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1. Introduction

Often, integrable partial differential, differential-difference and partial difference equa-
tions can be regarded as parts of an algebraic structure which we call a Lax-Darboux
scheme. In this context the Lax representations for the integrable partial differential
equation (PDE) and a hierarchy of its symmetries form a Lax structure. Darboux
transformations for the corresponding Lax operators are automorphisms of this Lax
structure resulting in a chain of Bécklund transformations for the PDE and its symmetries.
The latter represents an integrable system of differential-difference equations (DAEs)
and its symmetries (often non-evolutionary). The Bianchi permutability conditions for
Darboux transformations represent a system of partial difference equations (PAEs). This
system possesses an infinite hierarchy of commuting symmetries (the above mentioned
DAEs) and thus it is an integrable partial difference system in its own right. There
are many journal publications and monographs focusing on certain aspects of this big
picture [1, 2, 3, 4, 5. In particular, paper [4] contains a good collection of Lax-Darboux
representations recursion operators for integrable differential-difference equations. In this
paper we discuss the ways in which PDEs, DAEs and PAEs belonging to the same Lax-
Darboux scheme share the same hierarchy of local conservation laws.

The main idea standing behind our theory is a formal diagonalisation of the Lax-
Darboux scheme. We show that there exists a formal (i.e. in the form of a formal series)
gauge transformation which simultaneously diagonalises (or brings to a block-diagonal
form) the Lax operators of the Lax structure and Darboux matrices associated with
Darboux transformations. It provides us with a regular method for recursive derivation
of a hierarchy of local conservation laws for the nonlinear differential and difference
systems associated with the Lax-Darboux scheme.

The method of formal diagonalisation of differential operators can be found in the
classical literature concerning asymptotic expansion [6]. In application to Lax representa-
tions for partial differential equations and recursive derivation of the hierarchy of local
conservation laws, there is a neat and instructive exposition of the method [7]. It has been
successfully used in the Symmetry Approach to classify of integrable partial differential
equations [8]. Here we extend the method to Darboux transformations and in this
way to differential-difference and partial difference integrable systems. We shall explain
the method using the Lax-Darboux scheme associated with the Nonlinear Schrédinger
equation. Its generalisations to other Lax-Darboux schemes is rather straightforward.
This paper is based on a lecture courses given by the author in the Bashkir State
University (Ufa, 2012) and as a part of MAGIC course on Integrable systems (UK,
2014), a number of conference talks (Ufa, October 2012; Moscow, November 2012 [9];
Cambridge, July 2013 [10]) where the concept of Lax-Darbiux scheme and formal diagona-
lisation approach were originally presented. This method has proven to be useful in a
many applications(see for example [5, 11, 12]).
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2. Lax-Darboux scheme for the Nonlinear Schrodinger
equation

In this paper we consider Lax integrable equations, i.e. equations which can be integrated
using the Inverse Spectral Transform method. For such equations we can build up a Lax-
Darboux scheme with the following objects:

e the Lax structure, which is an infinite sequence of Lax operators whose commuta-
tivity conditions are equivalent to the equation and a hierarchy of commuting
symmetries;

e Darboux transformations, which are automorphisms of the Lax structure;

e Bécklund transformations, which are follow from the compatibility conditions of
the Lax structure and Darboux transformation. They can be regarded as integrable
differential-difference systems;

e the conditions of Bianchi permutability for the Darboux transformations, which
lead to systems of integrable partial difference equations;

e Ajacent Lax structures associated with a Darboux transformation which lead to
adjacent symmetries of these differential-difference and partial difference equations
and are integrable differential-difference equations in their own right.

In this section we would like to give explicit representations of all listed above objects
in the case of the Nonlinear Schrédinger (NLS) equation.

2.1. Lax structure of the Nonlinear Schrodinger Equation

The Nonlinear Schrédinger Equation is a system of two partial differential equations

201 = Pux — 8P°¢, 21 = —Qux + 8¢°D (1)

where x,t are independent variables. In the literature the term Nonlinear Schrédinger
Equation usually stands for one complex equation of the form

iq = qer %+ 2|q/q,

which can be obtained from (1) after a change of variables ¢ — 2it, * — 2iz and
reduction p = F¢*. In this paper we shall use equation (1) to illustrate the method, since
the reduction condition would add some inessential technicalities.

It has been shown by Zakharov and Shabat [13| that the system of equations (1) is
equivalent to the commutativity condition [L(p, ¢), A(p, q)] = 0 for two linear differential
operators

L(p,q) = D, — U, A(p,q) =D;—V, (2)

where D, and D, are operators of differentiation in x and ¢ respectively,

B 0 2p (1 0 g [ 2pq —Du
U—)\J+(2q 0>,J—(O _1),V—>\U ( " _2pq>, (3)
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and A is a spectral parameter. Linear operators L(p, q), A(p,q) form a Lax pair (or a
Lax representation) for equation (1).
The NLS system (1) admits an infinite hierarchy of commuting symmetries

ptk:fka th:gk, k:0,1,2,... (4)
where . .
f = 2]77 g = —2q,
fl = Pa; gl = Qx,
2 1 2 2 1 2
fe= %pm — 4pq, g° = _5%“"’ + 4¢°p NLS,
1
f?= 1 Pre = 6P, 9* = 1 %ew — 64pgs,

1
ft= ?sz — 4Pz — 3qD5 — 20Pale — P Qea + 120°¢%,
4

9" = Glzrer — 44pqer — 302 — 2442Ds — ¢PPuw + 12¢°P%, ...

