2015)

0.3. Topics and Lecture Plan

Introduction. Concepts of syntax, semantic, algebraic and logic formal models (by
study of naive set theory, propositional formulas, Boolean algebras, propositional
logic). Why do we need formal models for concurrency?

Basics of Petri nets. Definition of marked Petri net. Firing, small/big-step semantics.
Reachability problem and reachability tree/graph. Boundedness problem and chec-
king. Problem solving with aid of Petri nets.

Process Algebras. Communicating Sequential Processes (CSP) by A. Hoare. Process
algebra of J. Bergstra and J. Klop.

Calculi for concurrency. Calculus of Communicating Systems (CCS) by R. Milner.
Pi-Calculus by R. Milner. Ambient Calculus by L. Cardelli. Modeling with aid of
calculi.

Labeled Transition Systems. Definition of LTS. Examples of LTS by Petri nets and
calculi. Definition of bisimulation and its properties. Bisimulation and Hennessy-
Milner Logic.

Computational Tree Logic. CTL syntax and semantics. Using CTL to specify prop-
erties of LTS. CTL Model Checking: algorithmic verification of LTS

Conclusion. Do we need a comprehensive model for concurrency and parallelism?

1. One Puzzle for Many Formalisms
The following puzzle Four Men and a Boat was used in the course to illustrate several
formal models, namely Petri nets, a dialect of Calculus of Communicated Systems and
Computational Tree Logic.

Four men Albert, Conrad, Donald and Edmund are on the left bank of
a river and need to move to the right bank by a boat that has 2 seats and
one pair of oars. Sporty Albert can cross the river by the boat without a
companion in 5 minutes (in one forth or back direction), regular Conrad can
do the same in 10 minutes, fatty Donald – in 20 minutes, and fat Edmund
– in 25 minutes. When any two men are crossing the river together the pace
of the boat is defined by the fattest man in the pair, ex., Albert and Donald
together can cross the river in 20 minutes. Question: do these four men can
cross the river in one hour?

This is really a very nice puzzle! Typically 8 in 10 students (in my experience) first
“prove” that the four men cannot cross the river in one hour. They usually assume that
sporty Albert have to accompany (convoy) other men because he is the fastest and
it would be better him to transport the boat back every time; under this assumption
transportation of 4 men takes 1 hour and 5 minutes.

The author also made this assumption when heard the puzzle for the first time
17 years ago, and was very much confused when Andrei Sabelfeld (http://www.cse.

http://www.cse.chalmers.se/~andrei/
http://www.cse.chalmers.se/~andrei/

Shilov N.V.
Teaching Formal Models of Concurrency 787

chalmers.se/~andrei/, he was a student at the time of the story) told him that it is
wrong. In turn Andrey simply gave the following scenario how men can cross the river
in one hour:

• first Albert and Conrad cross the river together in 10 minutes, then Albert trans-
ports the boat back in 5 minutes;

• next Donald and Edmund cross the river together in 25 minutes and Conrad
transports the boat back in 10 minute;

• finally Albert and Conrad cross the river together again in 10 minutes.

So this puzzle gave a good lesson to author to be skeptical about “obvious” assumptions.

2. Puzzle in Petri nets

Fig 1. Fragment of net model for Four Men and a Boat Puzzle

A sketch of a marked Petri net that models the puzzle is presented on the figure 1.
One can see on this figure

• a place TIMER with initial marking 12 tokens each of which models 5 minutes
(because all time values in the puzzle are dividable by 5);

• a place BOAT with initial marking 1 that models the boat;

• places AL, CL, DL and EL with initial marking 1 each; the initial marking models
that initially Albert (A), Conrad (C), Donald (D) and Edmund (E) are on the left
(L) bank of the river;

http://www.cse.chalmers.se/~andrei/
http://www.cse.chalmers.se/~andrei/

788
Моделирование и анализ информационных систем. Т. 22, №6 (2015)

Modeling and Analysis of Information Systems. Vol. 22, No 6 (2015)

• places AR, CR, DR and ER with initial markings 0 each; the initial marking models
that initially Albert (A), Conrad (C), Donald (D) and Edmund (E) are absent on
the right (R) bank of the river;

• three sample transitions that model situations when Albert moves from left bank
to the right (A:L-R), when Bob and Conrad move together from left bank to the
right (C&D:L-R), and when Bob and Donald move together from right bank to
the left (C&E:R-L) by boat; omitted 17 transitions are similar;

• several edges without tags and two edges tagged by integers 4 and 5: edges without
tags have multiplicity 1, edges tagged by integers have multiplicity according to
their tags; the multiplicity represents the number of 5 minutes intervals that is
required for the corresponding transition;

• firing of each transition models a move from one bank to another by a man or by
a pair of men in the boat.

