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NP-complete problems: maximum cut, Boolean quadratic programming, quadratic linear ordering,
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knapsack problem, 3-satisfiability, cubic subgraph, partial ordering. In particular, Boolean quadratic
polytopes appear as faces of polytopes in every mentioned families.
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Introduction

In 1954, Dantzig, Fulkerson, and Johnson [8] solved a 49-city traveling salesman problem
via considering a polytope of this problem. This idea turned out quite fruitful. Since
then, there were published hundreds of papers about properties of various combinatorial
polytopes. In particular, a lot of attention was paid to properties of graphs (1-skeletons)
of polytopes (such as criterion of adjacency, diameter, clique number) and complexities
of extended formulations.

In this paper we compare combinatorial characteristics of complexity for several fam-
ilies of such polytopes. It is natural to consider the following method for comparing
of polytopes. If a polytope p is affinely equivalent to a (not necessary proper) face of
a polytope ¢, then p can not be more complicated than ¢ in any reasonable sense. Below
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this fact is denoted by p <4 ¢. If we can compare two polytopes in this sense, then we
can compare their characteristics of complexity. For example, if p <4 ¢ then the graph
of p is a subgraph of ¢, moreover, the face lattice of p is embedded into the face lattice
of q.

We note that in recent times the most widespread is a little bit different method
for comparing polytopes. This is related with the notion of an extended formulation of
a polytope (see for example [7] and [17]). A polytope ¢ is called an extension (or an
extended formulation) of a polytope p if there exists an affine map 7 with 7(¢) = p. The
extension complexity of a polytope p is the size (i.e. number of facets) of its smallest
extension. We will denote by p <p ¢ the fact that a (not necessary proper) face of
a polytope ¢ is an extension of p. It is clear, that

P<aq=>p=<gq.

For example, it is well known that if p is a convex polytope with n vertices and A,,
is a simplex with n vertices, then

p <g A, (1)
As a rule, the number of vertices of a combinatorial polytope p is exponential in the
dimension dimp. Hence, A, in (1) has exponential dimension and the comparison (1)
becomes useless in practical sense. So, it is natural to restrict the dimension of ¢ in
p <g q by some polynomial of dim p. More precisely, let P and () are sets of polytopes,
we will write P oxg @ if there exists k£ € N such that for every polytope p € P there
is ¢ € Q with p <g ¢ and dimg = O ((dimp)k). For example, Yannakakis [32] showed
that the matching polytopes and the vertex packing polytopes are not more complicated
(in the sense of oxp) than the traveling salesman polytopes. In [20] it was shown that
polytopes of any linear combinatorial optimization problem! (among them are cut poly-
topes, 0-1 knapsack polytopes, 3-satisfiability polytopes and many other combinatorial
polytopes) are not more complicated than the traveling salesman polytopes. One year
later in [22] it was shown that polytopes of any linear combinatorial optimization prob-
lem are not more complicated than the cut polytopes and the 0-1 knapsack polytopes.
In general, it seems that this statement is true for the family of polytopes of any known
NP-hard problem. (The results of this paper are another confirmation.) That is, fami-
lies of polytopes of NP-hard problems are not distinguishable while comparing by <g.
On the one hand, this is convenient for obtaining the results of a general nature. For
example, since the extension complexity of cut polytopes is superpolynomial [13], then
the same is true for (almost) all other families of combinatorial polytopes. On the other
hand, it is well known that these families are significantly different from each other. For
example, any two vertices of the cut polytope constitute an edge (1-face) of this polytope
(i.e. the graph of this polytope is complete) [27]. Whereas the checking of nonadjacency
of vertices of traveling salesman polytopes is NP-complete [28]. So, it is useful to have
a more sensitive method of comparing, like the mentioned above <j,.
With replacing <g by <4 in the definition of oz we will get the definition of affine
reduction 4. Below we will consider only 0/1-polytopes®. So, we would like to start

'We are talking about the problem of the following form. Assume that in a given set E, each element
e € E has some weight c(e) € R, and f : 2F — {0, 1} is a polynomially (with respect to |E|) computable
rule. Let S = {s C E'| f(s) = 1} be the set of all feasible solutions of the problem. We seek for a subset
s € S with the maximal (minimal) summary weight of elements.
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with the following example. It has been shown by Billera and Sarangarajan [3] that every
0/1-polytope p C R? with k vertices is affinely equivalent to a face of the asymmetric
traveling salesman polytope:

p <4 ATSP, forn > (4(2* — k) +1)d.