All functions f*, ¢* € [C, p, ¢; D,] are differential polynomials over the field C of variables
p =p, ¢© =g and their a-derivatives p™¥ = p,, ¢V = ¢z, P? = poe, ¢¥ = Gua, ...
and

> 0 0
_ (n+1) _~Y (n+1)
De =2 0" g 0

By (generalised) symmetries of the NLS equation (1) we understand derivations

Dy = Dw(fk)ap(n) + D} (gk)m
n=0

commuting with D, = D,, and D,
[th, Dtk] — 0, [Dx, Dtk] — 0

Symmetries are called commuting if the corresponding derivations commute. It is sufficient
to verify that Dy (fm) = Dy, (fn) and Dy, (gm) = Dy, (9,). Motivations and general
definition of symmetries one can find in [14, 15].

Each symmetry from this hierarchy has a Lax representation

. = 1" @, =9" & [Lp.q), A (p,q) =0 (5)

with the same operator L(p,q) = D, — U and A*(p,q) = D;, — V* where matrices V*
can be found recursively starting from V° = J and for k > 1

1 1 1
VEHL Pk _ §Dx(vk)J — 5[v’“, UlJ — §D;1Tr(UDx(Vk))J. (6)

Here D! stands for integration in z. It can be rigorously proven that Tr(UD,(V*)) €
Im D, for any k, thus the integral can be evaluated and the result belongs to the
differential ring [C;p, ¢; D,]. The constants of integration can be chosen arbitrary, or
fixed by the condition Vk\p(z):q(x)zo = \*J. In the latter case

1 _ Q2
Vo= J Vi=U VE=V, v3:AV2+—<2pq”E 24Ps - Poo 8”),....
2\ ez —8¢°p  2qp, — 2pq.
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Recursion relation (6) can be simplified and represented in the form
V0= VL= AV"+B,, n=01,...

where the A-independent matrices B,, can be found recursively

0 2 J _
By = < 2% g ) , B = ) (Dz(Bk) + [Br, Bo] — D, ' Tr(BoDy(By))) -

The set of Lax operators {L(p, q), A*(p,q), k € Z>¢} and corresponding compatible
partial differential equations (commuting symmetries) {(f*, g*), k € Z>} form the Lax
structure for the Nonlinear Schrodinger equation (1).

2.2. Darboux and Backlund transformations for NLS

Since all linear differential operators {L(p,q), A*(p,q), k € Z>o} commute with each
other, there exists a common fundamental solution ¥ of the linear problems

L(p,q)¥ =0,  A%(p,q)¥ =0. (7)
We shall study a transformation S of a fundamental solution
S: U U =MV, det M #£0 (8)

such that the matrix function VU is a fundamental solution of the linear problems

Lp,)® =0,  A%p, ¥ =0. (9)
with new “updated potentials” p, ¢. In the literature this type of transformation is often
referred to as a Darboux transformation and the matrix M is called the Darboux
matrix. We shall assume that a Darboux matrix M is a rational function of the spectral
parameter A, whose entry may depend on p, ¢, p, ¢ and may also depend on some auxiliary
function(s) h or constant parameter(s) (examples will be given later in this section). The
given description of a Darboux transformation can be cast into a rigorous definition using
elements of differential-difference ring theory. We wish to avoid the introduction of these
concepts at the present time to make the paper accessible to a wider community.

It follows from (7), (8), (9) that transformation S can be extended to the set of Lax
operators:

S: L(p,q) — L(p,q) = ML(p,q) M,
(10)
S:A¥p,q) = AP, q) = MA*(p,g)M~', k=0,1,... .

Let us show it for the first equation. Indeed, we have
DV =S(U)¥ = D (M¥) =SU)MVY = D, (M) —SU)M + MU =0

and thus L(p, §)M — M L(p, q) = 0. Here we use notation S(U) for matrix U (3) in which
variables p, ¢ are replaced by p, . Equations (10) are equivalent to a compatible system
of equations for M

D,(M)=S(U)M — MU, (11)
Dy (M) =S(VFYM — MV*.. (12)
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It follows from (10) that a Darboux transformation S can be regarded as an automor-
phism of the Lax structure. It maps the set of commuting Lax operators into another
commuting set

S {L(p.q), A*(p,q); k € Zso} — {L(p.q), A*(p,q); k € Zxo},

and results in a Béacklund transformation which transforms a solution p, ¢ of the NLS
hierarchy into a new solution

S (pa) = (P, 0)-
Equations (11), (12) follow from the conditions that the map S and derivations D,, Dy,
commute

SL=MLM™" = AdyL, SA* = MA*M~' := Ad, A", k=0,1,... .