The presented marked net is bounded, it can be checked by construction of Karp-
Miller coverage tree. The background (unmarked) net is structurally bounded (i.e. it is
bounded for every initial marking), the structural boundedness of the net is obvious1.

In terms of Petri nets, to solve the puzzle means that the following final marking is
reachable from the initial one (TIMER:0, AL:0, CL:0, DL:0, EL:0, AR:1, CR:1, DR:1,
ER:1, BOAT:1). Since the net model is bounded, the set of all reachable markings is
finite2; so the puzzle can be solved by construction of the reachability graph for the
marked net. Let us observe that this reachability graph is an example of labeled transition
system where nodes are reachable markings of the net and edges are transition firings.

3. Puzzle in CCS

Let us describe a simplified dialect of Calculus of Communicating Systems. Syntax of
the dialect is defined in terms of the following three context-free grammars:

S ::= 〈empty〉 | N = P ;S
P ::= 0 | A.P | (P + P) | (P |P) | N

A ::= R | I| O

where

• N , R, I and O are disjoint finite alphabets which elements are called process names,
regular, input and output (action) symbols,

• words generated from symbol P are called processes, and words generated from
from symbol S are sets of definitions (separated by semicolon).

1Sorry for claiming that something is “obvious”. This time the claim follows from the net structure:
for every marking every firing of a transition reduces the total number of tokens.

2It contains not more than 208 reachable states.

Shilov N.V.
Teaching Formal Models of Concurrency 789

Process constructors “.”, “+” and “|” are conventionally called sequential, nondeter-
ministic and parallel compositions. A set of definitions is consistent if every name that
occurs in the system has single definition in the set.

Input and output alphabets are mutually complementary: they are equipped by a
bijection function ()c such that

• for every input symbol i the complement ic is an output symbol and (ic)c = i,

• for every output symbol o the complement oc is an input symbol and (oc)c = o.

Let us specify the puzzle in terms of our dialect of CCS. Let

TIMER = tick.tick.tick.tick.tick.tick.tick.tick.tick.tick.tick.tick.︸ ︷︷ ︸
12 times

0

be definition of a process name TIMER where tick is an output symbol (to represent
time interval of 5 minutes) with the complementary input symbol tack. This input symbol
is used in process definitions affiliated with men in the puzzle. For example, in definitions
for two process names AL and AR (that correspond to Albert on the left and on the
right banks) follow below:

AL = (acqBL.tack.AR + ALackCL.AR + ALackDL.AR + ALackEL.AR)
AR = (done.0 + acqBR.tack.AL +

+ ARackCR.AL + ARackDR.AL + ARackER.AL)

where

• done is a regular action symbol;

• acqBL and acqBR are output symbols (to represent that a man acquires the boat
located on the left/right back respectively) with complementary input symbols
relBL and relBR (to represent boat release);

• ALackCL, ALackDL, ALackEL and ARackCR, ARackDR, ARackER are input
symbols (to represent that Albert acknowledges an invitation of Conrad, Donald
or Edmund with the same location to cross the river together) with complimentary
symbols CLaskAL, DLaskAL, ELaskAL and CRaskAR, DRaskAR, ERaskAR
respectively (to represent invitations).

The intended semantics of these two definitions is behavior of Albert on the left and on
the right banks.

• AL specifies that on the left bank he has the following 4 disjoint options:

– acquire the boat (acqBL), cross the river (synchronizing tack with tick) and
then proceed further on the right back according to AR;

– acknowledge invitation to use the boat acquired by Conrad (ALackCL) to
cross the river and then proceed further on the right back according to AR;

– acknowledge invitation to use the boat acquired by Donald (ALackDL) to
cross the river and then proceed further on the right back according to AR;

790
Моделирование и анализ информационных систем. Т. 22, №6 (2015)

Modeling and Analysis of Information Systems. Vol. 22, No 6 (2015)

– acknowledge invitation to use the boat acquired by Edmund (ALackEL) to
cross the river and then proceed further on the right back according to AR.

• AR specifies that on the right bank he has the following 5 disjoint options:

– stop any further activities and remain on the right bank (done);

– acquire the boat (acqBR), cross the river (synchronizing tack with tick) and
then proceed further on the left back according to AL;

– acknowledge invitation to use the boat acquired by Conrad (ARackCR) to
cross the river and then proceed further on the left back according to AL;

– acknowledge invitation to use the boat acquired by Donald (ARackDR) to
cross the river and then proceed further on the left back according to AL;

– acknowledge invitation to use the boat acquired by Edmund (ARackER) to
cross the river and then proceed further on the left back according to AL.

