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Information systems (IS) produce numerous traces and logs at runtime. In the context of SOA-based
(service-oriented architecture) IS, these logs contain details about sequences of process and service calls.
Modern application monitoring and error tracking tools provide only rather straightforward log search
and filtering functionality. However, “clever” analysis of the logs is highly useful, since it can provide
valuable insights into the system architecture, interaction of business domains and services. Here we took
runs event logs (trace data) of a big booking system and discovered architectural guidelines violations
and common anti-patterns. We applied mature process mining techniques for discovery and analysis of
these logs. The aims of process mining are to discover, analyze, and improve processes on the basis of IS
behavior recorded as event logs. In several specific examples, we show successful applications of process
mining to system runtime analysis and motivate further research in this area.
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Introduction

Processes are all around us. Processes accompany data and are accompanied by data. As
processes becomes more complex, the information systems accompanying them become
more complex too. Thus, the complexity of modern software systems containing millions
of lines of code and thousands dependencies among components is extremely high.
Supporting such systems requires involving new techniques and tools responding to the
challenge of scale and complexity of modern information systems.

Almost all modern software systems trace data at runtime. Information about failures
and exceptions is always traced, but also particular data about system execution, system
state, called services and so on. In most cases, traces are the only possibility to understand
the behavior of a productive system, which usually runs in a separate production environ-
ment and can not be debugged.

Process mining is a discipline, basic research and practical purpose of which is to
extract process models from data of a special type, that is event logs [1]. The traditional
areas of the process mining application include business processes (management), social
processes, such as medicine or management of municipalities, technological processes.
The Process Mining Manifesto released by the IEEE Task Force on Process Mining [2]
in 2011 is supported by more than 50 organizations, more than 70 experts contributed
to it. One particularly interesting research area is Software Process Mining (SPM), that
deals with extracting models of processes related to design, development, debugging
and support of software from event logs containing data that software systems trace at
runtime [3, 4, 5].

Speaking of ISs, one can distinguish a separate class of component-based information
systems, the main feature of which is the structure in which the expansion of functionality
of the IS is achieved by adding special components. One of the most growing and rather
young approaches to component design is Service-oriented architecture (SOA) [6]. For
such systems, logged data can represent traces of interconnection of their components
such as processes and seruvices.
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Fig 1. “Domains-Processes-Services” architecture scheme
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A large European touristic Computer Reservation System (CRS) will be considered
as an example of process-driven system based on SOA architecture. A CRS system we
are studying is a distributed SOA-based software containing different client (thin and
rich clients) and server components. The system contains processes as a basic task of
the underlying business logic. Each instance of these processes can be considered as a
start point for yet another use case studied with using process mining technics. Processes
orchestate services. There are a lot of services that can be considered as basic working
elements of the system.

There are several business domains. Each of them consists of processes and technical
services. Each process and service belongs to only one business domain according to their
business purposes. For example, there are “booking” and “accounting” business domains.
The processes are combined into process groups (PG) and the services are grouped into
technical domains (TD)! (Fig. 1). Coming back to the earlier example, there are PG
and TD named “booking”. Technically all the processes and services are implemented as
Java interfaces (correspond to InterfaceName) organized as Java-packages (correspond
to PackageName). Each process and service send and receive messages (correspond to
OperationName), and each specific message is logged as an individual trace to a log.

We have a set of logs tracing interconnections of those processes and services and
containing a lot of different aspects of data. By examining certain wviews of the data
we can look at the system from different perspectives. Each specific view can represent
some aspect of the system. We distinguish such aspects as Control Flow Aspect, Data
Perspective (also can be treated as Informational Aspect), Organizational Aspect and
Infrastructural context. Here we are primarily focusing on the control low aspect, hovewer
at subsequent steps the data aspect is also considered.

Architecture teams normally define a set of rules about how individual processes
can invoke other (sub)processes and services from different domains. As an example
there are a lot of restrictions about invoking services or processes from other services.
These rules and restrictions are also known as Architectural Guidelines or Architectural
Conventions. Such rules can be complicated enough in order to be simply tested at
compile-time, or during the module testing or at runtime. This paper deals with detecting
some architectural violations in the model discovered from the event logs derived from
a running system.