Darboux transformations are obviously invertible and a composition of two Darboux
transformations &7, Sy with Darboux matrices My, My

82 o 81 U= Sl(Mg)Mqu

is a Darboux transformation. There is a problem to describe all elementary Darboux
transformations for a given Lax structure, such that any rational Darboux transformation
can be represented as a composition of the elementary ones. In the cases of the Lax
structure corresponding to the Korteweg-de Vries equation and the Nonlinear Schrodinger
equation the solution of this problem can be found in [16]. In particular, it has been shown
that any Darboux transformation of the Lax operators L, A (2) can be represented as a
composition of elementary Darboux transformations J3, Sy, 7, with matrices

Js : Jg = diag(8, 571), (13)

o= (IR, &

n:m:(%’;g), (15)
and their inverse transformations with a certain choice of constant complex parameters
’ CYI.t follows from (11) that

TsL = Ady,L < Js(p) = B°p, Ts(q) = B7%¢; (16)

Pe = 28.(p) — 20°Sa(q) + 2ap,
SoL =Ady, L < (17)
Sa(qz) = —2q + 2pSa(q?) — 2a8.(q);

Tl =Adyn, L & (18)
pTu(q) = 1.

The first map (16)
Ts: (p.q) = (8%, 67%q)
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is nothing but a point symmetry of the NLS equation (1).

Equation (17) is a Backlund transformation (the x part of the Backlund transformation)
for the NLS equation (1). Starting from a solution p,q of the NLS we can find a new
solution (p1,q1) = (Sa(p), Sa(q)) by solving a Riccati equation for ¢,

1. = —2¢ + 2pg} — 2aq,

and then p; = p*q; — 2ap — p,. Equations (17) can be regarded as an integrable system
of differential-difference equations (DAEs). In variables

Dn = Sg(p)a Gn = SS(Q)a Qp = SS(C“) (19>
it takes the form [17]
Pnaz = 2pn+1 - QpiQnJrl + 2anpn7
Qn.e = _Qanl + 2pn71q721 - 2an71Qn>

In order to simplify notations we often shall omit n in the lower index for functions
depending on the point of the lattice replacing p,+1 by p+i1, etc. System (20) has a
Lax-Darboux representation (often called a semi-discrete Lax representation)

LU =0, Su(¥)=M,U.

neZ, a,cC. (20)

Its compatibility condition (11) is equivalent to (20). It has an infinite hierarchy of
commuting symmetries following from the conditions S,A* = Ad,;, A* and local conser-
vation laws. The latter will be shown in the next section.

Automorphism 7, gives the explicit map for solutions of the NLS:

_ gL (P _1
-5 (%) . - 1)
In variables p = exp ¢, ¢ = T,F(¢), hy = T,*(h) it can be written as
¢:(: = —Zh, hx = 2€Xp(¢1 - ¢) - 26Xp<¢ - ¢71> (22)

and after elimination of A it takes the form of the Toda lattice:

P = 46Xp(¢ - ¢—1> - 4exp(gz§1 - ¢)

The DAEs which follow from T, A* = Ady, A* are symmetries of (22). For example for
k=0,1,2,3 we obtain

{ bty = 2, { b1, = —2h,
hiy = 0; he, = 2(Th — 1) exp(¢ — ¢-1);
{ Gr, = 2h° = 2(Ty, + 1) exp(¢p — d-1),
hiy = =2(Tp, — 1)(exp(¢ — ¢—1)(h—1 + R));
Gis = 2exp(¢ — ¢-1)(2h + h1) + 2exp(¢1 — ¢)(2h + hy) — 217,

hey = 2(Th — 1)((h2; + hoah + h?) exp(¢ — ¢_1)+
exp(2¢ — 2¢_1) + (Tn + 1) exp(¢ — ¢_2)).
To define the explicit map (21) we have to consider the localisation of the ring with

respect to the element p~!. Then we introduced the exponential function in order to
transform the system in the standard well known form of the Toda lattice.
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2.3. Bianchi commutativity of Darboux maps
and integrable PAEs

Let us impose the condition that automorphisms corresponding to two Darboux maps
S, and S commute

[Sa,Sg] =0 = Sa(Mg)Ma — Sg(Ma)Mﬁ =0. (23)

It leads to the Bianchi lattice which can be regarded as a system of partial difference
equations (PAE) on Z2.

(Ss(p) — Sa(p))(1 + pSSalq)) — (= B)p =0

(Sp(q) — Sa(@))(1 + pSpSalq)) + (a — B)SpSalq) =0

Denoting pnm = SESF (D), Gnm = SaS§(q) we get a quadrilateral system of equations:

a—pf a—pf
- - 7 = - —qn . 24
Por = Pio + 1+ pan Py Gor = Qo — 7 Fpon qn (24)
DAEs, which follow from conditions
S.L = Ady;, L, S,A" = Ady, A (25)

are generalised symmetries of (24). Symmetries corresponding to conditions SzL =
Ady, L, SsAF = Ady, A* are equivalent to (25) modulo system (24).
Similarly, the condition [S,, 7] = 0 leads to

E(Ma)Nh - Sa(Nh)Mom (26)
which is equivalent to the fully discrete Toda lattice
e¢1o—¢> _ e¢—¢—10 + e¢—11—¢ _ e¢—¢1,71 +a—a_1=0, (27)

and
h = e?P1-1 _ o109 _ a,

in the variables ¢,, = TFS?logp and TFa = a,8%a = ay,a; € C. The discrete Toda
lattice is a difference equation which is defined on a 5—points stencil.
Equations which follow from conditions

S.L = Ady, L, S, A" = Ady,, A (28)
are symmetries of the discrete Toda lattice. For example S,L = Ad,,, L results in
by = _2(e¢—¢1,71 — P09 _ Oz).