Definitions for names CL and CR (that correspond to Conrad on the left and on
the right banks), DL and DR (that correspond to Donald on the left and on the right
banks), and EL and ER (that correspond to Edmund on the left and on the right banks)
are presented in the table 1.

Table 1. Definitions that model Conrad, Donald and Edmund behavior
CL = acqBL.tack.tack.(CR + CLaskAL.CR) + CLackDL.CR + CLackEL.CR
CR = done.0 + acqBR.tack.tack.(CL + CRackAR.CL) + CRackDR.CL + CRackER.CL
DL = acqBL.tack.tack.tack.tack.(DR + DLaskAL.DR + DLaskCL.DR) + CLackEL.CR
DR = done.0 + acqBR.tack.tack.tack.tack(DL + DRaskAR.DLDRaskCR.DL)+

+DRackER.DL
EL = acqBL.tack.tack.tack.tack.tack.

(ER + ELaskAL.ER + ELaskCL.ER + ELaskDL.ER)
ER = done.0 + acqBR.tack.tack.tack.tack.tack.

(EL + ERaskAR.EL + ERaskCR.EL + ERaskDR.EL)

The last two definitions for names BL and BR correspond to the boat on the left
and on the right banks:

BL = relBL.BR and BR = (done.0 + relBR.BL).

The initial configuration of the puzzle can be represented as the following process

(TIMER|AL|CL|DL|EL|BL).

Reduction rules are very standard for CCS:

• if r is a regular action symbol then r.α→ α,

• if α→ γ then (α + β)→ γ and (α|β)→ (γ|β),

• if s is an input/output symbol then (s.α|sc.β|γ)→ (α|β|γ),

as well as the following congruencies:

Shilov N.V.
Teaching Formal Models of Concurrency 791

• α + β ≡ β + α and α + (β + γ) ≡ (α + β) + γ,

• α|0 ≡ α, α|β ≡ β|α, and α|(β|γ) ≡ (α|β)|γ,

• if S is a set of name definitions and n = α is one of them then3 n
S≡ α.

In terms of the presented CCS-dialect, to solve the puzzle means that the final process
0 is reachable (assuming system of name definitions that comprises all definitions listed
above are provided) in the reduction graph for the initial process (TIMER | AL | CL|
DL | EL | BL). This graph is finite because every nondeterministic branch with recursion
in any of our definitions contains at least one tack that must be synchronize with tick,
but the total amount of ticks is 12 (according to definition of TIMER). So the puzzle
can be solved in terms of CCS by construction of the reduction graph. Let us observe
that this graph is also an example of labeled transition system where nodes are process
configurations (that are reducts of the initial process) and edges are reductions.

4. Puzzle in CTL

As follows from sections 2 and 3, the puzzle can be reduced to the reachability problem
for finite graphs (label transition systems in particular) with aid of Petri nets (semantic
model) or CCS (syntactic model). Moreover, the puzzle can be solved on the fly at time
of constructing the corresponding labeled transition system.

But let us recall that students who try to solve the puzzle usually believe that Albert
have to accompany other men for accelerating transportation. In other words they make
the following belief assumption:

If a positive solution exists,
then there exists a solution where Albert convoys other men

until all are on the right bank.

There are two ways how to refute this belief: human-oriented or computer-aided.

• Human-oriented way in this case comprises two steps: first someone should solve
the puzzle (it was Andrey Sabelfeld in my case), then prove manually impossibility
of a solution where Albert convoys other men (that is very easy).

• Computer-aided approach needs to build the corresponding labeled transition sys-
tem first, then to modify a reachability algorithm to check whether there exists a
path where Albert is always on the move.

The first step of a computer-aided approach can be carried out in many ways:
for example one may construct reachability graph for the Petri net (that model the
puzzle), or reduction graph for the corresponding CCS specification. The next step of
the approach may be generalized: it makes sense to build an efficiently decidable graph
query language so that the standard reachability (and many its modifications) becomes
just a special query of this language.

3Supscript S may be omitted when the system is implicit.

792
Моделирование и анализ информационных систем. Т. 22, №6 (2015)

Modeling and Analysis of Information Systems. Vol. 22, No 6 (2015)

There are many query languages of this sort indeed, Computation Tree Logic (CTL),
Linear Temporal Logic, µ-Calculus for instance. For example, in CTL the belief assump-
tion can be represented by CTL formula presented in the table 2. Here Albert_at_Left,
Conrad_at_Left, . . . , Edmund_at_Right and Albert_on_Move are propositional
variables with natural interpretation in the labeled transition system.