Note, that n is exponential in d. Hence, this does note imply the affine reduction of
0/1-polytopes to asymmetric traveling salesman polytopes. Moreover, the family of 0/1-
polytopes can not be affinely reduced to the family {ATSP,} for the following reason
(see [3, p. 12]). There are at least 922" combinatorially non-equivalent d-dimensional
0/1-polytopes for d > 6 [34, Proposition 8]. On the other hand, if f is the total number
of faces of ATSP,,, then

F<n(n)™ < e = gt lomn,

Therefore, if every d-dimensional 0/1-polytope is a face of ATSP,,, then n is superpoly-
nomial in d.

In [21, 24] it was shown that so-called double covering polytopes are affinely reduced
to knapsack polytopes, set covering polytopes, cubic subgraph polytopes, 3-SAT poly-
topes, partial order polytopes, and traveling salesman polytopes. The linear optimization
on double covering polytopes is NP-hard and the problem of checking nonadjacency on
these polytopes is NP-complete [25]. Consequently, the same is true for the mentioned
families.

In this paper we show, that (in the sense of relation oc4) Boolean quadratic polytopes
(and cut polytopes), quadratic linear ordering polytopes, and quadratic assignment poly-
topes lie in one equivalence class. Set partition polytopes, set packing polytopes, stable
set polytopes, and 3-assignment polytopes lie in another (more complicated) equivalence
class and they are simpler (w.r.t. oc4) than double covering polytopes. Thus, the family
of Boolean quadratic polytopes is more pure example of a family of polytopes associated
with NP-hard problems. They do not have extra details like NP-completness of adja-
cency relation and the like. Naturally, the following question arises. Whether this family
is “the purest” one? More precisely, is there some family of polytopes P associated with
NP-hard problem such that P o, BQP, but BQP ¢4 P? The answer to this question
was provided in [23]. One can construct infinitely many families of Boolean p-power
polytopes (Boolean quadratic polytopes is called Boolean 2-power polytopes) such that
each (p + 1)-family is more pure than p-family for p € N, p > 2.

The rest of the paper is organized as follows. Section 1 provides a definition of affine
reducibility and its properties. As an example we show that Boolean quadratic polytopes
(BQP) are affinely reduced to stable set polytopes (SSP), but SSP can not be affinely
reduced to BQP. In section 2 it is shown that SSP are equivalent (in the sense of affine
reduction) to set packing polytopes and set partition polytopes. In section 3 we consider
double covering polytopes (DCP) and prove that SSP oy DCP, but DCP 4 SSP. In
section 4 it is shown that SSP are equivalent to 3-assignment polytopes. In section 5
we consider quadratic linear ordering polytopes and quadratic assignment polytopes and
show that they are equivalent to BQP.

20/1-polytope is the convex hull of a subset of the vertices of the cube [0, 1]%.
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1. Affine reducibility
and Boolean quadratic polytopes

Let’s consider the following partial order on the set of all convex polytopes.

Definition 1. The fact that a polytope p is affinely equivalent to a polytope ¢ or to
a face of ¢ will be denoted by p <4 q. If p is affinely equivalent to g itself, we will use
designation p =4 q.

This relation is useful for estimation of combinatorial characteristics of polytopes.
For example, if p <4 ¢ then the number of i-faces of p is not greater than the number of
i-faces of ¢ for 0 < i < dimp. It is clear also that the number of facets of p is not greater
than the number of facets of ¢. Furthermore, the graph (1-skeleton) of p is a subgraph
of the graph of ¢. Hence we can compare clique numbers of these graphs and the like. In
the case p <4 ¢ we can also compare the extension complexities of these polytopes [13].
The same is true for the rectangle covering bound [13].

On the other hand, this relation is useless, for example, for estimating diameters of
graphs of polytopes. But the diameter of graph can hardly be seen as a characteristic
of complexity. It is not greater than 2 for TSP polytopes [26] and it is equal to 1 for
Boolean quadratic polytopes [27]. This does not correspond to the real complexity of
these problems.

It turns out that this relation allows to form up the currently known families of
combinatorial polytopes in hierarchical order. At the very bottom of this hierarchy
there are Boolean quadratic polytopes and cut polytopes.

Boolean quadratic polytope is the convex hull of the set

BQP, = {l‘ = (2yy) € {0,1}"5 |2y = vy, 1< <G < n} ' @

It should be noted that the notation BQP,, is commonly used for the convex hull, but
for the sake of brevity we do not make distinctions between polytopes themselves and
the sets of its vertices. The same remark applies to all other polytopes discussed below.

This polytope is also known as a correlation polytope [10]. Moreover, BQP,, is directly
related by so-called covariant mapping with cut polytope, usually denoted by CUT,, [9].
Using the notation of definition 1 this relationship may be written as

BQPn —A CUTn+1-
Let us note that BQP,, is a face of BQP,,,; defined by x4 41 = 0.
Property 2. BQP, <, BQP,.,, n € N.