Symmetries corresponding to conditions 7,L = Ady, L, TpA* = Ady, A are equivalent
to (28) modulo system (27).
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2.4. Adjacent Lax structure

In Section 2.2 we discussed the problem to find all elementary Darboux matrices corres-
ponding to a given Lax structure. There is another interesting and important problem to
find all possible Lax structures associated with a given Darboux matrix. In this section
we show that the Darboux matrix M, (14) corresponding to Lax operators (2) admits
an alternative Lax structure with operators B¥ = D, — W". We shall assume that
S.(@) = «, i.e. the constant o does not depend on the vertex of the lattice.

We notice that the determinant of the Darboux matrix

- (M )

is A\ — . Thus at A = o M? = M,| =, has rank 1 and can be represented by a bi-vector

Me= (1) uta v,

Let us search for a Lax operator By = D, — W} with a matrix W} having a simple
pole with a residue of rank 1 at A = o and vanishing at A = oo

Wl
1 _ «
W, = o
It follows from S, B! = Ad,;, B! that
D,(M,) = So(WHM, — M, W} (29)

Taking the residue at A = o we get equation

Sa(W!

«

)My = MW,

which has a unique (up to a scalar constant factor v) solution

Wi o < Sai(p) ) (Su(g), 1).

148, (P)Sa(0)
In what follows we set v = 1. Thus
1 1 S (p)Sala) STH(p)
We = (A= a)(1+ 81 (p)Sa(a)) < Salq) 1 ) '

Entries of W! are not from the differential-difference polynomial ring and localisation of
the ring by the element (14 S, (p)Sa(q)) ™" is required.

With this W] equation (29) is equivalent to the following evolutionary system of
integrable differential-difference equations

b1 q1

N o) SR 30
Ltpaa ¥ 1T1p (30)

Dy =

Here we use notations introduced in (19). System (30) is a new symmetry of differential-
difference system (20) as well as of partial-difference systems (24),(27).
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It can be shown that there is an infinite hierarchy of commuting operators

1

Bk:Dyk_Wc]fﬂ Wolzﬁ_l:/\—Oé

«

(W +C") (31)
and C* is a A-independent matrix. Using condition [B}, B2| = 0 we can find that

Cct = ; ( P-191y = P-19y@1 —P-1y —p2_1ql,y ) _
(1+p1q)? \ Gy + P ip—1y  P-1y@ — P-1G1y

For matrices W’ there exists a recursion (similar to (6)) which enables one to find
the infinite hierarchy of operators B* recursively. Operators BX, k = 1,2,... form the
adjacent Lax structure.

The partial differential equation which is equivalent to the condition [Bl, B2] = 0 is

of the form
2q1((p-1),)°
I+paq

~ 2pa((qn)y)?
L+pqa

(P-1)ys = —(P=1)yy +
(32)

(QI)yz = (QI>yy

System (30) is a Béacklund transformation for (32). Equation (32) is well known, it is a
Heisenberg model for ferromagnets [18]

S, =S xS S?=1

yy»

after the change of variable y, = i7 and stereographic projection

:(p_1+ql S =P p—1Q1—1>
l+paq’ 1+4+pag’ 14+paq /)

We can use equation (30) to eliminate y derivatives from the Lax operator B2 and
partial differential equation (32). The latter will take the form of a differential-difference
system

p2142(1 + p_aq) — p_o(1 + pgo)

p :
2 (T +poaq)(T+po1qr)?(1 + pgo)

(33)
0 = 20 AP20) — gip—2(1 + pg2)
2 (T4 poaq) (4 po1ga)*(1 + pgo)

Equation (33) is a Bécklund transformation for (32) and a symmetry of systems (30),
(20), (24), (27).

The system of partial difference equations (24) is equivalent to the commutativity of
Darboux transformations [S,, Ss] = 0, corresponding to Darboux matrices M, and Mg,
with distinct values of the parameters o and 5. With these matrices we associate two
Lax operators

Wl 4%
Ba:Dy_A_aOé7 B,BZDZ_—B

a# f, (34)
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which coincide with the Lax pair for the principal chiral field model [19]. The compatibility
condition [B,, Bg] = 0 leads to the system

(Wa, Wil

(W, W]
B—a’

(Wﬁl)y: 6_04 )

(Wi)z =

which in variables p,,, = Sy S5 (p), ¢nm = SHSE'(q) can be written as

(po,—1 — P—1,0)(1 + p-1,090,1)
(@ = B)(1 + po,—190,1)

(p—l,o)z =

(10 = o.1)(1 +po,—1q1.0) (35)
(o= B)(1 + po,-190,1)

(C]l,o)z =

(po,—l)y = (p—l,O)za (QO,l)y = (611,0)2-
Finally, let us consider the compatibility condition [L, B,| = 0 for two linear problems
LV =0, B, Y =0

with the original Lax operator L (2) and operator B, (34). Vanishing of the commutator
at infinity in X is equivalent to equations (30). Using equations (30) we can express p_;

and ¢; as
_ 1+ /T +4(),(9), L+ /1 +4(p)y(a)y

2(9), T 2(p),

Of course there is also the second solution with the negative sign at the square root, it
can be treated similarly. Then the compatibility conditions are equivalent to the system
of partial differential equations