Table 2. CTL specification for the belief assumption about the puzzle
(Albert_at_Left & Conrad_at_Left &
& Donald_at_Left & Edmund_at_Left &
& Boat_at_Left & Timer_is_Set) →

→ (EF(Albert_at_Right &Conrad_at_Right &
& Donald_at_Right & Edmund_at_Right) →

→ E(Albert_on_Move U (Albert_at_Right & Conrad_at_Right &
& Donald_at_Right & Edmund_at_Right)))

5. Parallel Programming Paradigm
Paradigm is an approach to problem formulation/formalization and the ways to solve
them. The term comes from Greek and means pattern, example (nouns), exhibit, represent
(verbs). A contemporary meaning of the term is due to well-known book by Tomas Kuhn
[11]. Robert Floyd was the first who had explicitly used the term in the Computer Science
context. In particular, he addressed Paradigms of Programming in his Turing Award
Lecture in 1968 [5]. Unfortunately, R. Floyd had not defined explicitly this concept.
Peter Van Roy has published in 2009 a taxonomy The principal programming paradigms
(at http://www.info.ucl.ac.be/~pvr/paradigms.html) with 27 different paradigms.
He also suggested the following definition [16]:

A programming paradigm is an approach to programming a computer based on
a mathematical theory or a coherent set of principles. Each paradigm supports
a set of concepts that makes it the best for a certain kind of problem.

The definition suggested by Peter Van Roy has been refined in [18] as follows.

• Programming paradigms are alternative approaches (patterns) to formalization
of information problems (problem statements), data presentation, handling, and
processing.

• They are fixed in a form of formal (mathematical) theory and accumulated in
programming languages.

• Programming value of a paradigm may be characterized by a set of programming
problems/application areas that the paradigm fits better than the other ones.

• Educational value of programming paradigms is to teach to think different about
programming problems and to select the best paradigm to solve any particular
problem.

http://www.info.ucl.ac.be/~pvr/paradigms.html

Shilov N.V.
Teaching Formal Models of Concurrency 793

This definition assumes that teaching/learning formal models/theories is obligatory
for mastering/comprehending any programming paradigm, the parallel programming in
particular. And the puzzle about four men and a boat helps to teach and learn some
formal models and theories of concurrency.

References
[1] Handbook of Process Algebra, eds. J. A. Bergstra, A. Ponse, S. A. Smolka, Elsevier,

Amsterdam, 2001.

[2] L. Cardelli, A. D. Gordon, “Mobile ambient”, Lecture Notes in Computer Science, 1378,
Springer-Verlag, Berlin, Heidelberg, 1998, 140–155.

[3] L. Cardelli, “Mobility and Security.”, Foundations of Secure Computation, Proceedings of
the NATO Advanced Study Institute on Foundations of Secure Computation, IOS Press,
Amsterdam, 2000, 3–37.

[4] E. M. Jr. Clarke, O. Grumberg, D. A. Peled, Model Checking, MIT Press, Cambridge,
Massachusetts, 1999.

[5] R. W. Floyd, “The paradigms of Programming”, Communications of ACM, 22 (1979),
455–460.

[6] D. Grossman, “Ready-For-Use: 3 Weeks of Parallelism and Concurrency in a Required
Second-Year Data-Structures Course”, SPLASH 2010 Workshop on Curricula for
Concurrency and Parallelism (Reno, Nevada, USA, Oct. 17, 2010), https://homes.cs.
washington.edu/~djg/papers/grossmanSPAC_position2010.pdf.

[7] C. A. R. Hoare, Communicating Sequential Processes, Prentice Hall, Upper Saddle River,
New Jersey, 1985, (This book was updated by Jim Davies at the Oxford University
Computing Laboratory in 2004 and the new edition is available at the http://www.
usingcsp.com/).

[8] Yu. G. Karpov, Model Checking. Verificaciya parallelnyh i raspredelennyh programmnyh
system, BHV-Peterburg, Saint Petersburg, 2010, (In Russian).

[9] V. E. Kotov, Seti Petri, Nauka, Moscow, Russia, 1987, (In Russian).

[10] Z. Manna, A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems:
Specification, Springer-Verlag,, New York, 1992.

[11] T. S. Kuhn, The structure of Scientific Revolutions, Univ. of Chicago Press, Chicago and
London, 1996, (3rd Edition).

[12] R. Milner, Communicating and Mobile Systems: the Pi-Calculus, Cambridge University
Press, Cambridge, England, 1999.

[13] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science,
92, Springer-Verlag, Berlin, Heidelberg, 1980.