Note also that such relations are normal for families of combinatorial polytopes.

In order to illustrate the basic ideas of this paper, we consider another family of
polytopes, which is closely related with BQP,,.

Throughout the paper, we assume that

k] = {1,2,....k}, keN.
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Let G = (V, E) is undirected graph with the set of vertices V' = {vy,vq,..., v} and
the set of edges E. To each vertex v;, i € [k], we associate the component y; of the vector
y=(y1,...,yx) € R*. The stable set polytope of a graph G is the convex hull of the set

SSPy = {y € {0, 1}" | yi +y; < 1 for every edge {vi,v;} € B}, )

This polytope also known as a wvertex packing polytope. Furthermore, by affine mapping
zi =1 —y,;, 1 € [k], it is related to the vertez covering polytope of a graph G:

VCP;, = {2 € {0,1}* | 2 + 2 > 1 for {v;,v;} € E}.

I.e., SSPk =A VCPk

Let us note that BQP,, is uniquely determined for a fixed n, whereas the notation
SSP;. hides a set of k-dimensional polytopes. For example, if a graph G has no edges,
then SSPy is a cube. If G is a complete graph, then SSP, is a simplex. Hereinafter
the SSP, will be associated with “the most complicated” polytope in this set. More
precisely, for a polytope p and for fixed k inequality

p <a SSPy,

means that there exists ¢ € SSP;, such that p <, ¢.
Generalizing this agreement, we obtain

Definition 3. Let P and @ are sets of polytopes. Then the record
P<aQ
indicates that for every p € P there exists ¢ € () such that p <, q.
This agreement allows us to deduce an analogue of the property 2 for SSPy.
Property 4. SSP; <4 SSPj.;.
Furthermore, using this notation BQP,, and SSPj can be compared.
Theorem 5. BQP, <4 SSPy, for k =n(n+1).
(A similar result is given in [13], but they used relation <g and k = 2n?.)
Proof. The equality z;; = x;x;; in (2) is equivalent to inequalities
Lig — Lij >0,

x]-j — xl-j 2 0, (4)

Ty + xj; — Ty < 1,

subject to z;; € {0,1}. It remains to transform each of them in an inequality of the form
Y+ Ym < 1 from (3). For this we introduce n(n + 1) new variables:

Sij = Tij, 1<i< g <n,
tij = @y — x5, 1 <1<y <n,
U; = Ty, 1<i<n,
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Then the restrictions (4) are equivalent to

Sij—i‘l_tjgl,
tij+uj§]~7
uz+ﬂz:17

Sij +tij +1_LZ' = 1,

subject to integrality of all variables. Obviously, the last two equalities (more precisely,
n(n +1)/2 equalities) define some face of a polytope SSPy, where k = n(n + 1), defined
by the system of n(2n — 1) inequalities

sij +u; <1,
tij +u; <1,
u; +u; < 1,
Sij +u; < 1,
ti; + 1 < 1.

Moreover, the equalities (5) connect this face with the polytope BQP,, by nondegenerate
affine mapping. ]

Remark 6. For k£ > 2 relation SSP, <4 BQP,, is not satisfied for any n. Since BQP,,
is a 2-neighborly polytope [27].

Relying on definitions 1 and 3, we can introduce an analogue of Cook—Karp—-Levin
polynomial reducibility [14] for families of polytopes (as it was done in [21]).

Definition 7. A family of polytopes P is affinely reduced to a family @) if there exists
r € N such that for every polytope p € P there is ¢ € @) with p <4 ¢ and dimqg =
O ((dimp)"). Designation: P o4 Q.

In such terminology the theorem 5 and the remark 6 take the following form:
BQP o4 SSP, SSP %4 BQP,

where BQP = {BQP, }, SSP = {SSP;}.
We list some obvious properties of this kind of reduction.

Theorem 8. Let P x4 Q. Suppose that there are polytopes in P with some of the fol-
lowing properties:
1) superpolynomial (in the dimension of a polytope) number of vertices and facets,
2) superpolynomial clique number of the graph of a polytope,
3) NP-completeness of nonadjacency relation,
4) superpolynomial extension complexity,
5) superpolynomial rectangle covering bound.
Then there are polytopes in ) with the same properties.
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2. Set packing and set partition polytopes

Let G = {g1,...,9n} be a finite set and S = {S;,...,S;} C 2% be a set of subsets of
G. Consider a subset T' C S. If every g; € G belongs to no more (no less) than one of
elements of T" then T is called a packing (covering) of the set G. Covering, which is both
the packing, called a partition of the set G.

Let A = (a;;) be n x d matrix of incidences of elements of G' and elements of S:

1, for g; €95,
Qij = .
! 0, otherwise.