(P)ay = 2a(p)y + 2p\/ L+4(p)y(@)y,  (@)zy = —2a(q)y + 2(]\/ 14 4(p)y(q)y- (36)

The constant a can be removed by a simple change of variables P = pe™2%, () = qe?**.
Then the system admits an obvious reduction P = @) to a single hyperbolic equation

(P):vy = P\/ 1+ 4((P)y)2‘

The latter equation is well known in the literature. It can be reduced to the sine-Gordon
equation by a differential substitution [20]. The above construction provides us with the
Lax representation for the system (36) with the Lax operators L (2) and the second

operator
_n ! V1+4(p)y(9)y —2(p)y
ERATo ey ( Aq)y  —v/TF 40,y ) | 1)

Similarly one can eliminate shifts from operators B* to build up the Lax structure
correponding to (36), (37).

pP—1
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3. Formal diagonalisation of the Lax-Darboux Scheme

In this section we show that the Lax operators and corresponding Darboux matrices
can be simultaneously formally diagonalised. The resulting objects will be presented by
formal Laurent expansions at poles of the chosen Lax operator. It will enable us to
find recursively local conservation laws for corresponding partial differential, differential-
difference and partial difference equations simultaneously. Our aim is to show that
for evolutionary equations from the same Lax-Darboux scheme with Lax operators
L,A* k = 0,1,... and Darboux maps S;, i = 1,2, ... there is an infinite sequence of
common local conservation laws with densities p,, 7 and fluxes 0. That is,

1. PDE’s corresponding to the Lax structure [L, A*¥] = 0 possess conservation lows

Dy, pn = Dok, k=0,1,....

2. For differential-difference equations originating from the conditions S;L = Ady, L
and S;AF = Ad,;, A* there are conservation laws of the form

Dxrfm = (SZ - 1>pn; Dtkrfz = ('Sl - 1)0-7Ii
with the same p,, and 07’2 as above, modulo equation S;L = Ad,, L.

3. For partial difference equations, corresponding to the Bianchi lattice [S;, S;] = 0
the corresponding sequence of the conservation laws are:

(S, — Dy, = (Si—1)r).

We shall demonstrate it on the examples described in the previous section, associated
with the Lax-Darboux scheme for the nonlinear Schrodinger equation as well as with the
adjacent Lax structures considered in Section 2.4. A generalisation of this approach to
other Lax-Darboux schemes (or their parts) often is rather straightforward and it will
be discussed at the end of this Section.

3.1. Formal diagonalisation of the Lax structure for NLS (L, A¥)

In the Lax operator L (2) matrix U has a simple pole in A at infinity with the coefficient
J which is diagonal (3). The matrices V* in operators A* = D, — V* are differential
polynomials in variables p, ¢ and their x derivatives with complex coefficients. The leading
(in \) coefficient is also diagonal and is equal to A*J. By local functions (in this case)
we shall understand elements of the differential polynomial ring R, = [C; p, q; D,].

Let us consider endomorphism ad; of the linear space 9t = Matgyo(R,) of 2 X 2
matrices with entries from R,

ady : M— M, ady(a) =Ja—aJ, a€M.

The kernel of ad; is the subspace of diagonal matrices, the image space of ad; is a
subspace of off-diagonal matrices. Thus

SDT:E)JIHEBEDTL, imnzKeradJ, M, =Imad;.
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In 991, the endomorphism ad; is invertible
1
ad}1 M = M, ad}lazzadja, Ya € M, .

In the space 91 it is convenient to introduce two projectors

1 .
T, = —ad%, T =1id — Ty

4

where ¢d is the identity map. They are projectors on the off-diagonal and diagonal part
of a matrix respectively

TM=M,, M=

We shall use a simplified version of the Drinfeld-Sokolov Lemma, which they have
formulated and proved in a rather general setting [7].

Lemma 1. For linear operator L (2) there exists a unique formal series
Q=T+X"Q1+X?Q+ A7 Qs+,  QreM (38)
such that
L=Q'LQ=D, -\ —Uy— XUy = XUy —---, Uy, € M. (39)

The coefficients Q. can be found recursively

pt+q=k
Qi=—pdilU,  Qu = jad, (Dx@m > @pUQq>, (40)

p=1,g=1

and

Uy =0, U, =UQy .
Proof. Let us substitute L, £ and @ in
C=LQ—-QL=Co+N'CL+ X 2Cy+--- .

The condition that the formal series C' should vanish provides us with a sequence of
equations to determine the coefficients Uy, Qx. The linear in A term vanishes automatically.
The coefficient at \° is

Co=[J,Q1] +U —Uy.

Applying projectors m; and 7, to Cy we find that
([, Q1] + U — Uy) = —Uy = 0, T ([, Q1] + U —Uy) = [J,Q1] + U = 0.
Thus Uy = 0 and Q) = —}ladJU. The coefficient at A" is

pta=k

Cr = ad; Qi1 — Da(Qn) + UQk U — > Quldy.

p=1,4=1
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Therefore
m(Cr) =UQk —Upy =0 = Uy, = UQy,
pt+q=k
TL(Ch) = adyQusr — Da(Qi) = Y Quldy =0
p=1,q=1

Thus the coefficients @),,,U,, can be found recursively:

pt+q=Fk

Q= —iadﬂﬁ Qr+1 = iadJ (Dz(Qk) + Z QpUQq> , U = UQy.

p=1,q=1
Note that Q) and U}, are all local, i.e. expressed in terms of differential polynomials. O

We are going to show that () diagonalises the whole Lax-Darboux scheme, i.e. diagona-
lises the operators A* and the Darboux matrices M, (corresponding to S, ). It is well
known that all operators A* in the Lax structure become diagonal and lead to local
conservation laws for the corresponding partial differential equations and their symmetries.