In the area of software engineering there are a set of well-known architectural princip-
les, such as loose coupling, separation of concerns, etc. Our goal here is not only to detect
the violations of architectural conventions of the company, but also of the violations of
these common architectural principles. We consider the ability to make some kinds of
models of a given software system by using process mining approaches.

The rest of this paper is organized as follows. Section 1 presents data logs and
tools used for logs analysis. It also contains three examples of violations of architectural
conventions and principles detected by using process mining techniques. Section 2 discus-
ses some related work and section 3 summarizes the work done and discusses future work.

'We especially refer to them as technical domains in order not to mix them with the business domains.



Shershakov S. A.,; Rubin V. A.
System Runs Analysis with Process Mining 821

1. Experience report

1.1. Log and Tools

An event log is the starting point for almost any process mining research.

The subsystems of the CRM system maintains an ability for tracing of all the
necessary processes and services communication. The initial invocation of any process,
e.g. made by a rich-client application, is accompanied by allocation of a special invocation
id (also reffered to as InvID).

Both processes (PR) and services (SV') receive a request message (R(@) as input and
a return response message (RS) or an exception (SE) as output. These messages are
logged. On the log level the traces are written in an XML format. A sample of such XML
log is presented in the Listing 1. Each trace is included into a tracingevent element
containing several sections that describe the trace and contain additional data that could
be used for deeper analysis. For the first step we are interested in the following data:
an invocation id, a message recipient (given by its full-qualified name including business
domain (we also refer to it as UnitName), package name, interface name, and operation
name).

Then, we also consider two very important fields. An event timestamp is first. Describ-
ing the second one we have to mention that a trace event contains a payload, given in
the form used by processes and services to exchange data between each other. Payloads
are presented in the form of an XML-based piece of data and can be used to analyze a
model made with this log from a data perspective. During this work we are considering
only two attributes of the payload: size of its data and its hash sum to identify whether
the payload is changed from call to call.

Listing 1. Event trace for resolveLocationByAlias service call

<tracingevent>

<InvocationIdentifier>
<id>639041439044799821</id>

<time>Fri Dec 20 00:11:48 CET 2013</time>

</InvocationIdentifier>
<TransactionContext>

</TransactionContext>

<log4j:event logger="tracer.de.der.pu.domains.geo.
location.LocationQuery.resolvelLocationsByAlias"
timestamp="1387494715759" level="INFO"
thread="WorkerThread#8[10.10.10.42:57387] ">
<log4j:message><! [CDATA[Request]]></logdj:message>
</log4j:event>

<jboss>

</jboss>
<payload>
<! [CDATA[
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<ServiceRequest>

</ServiceRequest>
11>

</payload>
</tracingevent>

In this paper we are considering a log produced by the system during a period of 24
hours. The size of all XML files of the log is approximately 10 GB.

1.1.1. Log traces “normalization” with an RDBMS approach

The event log has a complex structure and contains heterogenous data covering different
aspects, such as control flow, organizational aspect (including user information, authenti-
cation and authorisation info), infrastructural context and other resources. It is necessary
to represent them in a formalized form.

We decided to use RDBMS as a log representation because it provides the possibility
to make various data views for different types of analysis depending on each specific
aspect containing in our log. Also, it is an instrument for effective manipulation of big
amounts of log data.

Creating a view on data involves two operations. First, projection of a data set (that
could be a regular table as well as a joint of a number of tables) performs selecting only
a particular subset of all attributes (table columns) that correspond to specific aspects.
Second, filtering of the dataset provides only those records (table rows) which match
some selection criteria.

Converting a text-based logs into a well-defined RDBMS allows us to obtain a
desirable data projection on a specific aspect in a very natural way just by pointing
all the necessary atributes out. At the same time it is very simple to obtain a filtered
subset of events by specifying arbitrary filtering criteria [1, 261]), with subsequent export
as frequently as it is necessary. Using indexes prepared in a proper way allows performing
such operations quickly enough even on a very big amount of data. Similar approach was
effectively used in other case studies [7].