For every subset 7' C S we consider its characteristic vector z = (x;) € R%

Ly

B {1, if S; €T,

0, otherwise.

Denote the set of all such characteristic vectors by PACK,; = PACK(S). It is evident
that
PACK, = {z € {0,1}* | Az < 1},

where 1 is the n-dimensional all 1 vector. The convex hull of PACK, is called the set
packing polytope.
Partition polytopes are defined similarly. The set of vertices PART, of the set parti-
tion polytope satisfies the equality
Az = 1. (6)

It is clear that a set partition polytope is a face of a set packing polytope:
PART,; <4 PACKj,. (7)
Note that a stable set polytope is a special case of a set packing polytope:
SSP;. <4 PACK,; ford==%.

It is not difficult to prove that the families SSP = {SSP;}, PACK = {PACK,} and
PART = {PART,} are equivalent in terms of affine reducibility.

Theorem 9. SSP o<y PART oy PACK o4 SSP.

Proof. Show that PACKj is a special case of SSPy for k = d. It is sufficient to note that
inequality
T4+ a4+ ... +x. <1

is equivalent to the set of inequalities
ma; <1, 1<i<j<k,

provided z; € {0,1}, 1 <i < k.
The reduction PART oy PACK is evident (see (7)).
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Now we show that SSP ocy PART. Consider auxiliary variables w;; = 1 — y; — v,
u;; € {0,1}. Then the inequalities y; +y; < 1 in (3) can be replaced by equalities

yi‘f‘yj—FUij =1.
Consequently,
Here F is the set of edges in (3). O

3. Double covering polytopes

The name “double covering polytopes” was used in [21] for a family of polytopes con-
sidered in [25].

Definition 10. The double covering polytope is the convex hull of the set
DCP, = {z € {0,1}* | Bx = 2},

where B € R™*? is a 0-1 matrix, 2 is the m-dimensional all 2 vector, and each row of B
contains exactly four 1’s.

Previously in [21, 24], there have been found the following relations for several fam-
ilies of combinatorial polytopes with the property of NP-completeness of nonadjacency
relation.

Theorem 11 ([21, 24]). The family of double covering polytopes is affinely reduced to
families of polytopes associated with the following problems: travelling salesman, knap-
sack, set covering, 3-satisfiability, cubic subgraph, partial ordering.

Now we prove that stable set polytopes are simpler than double covering polytopes.

Theorem 12. SSP, <4 DCP, for d = k + |E| + 1, where |E| is the number of edges
(inequalities) in the equation (3).

Proof. Let us look at the equation (3). For every edge {v;,v;} € E we consider auxiliary
variable u;; = 1 —y; — y;, u;; € {0,1}. Thus every inequality y; +y; < 1 in (3) can be
replaced by equality

Yi +y; +uy = 1. (8)

Let ug be yet another auxiliary variable and let uy = 1. Hence the equality (8) is
equivalent to

yi—l-yj—i—uij—l—uO:Q.

According to the definition 10, a system of such equalities together with the requirement
of integer variables defines the vertices of a double covering polytope DCP, for d =
k+ |E|+ 1. The constraint uy = 1 defines a face of this polytope. Moreover, this face is
affinely equivalent to the given SSPy. [
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We now show that the affine reducibility in the opposite direction is not possible.
Note that the NP-completeness of adjacency relation is inherited by affine reduction
(theorem 8). The family of double covering polytopes has this property [25], whereas
for a stable set polytope the checking of adjacency is polynomial [6]. Hence, if P # NP
then DCP can not be affinely reduced to SSP. It turns out that the latter is true even
without the assumption P # NP.

Theorem 13. For the double covering polytope
P = conv{z € {0,1}* | 21 + 29 + 23 + 24 = 2}
the relation P < SSPy does not hold for any SSPy.

Proof. The polytope P has 6 vertices

They are splitted into three pairs with the following property
'+ 2? = 2% 4 2t = 2° + 25 (9)

Assume that P is affine equivalent to some face conv{y',...,4y°} of SSPy. It is clear
that the vertices y', 32, ..., y° inherit the property (9):

v+ =y +yt =y + 0 (10)

We now show that there are two more vertices y” and y® of SSP; with

vyt =yt (11)
This means that the intersection of conv{y”,y®%} and conv{y',... 3%} is not empty.
Hence conv{y',... 4%} is not a face of SSPy.
For the vertices y' = (yi,...,y;) and y*> = (y},...,y?) we consider the set

I={ielk |y =y}
Note that every vertex of SSPy, is a 0-1 vector. Thus, by (10) and (11),
vi=yl ==y =y foriel (12)

Therefore, we shall consider only those coordinates which values are different for every
pair of vertices:

J={j ekl |y +yj=1}=[k\ L
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Counsider the six sets

U={jel|y =1}, U={jcl|y=1}=J\U,
V={jed|y=1}, V={jel|y=1=J\V,
W={jel|ly=1, W={el|lyf=1}=J\W.