Proposition 1. Let [L, A*] =0, where
AR =Dy — AT = NVE N

Then
AF = Q1 A*Q = D, — NFJ — NFIVE L NERYE L (41)

has diagonal coefficients V¥ € My, s=k—-1,k—-2,....

Proof. If [L, A*] = 0, then [£, A*] = 0 where £ = Q7'LQ (39) and A* = Q1A*Q
(41). Using induction we show that all coefficients of the formal series A" are diagonal.
The leading coefficient of the series A\¥J is diagonal. Let us assume that coefficients
Ve VY .., VE are diagonal. Then the leading term of w,[£, A*] is equal to
Ne=mad  VE . Tt should vanish and thus VE,_, € M. O

Corollary 1. The following ystems of partial differential equations
(P = % @, = 9") & [L,A*]=0
have an infinite hierarchy of common conservation laws
Uy, = D, (VF), n=12...,
Moreover, D,VF =0, form=1-k,2—k,...,1,0.

Proof. From [L, A¥] = 0 it follows that [£,.A*] = 0 which leads to

o0

Z A_n(un)tk - A_n(VS)x =0.
n=1 =

n=1—k

Vanishing the coefficients at each power A" proves the statement. O
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It is easy to show that differential polynomials Tri4,, € Im D, and thus they correspond
to trivial densities. Let us take the matrix entry (U, )22, (V¥)22 to define

Pn = (Un)2,27 Ufb = (Vf)m-

It can be shown that the corresponding densities are all non-trivial.
Example. Taking L corresponding to the NLS (2) we find that

(0 —p B 1 0
Ql_(q O)a ul_QPQ(O_l)a

0 ps pge 0 )
1
= 1 ’ U, = — 7
Q= ( 4@ O ) ? < 0 gqps
Qs =1L ( 0 —Pax + 4p%q ) Us = 1 (pqm — dp*¢? 0 )
\ G — @ 0 ’ 2 0 AP*¢* — qpaa )
and

p1 = —2pq, 07 = @up — Paqs 05 = 5(Pele — Plae — @Paz) + 6P*¢ ..,
P2 = —(qPx, U% = %(px%{: - qux) + 2p2q27 Ug = Zi(poc:c%c - qpxoc:c) + 4pq2px cee
p3 = 20°¢* — 5qDaxs p1 = PA(PGz + 4GD2)) — $UPran - - - -

3.2. Formal diagonalisation of the Darboux matrices M,, N,

The diagonalising transformation () can be extended to the Darboux matrices M,, Mg
and Nj,. We substitute L = QLQ ™" in S,(L) = M,LM_;! to obtain

Soa(L) = M LMY, M, =8,(Q) ' M,Q. (42)
Similarly we obtain
Ta(L) = NoLN', Ni=To(Q)7'NQ.
These equations can be rewritten in the form

D,(M,) = So(L)My — ML, (43)
D, (Ny) = Th(L)N, — NLL. (44)

Proposition 2. The coefficients M~ NF of the formal series
My =8u(Q) " MoQ = IMT + MO+ XML+ ATPME + -

and

Ni=Th(Q)'NQ =M+ NP + AN+ A2NE + -+

are diagonal matrices.
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Proof. We prove it by induction. The leading coefficients M_! = A, —1 are diagonal
matrices with (1,0) on the diagonal. Let us assume that the coefficients M2, ... M"
are diagonal. Taking the coefficient ¢, at A™™ in D (M) — So (L) My + ML we obtain

= Dy (M?) — [J, MH1] — Zs (U )ME + MEU, . = 0.
k=-1

Projection 7, (¢,) = —[J, M"™!] = 0, which implies that M™*! is diagonal. The proof is
similar for the coefficients of Nj,. O
Equation (43) can be written in the form

Dy(log My) = (S — 1)L,

since all matrices in (43) are diagonal. Thus log M,, is a generating function for local
conservation laws for the differential-difference equation (20):

<

"oy Ta
A )\

Dy(ra) = Salpr) = pr-
It follows from (12) and Proposition 1 that

log(Ma)2,2 = + + s

> |Qﬁw

Dy, (r3) = Saloy) — -
Moreover, it follows from (23) that
Sa(Mp)Ma = Ss(Ma) Mp.
Therefore
(Sq — I)1log Mg = (Sg — I)log M,
and thus
(Sa = D)1l = (Sg — I)rk E=1,2,....