We decided to use SQLite database engine to store and manipulate the data. A part
of a relation diagram for the log database is depicted on Fig. 2. Here, we distinguish two
main parts of physical storage. One part consists of declarations of interfaces including
PR/SV type, business domain unit name, package name, and interface name. The part
is represented as a table with Interfaces name. All other data corresponding to the
log’s trace events are represented by TracingEvent table. For our cases we used joint
records with Interfaces.ID and TracingEvents.Interface_ID fields as keys. We refer
to those as FullData3 view below.

An example of records corresponding to the trace described by Listing 1 is given on
Fig. 3.

We developed a tool performing parsing of XML source files and adding parsed data
to a database. For the given 10 GB log (discussed in sect. 1.1), it takes at least an hour
to convert all the XML data to the DB format using a laptop with an Intel®) i3 @ 2,4
GHz comparable processor on the board?.
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Interfaces FullData
PK [ID IfsID
IntType
IntType UnitName
UnitName PackName
PackName InterfaceName
InterfaceName EventID
EventSegNum
* T OperationName
InviD
TracingEvents EventType
EventTimestamp
PK (1D PayloadSize
PayloadHash
FK2 | Interface_ID

OperationName
InvIiD
InvNodeName
InvIP
TransContext_ID
AppServerContext_ID
ActionType
EventTimestamp
PayloadSize
PayloadHash
EventSegNum

Fig 2. A relation diagram of a log DB

RecNo | ID PDType | UnitName | PackName | InterfaceName

1 110 | SV geo location LocationQuery
Interfa- | Operation Event Payload Event
RecNo | ID P InvID EventType . Y Seq
ce ID Name Timestamp Size
— Num
resolve
1 170097 | 110 Locations 639041439 RQ 1387494715759 | 393 11
. 044799000
ByAlias

Fig 3. DB records for a trace from Listing 1 (table Interfaces at top and table
TracingEvents at bottom)

“Normalizing” the log by converting it to the DB allows making a rather compact
representation of source data. Thus, for the 10 GB containing approximately 500000
traces there is just 60 MB of data given in SQLite DB ver.3 format. Moreover, reexporting
a full set of (merged) data from the DB to an external CSV-text file takes just a couple
of seconds.

As shown further, using SQL queries for extraction of a precisely needed data projecti-
on is significantly efficient. Thus, the SQL-based approach is one of the basic tools used
in this work.

2Among the factors significantly affecting the converting speed, one can distinguish a hashing
algorithm.
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Fig 4. Fuzzy diagram representing relations between processes, AP (100, 100)

1.1.2. Process mining specific tools

Today, there is a set of freeware and commercial process mining tools. Examples of these
tools include ProM |8], which is a widely used research workbench containing more then
600 plugins. Disco is another well known process mining tool [9].Disco is based on Fuzzy
miner which was initially implemeted in ProM [10].

In [11] we show an RDBMS-based approach to automation process mining experiments
with rapid creation of datasets using VI'Mine Framework, which is our own tool for
modeling and conducting process mining experiments. DPModel [12, 13], a graphical
language for automation of experiments in Process Mining, underlies the tool.

We decided to mine a process model of our system as a fuzzy model that can be
discovered with Disco. It has a good usability and good performance in processing large
event logs. Moreover, it can perform advanced filtering on the basis of Fuzzy miner.

In the further sections, with the help of process mining techniques we analyze the
logs in order to find software architectural violations and inconsistencies.

1.2. Example 1: Architectural Violations

In Introduction we have already discussed Architectural Conventions and Architectural
Violations. Invoking some processes from other processes can be an example of such
violation. In our CRS the only processes from “content” PG (and, respectively, business
domain) can be invoked from other processes. Calling any other processes from different
domains are not allowed. In this section we investigate the presence of exactly this
violation.

We can detect such forbidden calls from different domains by investigating a fuzzy
diagram.

The very important assumption we have to make is that there are no asynchronous
messages calls between processes and services in the scope of the set of events related to
one specific case.