All six sets are distinct, otherwise there would be identical vertices among ', 32, ...,
y%. Under this condition, the two sets

WMyu@Unvnw)uUnvnw),
MuUnvnmu@Unvnw)=J\S

differ from each of the above six.
Now we can define the points y” and 3®:

vl =y, =y, i€l
yl=1—9y=1, i€sb,
yl =1—9y =0, i€s.

This 0-1 points differ from y*, 42, ...,y and equality (11) is satisfied for them. It remains
to prove that y” and y® belong to the SSP;. That is if y; + y; < 1 holds for y', y?, ?,
y*, y°, y® then it holds for 7 and ¥® also.

By equation (12), this condition is satisfied for ¢, j € I. This is true for ¢ € I and
j € J also, since

max(y; +y;, y; + ) =y + 1=y +1=max(y] +yj, 10 +15).

It remains to check the condition for¢,j € J. If i € Sand j € S then y]+y] = y+yf =1
and the condition is fulfilled.

Consider the case i,j € S. If 4, j € U then y; = y; = 1. Hence y; +y; < 1 is violated
by y! for 4,5 € U. The same is true if i and j both belong to one of the sets U, V, V,
W, W. But for any i and j in S the latter is true. For example, if i € UNV N W and
7 €UNVNW then i, j € W and so on. Hence for any 4,5 € S the inequality y; +y; < 1
is violated for at least one of the vertices 3!, ..., y5.

The same is true for the case i, € S by symmetry. ]

4. Three index assignment polytopes

Consider a ground set S, |S| = m. Coordinates of a vector € R¥5*5 we denote
by x(s,t,u), where s,t,u € S. Three index assignment (or 3-dimensional matching)
problem can be formulated as the following 0-1 programming problem:

SOSTS ety u) - (s, tu) — max,

seS teS ues
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ZZw(s,t,u) =1 Yuels, (13)

seS tes
YN a(stuy=1 Vtes, (14)
se€S ues
ZZx(s,t,u) =1 Vses, (15)
tesS uesS
x(s,t,u) € {0,1} Vs, t,u e S, (16)

where c(s,t,u) € R is an input vector. By 3AP,, denote the set of all vectors z € RS*5*3
satisfying restrictions (13)—(16). The convex hull of 3AP,,, is called the (azial) three index
assignment polytope.

The first results about this polytope can be found in [11] and [2]. A more recent
survey can be found in [29]. In the Russian-language papers there are given the lower
bound for the clique number of the graph of 3AP,, [4] and various properties of noninteger
vertices of relaxations of this polytope (see for example [19]).

It is obvious that 3AP,, is a special case of PART:

3AP,, <4 PART, for d = m?. (17)

That is the family of three index assignment polytopes is affinely reduced to set partition
polytopes: 3AP 4 PART.

Using a standard reduction [14] from 3SAT to 3-dimensional matching, Avis and Ti-
wary [1] showed that 3SAT polytope is a projection of a face of a three index assignment
polytope. That is 3SAT g 3AP in the sense of relation <g. However, from inequal-
ity (17), theorem 9, theorem 13 and DCP o4 3SAT [21] it follows that the reduction
3SAT x4 3AP is impossible.

Now we show, that SSP o4 3AP. Therefore, 3AP lies in one equivalence class (in
the sense of o 4) with SSP, PART, and PACK.

For the graph G(V, F) in the equation (3) we denote by

W={veV|v¢eforevery e € E},
the set of isolated vertices.
Theorem 14. SSP, < 3AP,, for m = 3|E| + 2|W|.
Proof. The ground set S for the 3AP,, will consist of three types of elements:
1. v and v for every isolated vertex v € W.
2. e for every edge e € E.
3. (e,v) for every e € F and v € e.

Now we construct the set of triples ) C S x S x S such that the face
F = {z € conv(3AP,,) | z(q) =0 Vg ¢ Q}

of conv(3AP,,) is affinely equivalent to the conv(SSPy).
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For every v € W the set @) contains four triples: (v, v,v), (v,0,0), (v,v,0), (v,0,v).
There are no other triples containing v or v. Hence, if x € F then for every v € W we
have only two cases:

z(v,v,v) = x(v,0,0) =1 or x(v,v,0)=x(v,0,v)=1.