)

Similarly, from (26) it follows that T,(Ma )N}, = So(N,)M,, and thus

7“1 7”2 ,,,.3

(Sa_l)rk: (771—])7‘:;, log(Nh>2,2 = X_Fﬁ—i_ﬁ—i_

Example. Using equations (17), (18) corresponding to S, L = Ady;, L, T, L = Ady L
for elimination of all z-derivatives we get

_ _ 0 —p _ 0 _Oép_Sa(p)+p28a(Q) _
@=1I+A 1(q 0 )H 2(8a1(q)+aq—3al(p)q2 0 )er_

(0 —p ) 0 hp
I+ A <q 0)+/\ (—El(hp_l) 0 +

i, 0 B —Ti(p)) ,
) ( T (P =T, 207 ) 0 *
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Ma:/\(é 8>+<p5a(%)—04 (1]>+x1<%q —pga(Q))+"'

/\/h:/\(l O)+<h O)H—l(pTh_l(p_l) 0 )+A—2<_p7h_;(hp_l) 2>+

and

00 00 0 1
Thus
p1 = —2pq = —2exp(¢p — T, '¢), (45)
p2 = —qps = —2 (apq + Su(p)q — p°¢Sa(q)) = 2exp(¢ — T, '¢)h (46)
1
0y = Dge — qps, 05 = 4p°¢* + 5 (P = 0Pra), (47)
1
ra =—pSal(q), 12 ==p’¢" — apSa.(q) — Sa(pq), (48)

2
Py 1= SR = exp(Ti(6) = 0), 1 = —3h° + exp(Ta() — O)(h + Ta(h)), ...

In applications to differential-difference equations one also need to eliminate x—derivatives

from o}, 05 using equations (17), (18).

3.3. Diagonalisation of adjacent Lax structure

It is easy to justify that the transformation (38), which formally diagonalises the Lax
operator L (Lemma 1) and operators A, also diagonalises the operators B (31) associated
with the adjacent Lax structure. For example,

0B (p-lql 0>+ A2 (p-l(q+aql) 0 )+
L+paq 0 1 L+paq 0 a — pqu

Thus, the coefficients 6%

. 1
Ui:—zl_\/l‘i‘llprya

I+paq
. o+ pqy
62 = T = a(l — /14 4pyq,) + pqy, - ..

in the expansion
@ 'BLQ),, = 6N+ 62N+ 6N 4

22

are fluxes for the local conservation laws of (30)
Dy(ra) = (Sa = 1)da,  Dy(r3) = (Sa—1)53, .

andfor (36)
Dy(p1) = Du(65),  Dylp2) = Du(62), ---
1,2

where 7}, rZ and py, p; are given in (48) and (45),(46) respectively.
Lax operator B! has a pole at A = o and we can diagonalise it around this pole. It is
convenient to introduce a local parameter u = (A — «)~! and diagonalise the coefficient

at the pole by the gauge transformation

Bl =T;'B:Ty =D, — puJy + W, (49)



Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
812 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

where

p-1 —1 1 10 3 —NP-1y iy
T = Ji=—(I+J)= W= , v
0 ( 1 ql)’ 1=5U+J) (0 0)’ Py P-1Giy

Proposition 3. Transformation T-'BT =B brings operator B (49) to a diagonal form
B:Dy—,ujl—Wo—,u_IW1—M_2W2+"', WkZTF”(Wk),
Where

A A

Wo = 7T||(W), Wk = 7TJ_(W)T]€
T=T4p "+ 2Ty + -
and off—-diagonal coefficients T}, can be found recursively

1 ~
T1 = —iadJ(W),

k-1
1 . A .
Tir = zady (T;w — 1 (W) Ty, + Ty (W) + ZTk_Sm(W)TS> :
s=1

We omit the proof since it is very similar to the proof of Lemma 1.

The same transformation £ = (TyT) "' LT, T brings the Lax operator L to a diagonal
form (this diagonalisation is different from the one given in Lemma 1). The coefficients
or = (Wi )22 of the expansion

P-1G1y P19y

0o = — ) 01 = —
’ IT+pan ! (

Tt paa)?
are densities of the conservation laws for the Heisenberg hierarchy (32), principal chiral
field model (35) and system (36).

It can be easily shown that transformation M, = S,(T,T) ' M,TyT brings the
Darboux matrix M, in a diagonal form M,. To apply the transformation to M, we
need to eliminate the y—derivatives from the coefficients T} using equation (30).

There is a direct way to diagonalise the Darboux matrix M,. Matrix M, has two
points on the Riemann sphere, where the leading coefficient (in the local parameter) is
singular. Indeed, at A = co and A\ = « the leading coefficients are

10 PG P
A(OO) and (Q1 1)

respectively. Let us diagonalise the Darboux matrix at A = a without using the result
Proposition 3. Namely, we can find coefficients of a formal series

T=1+p " Ty+p T+ p Ty + - Ty = 71 (T)
such that the coefficients Mk in
Mo =8 (T) ' MT = Mo+ "My + p 2 Mo+ -+, My =m(Myi)  (50)
where

Ma = Sa(To)ilMaTo = MO + ,uflMl,

~ I+p_iqn O ~ 1 D-1Gq2 —Q2
M, = M= .
’ ( 0 0 > T l4pg \ pa 1
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Proposition 4. The coefficients Ty, T), = 7, (T}) such that the coefficients My =
Mo, My =7 (M)Ty are diagonal can be found recursively

T = 1 ( 0 q2 )
Y (T poig)(T+pg) \ P 00)7
k
MoTip1 = Sa(Thp1) Mo + 7y (M) T = Y Sa(To)m L (M) Ty = 0.

s=1

The proof is straightforward. What is important here is that in the recursion we
do not need to solve difference equations since rankMo = 1 and Ker/\;lg@lm/\;lo =
C2. Therefore all entries of T}, and M, are elements of the difference ring [C;p,q, (1 +
p_1q1)%; Sal, i.e difference polynomials of variables p, ¢, (1+p_1q1)~* and their S¥, k € Z
shifts with complex coefficients.