1.2.1. Model in Disco

Now we are looking at Control Flow Aspect for discovering forbidden services calls. In
order to discover process calls violations we build a Disco model depicting PG/Domain
relationships.
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Although all event attributes can be used for process mining, we focus on the two
attributes that are mandatory for process mining. Any event should refer to a case (i.e.,
a process instance) and an activity. Moreover, events related to a particular case should
be ordered. Thus, for performing data import to Disco from a RDBMS one need to point
out which attributes are used for indicating case, activity and timestamp (for ordering
reasons). Other attributes are indicated for Disco as resources that can be used for
filtering.

In this work, we are using invocation identifier given as InvID attribute as a case
ID and EventTimestamp attribute as a timestamp. Choosing attributes that play a role
of activity ID is closely related to the studying case. For this case, we use a pair of
attributes IntType (which can be either PR or SV for processes/PG and services/domains
respectively) + UnitName (representing the name of PG or domain and corresponding
to business domain) as an activity ID.

There are two parameters of Disco’s Fuzzy Miner: (1) number of activities, and (2)
number of paths shown on a fuzzy map. They are used to make a quick filtration by
the criteria of frequency of activities and paths being met while making the map. We
refer to both of these parameters as a pair, e.g. AP(100,100), where the numbers in the
brackets are the percentage of activities and paths, respectively.

There is a fuzzy map with AP(100,100) produced by Disco depicted on Fig. 4.
This map is a graph that demonstrates the relations between both PGs and domains
transparently given through the messages sent by their interfaces. The map was built
from a filtered dataset in order to restrict the model to view only processes. For this
very purpose we can apply Disco attribute filter selecting only the activities containing
PR\\ we would like to observe.

The map contains only 10 vertices and a number of arcs which is not so big so
we are able to track individual relations between each pair of processes. Vertices color
coding shows us how many messages are sent to individual vertices. Thus, PR\\content
is represented as a dark blue vertex showing us that it has many more incoming messages
(57758) than the others. This is because process content plays a special role in the whole
system (as it was mentioned above). In other words, it contains common “routines”.

At the same time we can remark the presence of pairs of income/outcome edges
between other PGs as well as those which contain only few traces. The direct communica-
tion of the PGs with each other represent examples of violations of the architectural
conventions.

To investigate this violation more precisely we will first make a more detailed filtration
by using Disco. As a concrete example one can consider inappropriate direct relations
between two PGs — bocamo and search. We use the so-called Follower Filter that lets
us define a couple of activities with a restriction of how they should follow one another.
Thus we set a filter a way that search activity follows bocamo activity (Fig. 5).

We can see that there are 54 messages from bocamo to search. Here, we understand
a message as a pair of events, first of which corresponds to PR\\bocamo activity and is
directly followed by second one corresponding to PR\\search activity. Such pairs are
found in a number of cases, and some of the cases contain such pairs several times.
Depending on event activities and their order in the cases the latter are grouped into
so-called variants.

By using Disco case statistics we can see there are 10 different variants of traces
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PR\\bocamo
108

PR\content

1080

968
| .

Fig 5. Correlation between activities search, bocamo, and content

including from 1 to 40 cases per variant. For example, variant 2 contains 5 cases, from
which we have detected one (with invocation id 190248972438317148) when bocamo
process quoteItemFromSearch calls search process getPricesForRouting and it is forbid-
den. See a sequence diagram in Fig. 7.

PG

Operation

Type

bocamo
search
content
content
content
content
search
content
content
content
content
content
content
content
content
bocamo

quoteltemFromSearch
getPricesForRouting
priceAvailability
priceAvailability
calculateFees

calculateFees
getPricesForRouting
determineBest Product
determineBest Product
checkBookingUnitRestriction
checkBookingUnitRestriction
getExternalReferences
getExternalReferences
performQuote

performQuote
quoteltemFromSearch

RQ
RQ
RQ
RS
RQ
RS
RS
RQ
RS
RQ
RS
RQ
RS
RQ
SE
SE

Fig 6. Subset of events of case 190248972438317148 related to PGs bocamo, search and

content
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bocamo search content

[
|
|

quoteltemFromSearch/RQ:

—

getPricesForRouting/RQ

[
|
|
|
|
|
|
|
|
|

priceAvailability/RQ :

priceAvailability/RS

freeCalculation/RQ

freeCalculation/RS

getPricesForRouting/RS

Skipping several messages |
performQuote/RQ I

performQuote/RSExc u

K= |
quoteltemFromSearch/RSExc : :
L | |
| |
| |

Fig 7. UML diagram corresponding to case 190248972438317148

On Fig. 7, a manually created UML sequence diagram based on the data of the 16-
event subset above is depicted. It can be used as a convenient tool for reporting detected
violations to developers.

