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Abstract.
For each A\, 0 < A < 1, we define a random variable

Yy = (1 - /\) anAn,

n=0

where &, are independent random variables with

1
P{gn = 0} = P{fn = 1} = 9"
The distribution of Y), is called a symmetric Bernoulli convolution. The main result of this paper is
M, = EYAn _ nIng 2210g>\(17)\)+0.510g>\ 270.567(710g>\ n) (1 + O(n70.99)) ,

where

is a l-periodic function,

at) = (1 — \)2mit(1 — 92mit)p=2mitg=2mit - (9t).

~ 2ish(n2t)

and ((z) is the Riemann zeta function.
The article is published in the author’s wording.
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For each A\, 0 < A < 1 we define the random variable
Yi=(1-X)) &N
n=0

where &, are independent random variables with

P{fn = 0} = P{fn = 1} = %

The distribution of Y) is called a symmetric Bernoulli convolution.
The cumulative distribution function F\(t) = P{Y) < t} can be characterized by the
functional equation

1 1
F\(z) = iF,\()\_lx) + EF,\()\_lx — A 41, 0<z <1, (1)

We stress that the Fourier transform is the infinite product

(b(t) — EeitYA — H (% + %eit)\"(l)\)> — eit/Z H COS(}\?“L(l o )\)t/2), (2)

n=0 n=0

The early study of Fj\(t) was related to some questions of harmonic analysis [1, 14.20].

In Figure 1 we show the histograms for F3(¢) approximations. This graphics were
created as Iterated Functions System of the maps S;(z) = Az, Sa(z) = Az — A+ 1. We
used 2%° points and 1000 equally intervals for the histogram.

We stress that these approximations are very crude.

Since the 1930’s a lot of work has been done to investigate F)(t) (see e.g. survey [§]).

One of the fundamental question is to decide for which A the function F)(t) is
absolutely continuous and for which it is singular.

Results on absolute continuity of F)(t).

e Jessen and Wintner [7] proved that F)(t) is either absolutely continuous or purely

singular. It is clear that F)(t¢) is uniform on [0, 1] for A = 5 and is purely singular

1
f —.
or)\<2

e Wintner [13] proved that F)(¢) is absolutely continuous for A = 27V/% k=1,2,...,
with a density having k — 1 derivatives. For example, for A = 2=%/2 we have the
following density

(2+%>I, OSxS\/?—l;
F{(z) =14 1+ 7, V2-1<2<2-V2; (3)

(2+%>(1—x), 2 VZ<r<l.

e Erdos [4] showed that F)(¢) is singular when A™! is a Pisot (Pisot-Vijayaraghavan)
number (0.5 < A < 1). Moreover, the Fourier transform ¢(t) does not tend to 0
as t — 00. Recall that a Pisot number is an algebraic integer # > 1 all of whose
Galois conjugates (other roots of the minimal polynomial) of  are less than 1 in
modulus.
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Fig 1. Histograms for F}(t) correspond to the following A™' = 1+1¢/21,i=1,2,..., 20
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e Salem [9-11] proved the converse of the result of Erdos. If ¢(¢) does not tend to 0
as t — oo, then A7! is necessarily a Pisot number. The reciprocal of Pisot numbers
remain today the only known set of A for which F)\(#) is singular.

e At the next year Erdds [5] proved a result in opposite direction, namely, there is
a a < 1 such that for almost all A in the interval a < A < 1 we have Fj(¢) is
absolutely continuous.

e Garsia [6] found new examples of algebraic A with absolutely continuous Fj(t).

e Solomyak [12] proved that F)(t) is absolutely continuous with a density in L? for
a.e. 0.5 <A <1

In this paper we study the moments of Bernoulli convolution. They are defined by

1
M, — EV = / 2 APy (x). (@)
0

The main result of this paper
Theorem 1. Let M, be defined by (4), then the following holds as n — oo

Mn _ nlog/\ 2210g/\(1—)\)+0.510g>\ 2—0.567(—10g)\ n) (1 + O(n—O.QQ))

)

where . L
T(x) = Z i (—m) e?mike (5)

18 1-periodic function,

Oé(t) — (1 - )\)2m't<1 - 22m‘t)7T727rit2727rit<(27m~t>7 (6)

~ 2ish(m2t)
and ((z) is the Riemann zeta function.

Remark 1. We emphasize that the periodic function T(x) is a constant only in the
Wintner’s cases A =2"F Lk =1,2,....

Moreover, only in these cases Fy(x) = Cz® 4+ O(x**™¢) for some a > 0, € > 0 as
x — 0.

We observe that |a(t)| does not depend on A, |a(1/In2)| ~ 1075, and due the fast
decrease of |a(t)] (see Figure 2) the fluctuating function 7(x) stays bounded by 107°.

Remark 2. We have the following approximations

M. ~ nlog)\ 22log)\(l—)\)+0.5log>\ 2—0.5
n ~~

with accuracy 10™° and

M, ~ nlos 29logy (1-A)+0.5logy 2-0.5 +a _L n727ri/ln/\ —a L €+27Ti/1n)\
In A In A

with accuracy 1072,
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Fig 2. The graphs of |a(t)| for ¢t € [0,1], t € [1,2], and ¢ € [2, 3]

Proof. Now we give a proof of the theorem using analytic techniques such as poissonization
and the Mellin transform
A recursive relation for the moments M,, of any function satisfying (1) is the following

1
M, :/ 2" dF\(z) =
0

1 1
/ 2" dF\(\ "tz + 5/ I AN O N D S DI
0 0

N | —

1 ! 1 [t
= —)\”/ t"dFA(t)—i——/ (At 41— \)"dF\(t).
2 Jo 2 Jo

Substituting M,,, we obtain

1 1= /n
M, = = \"M, + = MNe(1=N""F M, My,=1 =0.1,....
n 9 n+2;(k) ( ) k> 0 3 n 07 ) (7)