It follows from Proposition 4 that

N - IL+p_iqn O n pot p-1q2 0 . p? 11«)#;»2:112(1 0 4o
a 0 0) " 1T+pe\ 0 1) 1+paqp\ O v

" 14pge

and thus the coefficients 77,

X - P-1G2
0% = —log(l +pga), ri4 = e
( ) (1+pg2)(1 +p-1q1)

in the expansion of (My)as = —log(p) + 104 + 7l + - - are new densities of local
conservation laws for differential difference equations (20), (30) and partial difference
equations (24), (27).

It is obvious that the transformation constructed in Proposition 3 and in Proposition 4
coincide modulo equation (30) and these two approaches are equivalent.

3.4. Summary

In this paper we have presented the concept of Lax-Darboux scheme and illustrated it on
the example of the NLS equation. From the differential-difference algebra point of view
the scheme can be described as follows. The base object is a differential-difference ring

polynomials R = [C;u; D,,, D,,,...;81,Ss,...] of a (vector) variable u = u!,... u™,
its derivatives and shifts DJ!--- DpmSp" .. .SyPu, equipped with a set of commuting
derivations D,,, k = 1,2,... and commuting automorphisms §;, ¢ = 1,2.... To each

D,, we associate a Lax operator of the form L* = D,, — U* where U* is N x N matrix
with entries belonging to R(\), i.e. are rational functions of a spectral parameter A with
coefficients from R. With each automorphism S; we associate a Darboux N x N matrix
M with entries from R(\). Then the system of Lax-Darboux equations we identify with
the differential-difference ideal

T = (L' L], S;(L’) — Adyn:(L7), S;(MI)M" — S;(M))M7) C R

and consider a quotient ring Rz = R_~Z. In this setup a statement that two expressions

are equal modulo equations simply means that these two expressions are equal as elements
of RI.
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We can formally diagonalise (or bring to a block-diagonal form) simultaneously all
matrices U, M7 near singular points in A and generate infinite sequences p, 7, k =
1,2, ... such that in R they satisfy relations

D,,.pl. = Dy, p},
Dy, 1y, = (85 = Dy,
(Si — Dy = (S5 — )y

These relations can be regarded as a sequences of local conservation laws for partial
differential, differential difference and partial difference equations. The Lax-Darboux
scheme can be generalised to the case when the derivations are not commuting, but such
generalisatins are beyond of the scope of this paper.

In the case of the NLS equation the elements of the Lax-Darboux scheme are:

e The Lax structure, i.e. Lax operators L, A* such that the commutativity conditions
[L, A¥] = [A* AP] = 0 are equivalent to a system of integrable partial differential
equations and its symmetries (5).

e Darboux transformations S,, 7, with Darboux matrices M, (14) and N, (15)
respectively. The compatibility conditions S,L = AdpyeL, T, L = Ady,L and
So AR = Adpe A¥, TR A = Ady, A¥ result in Biicklund transformations of the
above integrable system and its symmetries (20), (21). Backlund transformations
also can be regarded as integrable differential-difference equations in their own
right.

e The Bianchi lattices, which follow from the commutativity conditions for pairs of
Darboux transformations result in integrable systems of partial difference equations
(24), (27). The mentioned above differential-difference equations (20), (21) are
symmetries of these systems.

e There is an adjacent Lax structure (corresponding to operators B¥ (31)) sharing
the same Darboux matrix M, and resulting in the differential-difference integrable
system (30). The commutativity condition [BL, B¥] = 0 results in the hierarchy of
the Heisenberg model (32). The commutativity condition [B}, B] = 0 is equivalent
to the principal chiral field model (35), so that the hierarchy of the Heisenberg
equation is a hierarchy of symmetries for (35). Equation [L, B¥] = 0 provide us
with a hierarchy of symmetries for system (36). Integrable differential-difference
systems of equations arising from the conditions S,(B*) = Ady, (B*) (such as
(30) and (33)) are Bécklund transformations for the above listed hierarchies and
symmetries for differential-difference equations (20), (21) and partial difference
equations (24), (27).

We have shown that there is a formal diagonalistaion of the Lax-Darboux scheme,
i.e. a transformation (in the form of a formal series in the spectral parameter) which
diagonalises simultaneously the Lax structure, associated Darboux transformations and
adjacent Lax structures. The diagonalised Lax (and adjacent Lax) operators and logarithms
of the diagonalised Darboux matrices are generating functions of local conservation laws
(both the densities and fluxes) for related partial differential, differential-difference and
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partial difference equations, which are neatly related to each other. Moreover, there
may exist several different diagonalisations, which lead to adjacent hierarchies of local
conservation laws for equations corresponding to the Lax-Darboux scheme.
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B crarbe mbI 06cyKmaeM Kourentuio cxembl Jlakca—/lapOy u mnmocTpupyeM ee Ha XOPOIIO U3BECT-
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