1.2.2. Generalization in SQL

In order to obtain a collection of all the similar violations we created a set of SQL queries.
These queries are based on the idea of a square Cartesian product of the set of all the
traces. As a result of such product and futher filtering by the same case ID for both
parts of the product, we obtained a collection of so-called N-step relations between all
the events. Each N-metric is calculated as a difference between relative time positions
of each events in one given case. Among the pairs from this relation there are some
pairs that contain 1-step relations. Every such relation corresponds to a couple of events
among which the first event is directly followed by the second one. Finally, we have to
filter the resulting dataset by setting desirable restrictions, such as:

1. both parts of a pair contain different PGs;

2. no part of a pair contains content PG;
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3. both parts of a pair contain R() messages, so we are interested only in “request —
request” processes with different PGs that is actually forbidden;

As a result of excecuting the SQL query we obtain a set of 2031 traces that produce
system architectural violations. The set is mapped to a set of cases containing these
events. By constructing one more query grouping cases by InvID attribute, we obtain
a set of cases containing at least one violation. So, we have found exactly 1789 cases
that violate discussed architectural violations. The maximum number of forbidden 1-
step relations per case is 3 (for 34 cases). Typical number is just 1 per a case (1581
cases).

1.2.3. Benefits

We have found the violation and reported an appropriate bug to the developers with
a view to creating a ticket in a bug-tracking system. Using a notion of UML sequence
diagrams may help showing to developers an explicit fragment of the system where the
violations are detected.

1.3. Example 2: Antipattern “Unnecessary repeating calls”

Let us now look for more oddities by applying the same techniques.

Thus, we set OperatinName in conjuction with IfsID and EventType attributes as
activity. Looking at the statistics panel in Disco one can conclude that among the
most often used activities there is getAgency activity in agcumg domain: there are
7642 RQs and RSs instances. Let us consider it more precisely. Applying an attribute
filter for this activity name and marking it as “mandatory” we obtain a fuzzy map
which, depending on AP() value, contains a small or large number of activities, but
under the condition that all these activities are related to getAgency. Thus, there is
a number of cases containing getAgency as a repetitive activity. Among the latter,
getInvoiceListByReservationNumber in accust PG can be identified.

Such cases are characterized by the fact that they have repetitive messages getInvoice
ListByReservationNumber <> getAgency with the same payload (given by its size and
hash sum), that can lead to the fact of presence of multiple excessive process invocations.
This can signify to us a bad implementation example where payload data must be
cached or stored instead of their repititive obtaining.

Let us consider a technique for detecting such patterns. The first step is creating of an
auxilary view ActivitiesCountPerCases1 that for each case contains a set of activities
(identified separately for RQ/RS) with a number of their repetitions:

CREATE VIEW [ActivitiesCountPerCasesi] AS
SELECT *, COUNT(*) AS ActsNum

FROM FullData3

GROUP BY InvID, IfsID, OperationName, EventType;

Then we can fix a certain threshold number of activities’ repetitions and select only
the instances of repetitive activities (make another auxilary view Activities3PerCase):

CREATE VIEW [Activities3PerCase] AS
SELECT InvID, IfsID, OperationName
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FROM ActivitiesCountPerCasesi
WHERE ActsNum >= 3;

Next step: retrieving full attributed data for all the activities satisfying the condition
above (another view EventsBy3ActivitiesPerCasel):

CREATE VIEW [EventsBy3ActivitiesPerCasel] AS

SELECT

FROM Activities3PerCase AS L INNER JOIN FullData3 AS R
ON (L.InvID = R.InvID AND L.IfsID = R.IfsID AND
L.OperationName = R.OperationName)

GROUP BY ID;

Finally, we form a resulting set according to identical values of PayloadSize and
PayloadCache:

SELECT *, COUNT(*) AS NumOfRepeatedPayload

FROM EventsBy3ActivitiesPerCasel

GROUP BY InvID, IfsID, OperationName, EventType,
PayloadSize, PayloadCache

By filtering NumOfRepeatedPayload attribute by number of maximum allowable
repetitions we obtain all the events (and consequently cases) with excessive payload
transmitting.