Now we consider elements e and (e, v) of the set S, where e € E and v € e. For every

nonisolated vertex v € V' \ W consider the set of incident edges E(v) = {e;,,..., ¢},
where p = dg(v) is the degree of v. The set of triples () contains:
1. (e, e, ) for every e € E.
2. ((e, v e,v)) for every e € E and v € e.
3. (e, e, ( ) for every e € F and v € e.
4. ((5,,v), (€ipsr,v), €;,) for every nonisolated v and for every e; € E(v), where
addltlon q + 1 means to be 1 +¢ mod p.

We list some properties of the vertices of the face F.

Note that for every (e,v) € S the set @) contains exactly two triples with (e, v)
in the third entry: ((e,v), (e,v), (e,v)) and (e, e, (e,v)). Hence, the equation (13) for
u = (e,v) is converted into

z((e,v), (e,v), (e,v)) + z(e, e, (e,v)) = 1.

That is, x((e,v), (e,v), (e,v)) is linearly expressed in x(e, e, (e,v)).

Note also that for every e € S the set ) contains exactly three triples with e in
the first entry: (e, e,e), (e,e,(e,vl)), and (e,e, (e,vg)), where e = {v1,v2}. Hence,
the equation (15) for s = e is converted into

z(e e e) +z(ee, (e,v1)) +z(e e (e,v2)) = 1.
That is :E(e, e,e) =1- x(e,e, (e,vl)) — x(e,e, (e,vQ)) and
z(e e, (e,v1)) +z(e, e, (e,v2)) < 1. (18)

Reasoning by analogy, we obtain the following equation

I((eiq) U), (eiq7 U)? (eiqa U)) + x(<eiq7 U)? (eiq+1’ U)’ eiq) = 1
for every nonisolated v and for every e;, € E(v), where addition ¢ + 1 is performed
modulo p = dg(v). Hence,
z((es,, ), (€501, 0), €,) =1 —z((e5,,0), (€4, ), (€5,,0)) = z (€4, €,, (€5,,0)).

Moreover, since

l‘((equ,U), (eiq+1 ) U)7 (eiq+1’ v)) + I((eiq’ U)’ (eilﬁ-l’ U>’ eiq) =1,
then
a:(eiqﬂ, Cigsrr (Cigsrs v)) = a:(ez-q, €y (€iys v))
That is x(e, e, (e, v)) = x(e’, e, (e’,v)) for any two edges e and €/, v € e, v € €.
It is not difficult to see that for the vertices of the face F' all variables x(s,t, u)

are expressed linearly in terms of x(e, e, (e, U)) and an inequality (18) is an inequality
yi+y; < 1lin (3). O
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Remark 15. The obtained results can be easily generalized to the case of p index
assignment problem (p > 3). By analogy, the vertices p-AP,, of an p index assignment
polytope are 0-1 vectors x € R™". The coordinates x;,4,. i, (i1,%2,...,% € {1,2,...,p})
satisfy the following equalities:

Z Tiiy.q, =1 Vir € {l,...,p},

i27i37---,ip

Z Tiin.q, =1 Vig € {1,...,p},

11,83,84,---ip

Z Tiyig.ay = 1 Vi, € {1,...,p}.

11,82, 0yfp—1

It is evident that
p-AP,, < PART,;, whered=m".

On the other hand, the equalities
Tivig..ip = 0 Vi, #* Ip—1

determine a face of p-AP, and this face is affinely equivalent to (p — 1)-AP, . Therefore,
by theorem 14
SSPy, < p-AP,, for m =2k(k —1).

5. Quadratic linear ordering polytopes
and quadratic assignment polytopes

We begin by describing the linear ordering problem in terms of graph theory.

Let D = (V, A) be a digraph, where V = {1,2,...,m} is a vertex set. We assume
that D is complete. That is (i,7) € A and (j,i) € A for any i,j € V, i # j. An acyclic
tournament? in digraph D is called a linear ordering.

Consider a characteristic vector y € R™™~U/2 for a linear ordering L in D. The
coordinates y;;, 1 <1 < j < m, of y are

~J1 for (i,5) € L,
YN0 for (ji) e L.

Denote by LOP,,, the set of characteristic vectors of all linear orderings in D. The convex
hull of LOP,, is called the linear ordering polytope. LOP,, can also be defined as the set
of integer solutions y € {0, 1}"(m=1/2 of the 3-dicycle inequalities (see for example [15]):

0<wij+typ—vx <1, i<j<k. (19)
In [5] the quadratic linear ordering polytope is defined as follows. Let
I={(j kD) i< k<l and (.5) < (5,D)},

3Each pair of vertices in a tournament is connected by exactly one arc.
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where (4, j) < (k,[) means that either i < k or i = k and j < [. For every pair of distinct
variables y;; and vy, there is introduced a new variable

Zijkl = YijYkl, (ivja kv l) el (20)

Denote by QLOP,, the set of all vectors z € {0,1}, d = () (() + 1) /2, with coor-
dinates y;; and z;;; satisfying conditions (19) and (20). The convex hull of QLOP,, is
called the quadratic linear ordering polytope.