[14] J. L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice Hall, Upper Saddle
River, New Jersey, 1981.

[15] W. Reisig, A Primer in Petri Net Design, Springer-Verlag, Berlin, Heidelberg, 1992.

[16] P. van Roy, “Programming Paradigms for Dummies: What Every Programmer Should
Know”, New Computational Paradigms for Computer Music,, eds. G. Assayag, A. Gerzso,
IRCAM/Delatour, France, 2009, 9–38.

[17] N. V. Shilov, K. Yi, “How to Find a Coin: Propositional Program Logics Made Easy”,
Current Trends in Theoretical Computer Science. V. 2, World Scientific, Singapore, 2004,
181–214.

[18] N. V. Shilov et al., “Development of the Computer Language Classification Knowledge
Portal”, Ershov Informatics Conference PSI’11, Lecture Notes in Computer Science, 7162,
Springer-Verlag, Berlin, Heidelberg, 2012, 340–348.

[19] C. Stirling, Modal and Temporal Properties of Processes, Springer-Verlag, New York, 2001.

https://homes.cs.washington.edu/~djg/papers/grossmanSPAC_position2010.pdf
https://homes.cs.washington.edu/~djg/papers/grossmanSPAC_position2010.pdf
http://www.usingcsp.com/
http://www.usingcsp.com/

794
Моделирование и анализ информационных систем. Т. 22, №6 (2015)

Modeling and Analysis of Information Systems. Vol. 22, No 6 (2015)

DOI: 10.18255/1818-1015-2015-6-783-794

О преподавании формальных моделей и алгоритмов анализа
параллельных систем

Шилов Н.В.1

получена 26 октября 2015

В настоящее время наблюдается огромный практический интерес к параллельному программи-
рованию. Этот интерес обусловлен доступностью супер-ЭВМ, компьютерных кластеров и мощных
графических процессоров для массового использования в вычислительной математике и компью-
терном моделировании. Кроме того, такие технологии параллельного программирования, как MPI,
OpenMP и CUDA, позволяют использовать безопасным образом опыт программирования на клас-
сических языках Си и FORTRAN для ускорения вычислений, избегая конфликтов (“гонок”) из-за
ресурсов. Однако такой прогресс параллельного программирования не означает, что конкуренция
из-за ресурсов не может возникать в параллельных общего вида, в так называемых распределен-
ных системах в частности. Поэтому остается актуальным изучение и преподавание формальных
моделей параллелизма и средств верификации поведенческих свойств параллельных (распреде-
ленных) систем.

В статье представлен опыт преподавания специального курса по формальным моделям парал-
лелизма для магистрантов и аспирантов, специализирующихся в области высокопроизводительных
вычислений. Сначала в статье дан обзор курса в целом, предварительных знаний, необходимых для
этого курса, целей и задач курса, представлен план лекций и список рекомендованной литерату-
ры. Затем представлен пример одной поучительной головоломки (на достижимость в пространстве
состояний) и ее формализации средствами семантических, синтаксических и логических моделей,
как-то: сетями Петри, средствами исчисления параллельных взаимодействующих процессов (CCS)
и темпоральной логики CTL. Эта головоломка — хороший пример для того, чтобы показать спе-
цифику и пользу каждого из рассмотренных формализмов.

Статья представляет собой расширенную версию доклада на VI Международном семинаре
“Program Semantics, Specification and Verification: Theory and Applications”, Казань, 2015.

Статья публикуется в авторской редакции.

Ключевые слова: системы с параллелизмом, формальные методы, формальные модели, се-
ти Петри, исчисления взаимодействующих процессов, помеченные системы переходов, проблема
достижимости, темпоральная логика, верификация моделей
Для цитирования: Шилов Н.В., "О преподавании формальных моделей и алгоритмов анализа параллельных
систем", Моделирование и анализ информационных систем, 22:6 (2015), 783–794.

Об авторах:
Шилов Николай Вячеславович, orcid.org/0000-0001-7515-9647,
канд. физ.-мат. наук, старший научный сотрудник,
Институт систем информатики им. А.П. Ершова СО РАН
630090 Россия, г. Новосибирск, пр. Лаврентьева, 6,
e-mail: shilov@iis.nsk.su

Благодарности:
1Работа выполнена в рамках программы IV.39.1 «Теоретические и прикладные проблемы создания эффективных
надежных программных систем и информационных технологий».

	Course Background
	Course Objectives
	Topics and Lecture Plan
	One Puzzle for Many Formalisms
	Puzzle in Petri nets
	Puzzle in CCS
	Puzzle in CTL
	Parallel Programming Paradigm
	References