1.4. Example 3: Antipattern “Cross-cutting concern”

According to the statistics, getConfiguration in smerge domain is the most often
invoked service (aprx. 12 % of all traces). Let us observe how smerge domain (both as
business and techical means) is related to other PGs.

First, we set a pair of attributes IntType and UnitName as activity. In order to
eliminate irrelevant cases we add some filters: (1) selecting only RQ traces, (2) selecting
only processes from all domains and services in smerge domain, (3) marking getConfigu-
ration operation name as mandatory. The resulting fuzzy map is depicted on Fig. 8.

As we can conclude, smerge domain is actively “invoked” by 7 other PGs. Precisely,
operation getConfiguration is invoked by the processes contained in these PGs. So,
this operation can be considered as a so-called “Cross-cutting concern” and must belong
to a dedicated domain (but not to smerge domain) or should be moved to context
domain.

2. Releated work

There are various works on software execution traces and runtime analysis. In [14], two
runtime analysis algorithms, a data race detection algorithm and a deadlock detection
algorithm, are introduced to analyze Java programs. The concerned approach is based on
the idea of single program execution and observing the generated run to extract various
kinds of information. In contrast with this approach, process mining works with a set of
traces, but not with only one trace, despite using algorithms.
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Fig 8. Fuzzy diagram representing relations between PG and a smerge domain,
AP(100, 100)

An approach to recover interaction patterns between different entities such as methods,
files, or modules, based on analysis and comparision of execution traces of different
versions of a software system, is proposed in [15|. One of the goals is to track the evolution
of particular modules and to visualize the findings. Like in our paper, the authors use a
standard database technology for maintaining analyzed data.

Both of the approaches above and a number of other “classical” approaches to runtime
analysis is based on an idea of code instrumenting [16]. Process mining does not require
any specific code instrumenting and utilize any traces that software can produce during
its execution.

A trace summarization technique for manipulating traces, based on metrics for measur-
ing various properties of an execution trace, was introduced in [17]. It is proposed to use
trace summaries to enable top-down analysis of traces as well as recovery of system
behavioural models. There was proposed a trace summarization algorithm that is based
on successive filtering of implementation details from traces.

An idea to apply process mining to services, so-called service mining, was proposed
in [18, 19|. Finally, based on the process mining discipline, a comprehensive approach
to diagnostic information in compliance checking was proposed in [20]. We suppose that
using a similar approach for Petri net models of the processes discussed in our paper can
introduce some new ideas for achieving the objectives of SRA.

One of the most novel approaches to reverse engineering for obtaining real-life event
logs from distributed systems is presented in [21]. The approach allows to analyze
operational processes of software systems under real-life conditions and use process
mining techniques to obtain precise and formal models.
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3. Future work and conclusion

The results obtained during the first practical experiments show us several ways for
future work.

First, taking into account specificity of the subject domain, which is software architect-
ure and engineering, introduction of convenient and accustomed tools particularly for
model representation is desirable. As an example, the UML sequence diagrams miner
mentioned in sec. 1.2.1 can be considered, possibly based on ProM or any other tool.
Now we have to construct a UML sequence diagram manually, and it would be a good
challenge to provide ability for constructing such diagrams automatically, e.g. by a special
ProM plug-in.

Then, it is rather desirable to obtain other kinds of models to provide more comprehen-
sive analysis by using different mining algorithms. Nevertheless, it is still a problem to
process large logs with a full range of academic tool basically implemented as ProM
plug-ins. Also, we suppose that it is possible to use these models to detect/recognize
other architectural patterns that can be used for improving systems in some ways. In
order to do this one needs to consider also other methods for pattern recognition in a
model like the one proposed in compliance checking research [20].