Theorem 16 ([5]). QLOP,, <4 BQP, forn = (7).

Buchheim, Wiegele, and Zheng [5] exploit this result within a branch-and-cut algo-
rithm for solving the quadratic linear ordering problem.
We show that an affine reduction in the opposite direction is also possible.

Theorem 17. BQP, <4 QLOP,, for m = 2n.

Proof. The idea of the proof is simple. LOP,,, contains an n-dimensional cube as a proper
face. In the transformation LOP,, to QLOP,, this cube turns into a Boolean quadratic
polytope.
Note that equalities y;; = 0 and y;; = 1 defines supporting hyperplanes for LOP,,
and for QLOP, . Let
J={(2i—1,2i) | i € [n]}.

We set
yy =0 forall (i,5) ¢ J, 1<i<j<m. (21)

Only variables y;; are unfixed where ¢ is odd and j = ¢ + 1. Let us check 3-dicycle
inequalities (19). Suppose i < j < k, we have two cases:

1. If (i,7) ¢ J then y;; = yu = 0. Thus the inequality (19) is transformed into
0<yu <1

2. If (4,7) € J theniisodd, j = i+1is even, and k > i+ 1. Hence, the inequality (19)
is equivalent to 0 < y;; < 1.

Therefore, n variables y;;41, where ¢ is odd, may take the values 0 or 1 independently
of each other. Consequently, hyperplanes (21) define a face of LOP,, and this face is an
n-dimensional cube.

Look at the variables 2, (i,7,k,1) € I. If (¢,5) ¢ J or (k,l) ¢ J, then z;;; = 0. In
the case (,7) € J and (k,l) € J we have 2,5 = y;jyr, and besides y;; and yy, are free
variables.

Thus there is the following nondegenerate affine map between the face of QLOP,,
and BQP,:

Ty = Yoi-1,2%, 1 <1< n,

Tij = 22i-1,2i,2j-1,2) = Y2i-1,2i * Y2j—1,25, 1 <1<j<m.
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The story for quadratic assignment polytopes is repeated almost exactly.
The set of vertices 2AP,, of the assignment polytope (or Birkhoff polytope) consists
of vectors y € {0, 1}™*™ satisfying the conditions

Zyij =1, Vi € [m], (22)

Zyzj =1, Vj € [m]. (23)

Define new variable z;jj; like (20):
Zijkl = YijYri, Where (4,5) < (K, 1). (24)

Denote by QAP,, the set of all vectors z € {0,1}%, d = m? + (";2), with coordinates
yi; and 25 satisfying conditions (22), (23), and (24). The convex hull of QAP,, is
called the quadratic assignment polytope. It is also useful to consider the quadratic semi-
assignment polytope [31]. In the definition of its vertex set QSAP,, the condition (23) is
omitted.

Theorem 18 ([30, 16, 31]). QAP,, <4 QSAP,, <. BQP,, for n = m?.

This connection is used in [16] for obtaining valid inequalities for QAP, . In particu-
lar, QAP, is a 2-neighborly polytope (every two vertices constitute an edge of it), since
BQP,, is 2-neighborly. In [16] it is also shown that the linear ordering polytope LOP,,
and the traveling salesman polytope TSP,, are projections of QAP :

LOP,, <z QAP,., TSP,, <z QAP, .

Note that the affine reductions LOP o4 QAP and TSP x4 QAP are impossible, since
LOP,, is not 2-neighborly for m > 3 [33] and TSP,, is not 2-neighborly for m > 6 [26].

Theorem 19. BQP, <4 QAP,, for m = 2n.

Proof. By analogy with the proof of theorem 17 it is sufficient to show that the Birkhoft
polytope 2AP,, has an n-dimensional cube as a face. Let

J={(,i)|ie[m]}u{(2i—1,2i)]i€n}uU{(2,2i—1)]ie n]}

Then the equalities
yi; = 0 for every (i,7) ¢ J

define the required face. n

6. Resume

Boolean quadratic polytopes, cut polytopes, quadratic linear ordering polytopes, and
quadratic assignment polytopes are in one class of equivalence within the framework of
affine reducibility. A bit more complicated class contains stable set polytopes, set pack-
ing polytopes, set partitioning polytopes, and n-index assignment polytopes for n > 3.
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An even more complicated are double covering polytopes, 3-satisfiability polytopes, set
covering polytopes, knapsack polytopes, cubic subgraph polytopes, partial ordering poly-
topes, traveling salesman polytopes. The problem of partitioning of these families into
equivalence classes is not solved completely. Nevertheless, Fiorini [12] proved that k-
satisfiability polytopes and m-satisfiability polytopes are in different classes for k # m.
Moreover, all of them are simpler than traveling salesman polytopes. From the other
hand, the families of so-called Boolean p-power polytopes also are in different classes for
distinct values of p [23]. Besides, Boolean p-power polytopes are simpler than Boolean
quadratic polytopes (in the sense of affine reduction).