We define the Poisson transform as

M(z) =" MnZ—Te_“. (8)
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which exists for all complex x since the series converges due to the estimate M, < 1.
Substituting (7) B (8), we get

. 1 - n " —x 1 . " —x - n k n—k .
= 5 ng_ A Mnme + 9 ngzo ol (& £ (k}))\ (1 )\) Mk =

M) =] (% + %e_(l_)‘)’\kx) . (10)

Let o
Glz) =l M(z) = > In G + %eﬂm’“z) | (11)

G(z) = /000 G(z)x* ‘dz, (12)

is define for
—1<Rz2<0

- (1—-X)"~ /°° 1 I 1 _
S S =l [ 2 4 Ze®
G(z) s ) T n 5 + 26 dz,

By integration by parts, we obtain

and satisfies

z

- _(1—)\)_21/00 T
Glz) = 1—A% 2/, 1—|—ewdx’

Using [15, 3.411.3|, we get

G(z) = %(1 —277)I(2)¢(2 + 1), (13)

for —1 < Rz < 0.
It is known that the Gamma function and the zeta function are both continuable to
the complex plane:

e ['(2) has simple poles at the non-positive integers;
e ((2) has only simple pole at z = 1.

Therefore, the function G (z) continuable to the complex plane.

G(z) has a double pole at z = 0 and simple poles:
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e at the non-positive integers, from I'(z),

e at z = 2, from (1 — A7*)~!, where

2mik

Zk:m> k #0; (14)
Via the inverse Mellin transform we find that
. —otico
Gl) = 5 / Gl2)a—* dz, (15)

where 0 < o < 1.
In order to find G(z), we apply the residue theorem for the right half-plane &z > —o.
Now we find residues of the function G(z)z 7.
Using the following formula

Res ( P(z) 0) _P(0)  P(0)Q"(0)

2Q(2)") Q) 2Q(0)?
where e
P(z) = _Z D(z4 1)(1— Nz (2¢(z + 1)),
Q(z) =1-A7,
we obtain

2o —= o) - 20)  P0)Q"(0)
Res <G(z)x ,0) 00 2007
(There Res (f(2), z0) denotes the residue of f(z) at the point z = zj.)
Substituting (z((z + 1)).—0 = 1, (2¢(z + 1)),_, = —I'(1) [15, 9.536], we get

1
P(0)=In2, P'(0)=-Inzln2—In(1-\)In2— 511[122,

Q(0)=1In), Q"(0) = —In?\.

Therefore,
.\ 2 1 1
Res (G(z)x ,o) - (lnx FIn(l—A) + 5mz) +5In2
The residue at z,, k = £1,+2,... is
N 1— X))
Res (G(z)m_z, Zk> = %(1 — 277 (2 ) C (2 + 1) ™",

['(z) decreases exponentially fast along vertical lines while ((z) is only polinomial
growth as Sz — +oo. Thus, Collorary 1 to Theorem 4 from [3] applies here and we have

G(z) = :2—/2\ <1nx+ln(1 - ) +%ln2> - %IHQ—
LS )R (L 27N (e + e+ O, (16)

k=0
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for every v > 0.
Take v = log, 2 + 2.
Using (16) and (11), we get

M (z) = '8 2¢7(logy @) (1 + O(x_“’)) ,

where the function 7 is defined in (5).

In order to find M,, we apply Theorem 10.5 from [14]. To apply Theorem 10.5
from [14], we must check that the conditions required in this theorem are actually
satisfied. In particular:

there exist 3, 0 < 6 < m/2, and 0 < 1 < 1 such that the following conditions hold for
sufficiently large |z|, z = = + iy:

o for z € Sy
’% + %e_(l_)\)z )\B S 1— n;
e for z ¢ Sy and some a < 1
‘1 Lm0z J1-e < pali-NE,
2 2 -

where Sp = {z : [Sz] < ORz}.
It can easily be checked that this condition holds for every g > log, 2 and we apply
Theorem 10.5 from [14] to yeild

M, = M(n) (1+ O(n~*%)).

for 5 =log, 2 + 0.01.
The last step consists of simplifying the function «(t) (6). Using (16), we have

at) = —2%2,(1 — A1 — 2™ (—2mit 4+ 1) ¢ (—2mit + 1) .

Applying the functional equation of the Reimann zeta function [15, 9.535.3]
T(2)C(2) cos % — 7727 (1 — 2),

we obtain (6).
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Awunoranusa. s xkaxgoro A, 0 < A < 1 onpemesuM cayvaiiHyo BeJUYUHY (CHMMETPUIHYIO
cBepTKy Bepryiiim)

Yy=(1-X)) &\,
n=0

riae fn — He3aBHCHUMBbIE C.Hy‘IafIHbIe BE€JIMYNHLI C

Plén =0} = Plea =1} = 3.

OcHOBHOIT Pe3yIbTAT HACTOSAIIEH PAOOTHI
M, = EY;L _ nlogk 22log>\(17)\)+0.510g>\ 270.5€T(710g>\ n) (1 + O(n70.99)) ,

e pyHKIIsT
1 k mwikx
T(-’E) = Z %Oé <—1n)\> 62 k
k#0

ABJIAeTCA HepHO,ZLH‘{eCKOﬁ C IIepuoJaoM paBHBIM 17

at) = (1 — \)2mit(1 — 92mit)p—2mitg=2mit - (9rip).

~ 2ish(x2t)

a ((z) — ngera-dyukuus Pumana.
Crarba mybJuKyeTcs B aBTOPCKON PETaKIiH.
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