In this paper only few violations of architectural principles and patterns are concerned.
One of our goals is to create a catalog of architectural patterns/architectural violations
related to different kinds of systems.

Finally, there is also Software Performance Analysis which is a separate big problem
we would like to investigate with the help of process mining techiques.
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AHaJm3 cucTeMHBIX MCIIOJIHEHUU ¢ momoInbio Process Mining

lepmaxos C. AL, Py6un B. A.
noayvwena 15 dexabpsa 2015

Nudopmanmonnsie cucrembl (VIC) 0CTABISIOT MHOTOYHMCIIEHHBIE CIIEbl U YKyDPHAJBI COOBITHH CBO-
eit paborbl. B KoHTEKCTE CcepBUCHO-OpueHTHpoBaHHOH apxuTeKTypbl (COA) nHbDOPMAIMOHHON cuCTeMBI
TaKue YKYPHAJbI COJAEPXKAT JIETAJIHHYI0 WH(POPMAIMIO O ITOC/IEI0BATETLHOCTSX BBI30BOB IIPOIECCOB U
cepBucoB. COBpeMeHHbIE MHCTPYMEHTHI MOHUTOPUHTA IIPUJIOXKEHUN W OTCIEKUBAHUS OIMTHOOK WX WC-
[IOJTHEHUS MPEIOCTABIIAIOT JOBOJBHO [IPOCTHIE CPEJCTBA IIOMCKA U (DUIIBTPAIUN KYyPHAJIOB COOBITUI.
Tem He Mmenee, “MHTE/JIEKTYAJbHBIN aHAIN3 TaAKUX KYPHAJIOB COOBITHUIl SIBJISIETCA KpailHe MOJIE3HBIM,
TaK KaK MOXKET IIPEJOCTABUTH IEHHYIO MHMOPMAIUI 00 apXUTEKTYPe CUCTEMbBI, B3aUMOIEHCTBIUN MeXK-
nly 6u3Hec-JOMeHaMK U cepBUCaMu. B pabore paccMaTpUBalOTCs YKyPHAJIBI COOBITHIA (IIPEICTABIISIONINE
JAHHBIE O CUCTEMHBIX HCIIOJHEHUAX) GOIBINON HH(MOPMANMOHHON CHCTEMbI TOAJEPKKH OPOHUPOBAHMSI,
Ha OCHOBAHUU JIAHHBIX KOTOPBIX IIPOU3BOAUTCHA OOHADPYKEHUE HAPYIIEHUN apXUTEKTYPHBIX PUHIIAIIOB
B3aMMOJIEHCTBUsT KOMIIOHEHTOB U obmux antunarrepuoB COA. [l anam3a 3TUX KYPHAJIOB TPUMEHSI-
FOTCSI TPOBEPEHHBIE TTOXO/IbI JAUCIIUIIIIVHBI N3BJI€UEHNsT U aHAJIN3a [IPOoIeccoB (process mining). Process
mining NpUMEHsIeTCsI JIjIsi AaBTOMATHYECKOTO CHHTE3a MOJeJiell IPOIeCCOB, aHAJMU3a STUX IIPOIECCOB U
WX yJIydileHusi Ha ocHOBe mHdopmaruu o nosefgennn VC, 3anucanuoit B Bue XKypHasoB cobbrrmit. Ha
6a3e HEeCKOJbKNX KOHKDETHBIX IIPUMEPOB JIEMOHCTPUPYETCs YCIEITHOEe IMPUMEHEHUs OIXO/I0B Process
mining /s aHaJIM3a CUCTEMHBIX MCIIOJHEHUI 1 TPUBOAUTCA ODOCHOBAHNE HEOOXOMUMOCTA JAJTHHEHTIINX
HCCJIEJOBAHUM B JIAHHON 00JIACTH.

Crarbst myOJIMKYyeTCsi B aBTOPCKON PeJIaKIun.

KiroueBble cjioBa: u3BJ€UEHHE U aHAJM3 IIPOIECCOB, TPOrPAMMHbBIE TIPOIECChI, AHAJIN3 CUCTEMHBIX
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