However, if in the definition of affine reducibility (definition 7) we replace the relation
<4 by relation <g (recall that we write p <g ¢ if a face of a polytope ¢ is an extension
of p) then all the mentioned families of polytopes fall into one class of equivalence, since
the polytope P of any linear combinatorial optimization problem? is an affine image of
a face of BQP,,, where n is polynomial in the dimension of P [22].

Thus the affine reduction is a more delicate instrument (versus extending) for com-
paring the families of combinatorial polytopes. The most complicated (more precisely,
the richest in its properties) is a family of traveling salesman polytopes. Families of
Boolean p-power polytopes are more simple than any other of the above. More precisely
they contain the minimum number of superfluous details (with respect to other families
associated with NP-hard problems). Moreover, apparently, combinatorial and geometric
properties determining NP-hardness reach the highest concentration precisely in Boolean
p-power polytopes.

Proceed to a more precise formulation. Using the above results, it is easy to derive
the following relations.

2. BQP,, <4 PART}, for k = 2n?.

n

3. BQP, <4 DCPy for k = 2n% + 1.

n

4. BQP, <4 3AP; <, p-AP,, for k = 6n* + 3n and p > 3.

n

5. BQP,, <4 QLOP,, for k = 2n.

n

6. BQP, < QAP, for k = 2n.

That is any characteristic of complexity of BQP,, is inherited by the above families of
polytopes. For example, in 2012 Fiorini et al. [13] proved that the extension complexity
of BQP,, is exponential in n. Later, the lower bound was improved to 1.5" by Kaibel and
Weltge [18]. Hence, the extension complexity of QLOP, and QAP, is also exponential
in k. The extension complexity of SSP;, PART,, DCPy, and 3AP; is 22(n'/%) " The
same conclusions can be done for the clique numbers of graphs of the polytopes, since
the clique number for BQP,, is 2".

4See footnote on the page 24
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Annorarusi. PaccMaTpuBaoTCs HECKOIBKO CeMECTB KOMOMHATOPHBIX MHOTOI'DAHHIKOB, aCCOIMN-
POBaHHBIX CO ciieayromumMu NP-110/IHBIMI 3a/1a9aMu: MAKCUMAJIBHBIN pa3pes, OyJieBO KBaIIPATUIHOE [IPO-
rpaMMUPOBAHUE, KBAIPATHIHAS 33/[a49a JUHEIHOro yIIOpsI0YeHNs, KBaIPATUIHbIE Ha3HAYEHUS, Pa30m-
€HUe U YIIAKOBKA MHOXKECTBA, HE3ABUCHMOE MHOXKECTBO, 3-Ha3HadeHus. [ cpaBHEHUS IBYX CEMeCTB
MHOTOTPAHHUKOB HCIIOJIb3YyeTCsT cyeaytomnuit criocod. Bymem roBoputh, uto cemeiictBo P adhduHHO CBO-
JIATCS K CeMeCTBY (), ecyin JIJIsl KayKI0r0 MHOTOTDaHHUKa p € P Halinercs ¢ € () Takoit, uro p addunHO
SKBHUBAJEHTEH ¢ WM HEKOTOpoil rpanu ¢, rye dim ¢ = O((dimp)¥) mnsa nexoropoit Koucranter k. Ilpn
TaKOM CIIOCODe CpaBHEHUSs yIIOMSIHY ThI€ BbIIIE ceMeiicTBa, pa30uBalTCs Ha JIBa KJIACCA SKBUBAJIEHTHOCTH.
IMTokazaHo TakKe, 4TO ITU JBA KJACCA MPOIIe (B YKA3AHHOM CMBICJIE), YeM CeMeliCTBa MHOIOIPAHHUKOB
CJIEJIYIOMIMX 3a/1a4: OKPBITHE MHOXKECTBa, KOMMUBOsi2KeD, 0/1 PIOK3aK, 3-BBIIOJIHUMOCTD, KyOudecKuii
nojirpad, yacTuaHoe yropsijodenne. B qacTHOCTH, Oy/IeBbl KBaPATHIHBIE MHOTOIPAHHUKY OKA3bIBAIOT-
Cs 'PaHAMU MHOTOI'DaAHHUKOB Ka2KJI0I'0 U3 YIIOMAHYTHIX ceMelCTB.
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