Modeлирование и анализ информационых систем. Т. 23, № 2 (2016), с. 185–194 Modeling and Analysis of Information Systems. Vol. 23, No 2 (2016), pp. 185–194

©Timofeev E. A., 2016

DOI: 10.18255/1818-1015-2016-2-185-194

UDC 519.987

Asymptotic Formula for the Moments of Bernoulli Convolutions

Timofeev E. A.

Received February 8, 2016

Abstract.

For each λ , $0 < \lambda < 1$, we define a random variable

$$Y_{\lambda} = (1 - \lambda) \sum_{n=0}^{\infty} \xi_n \lambda^n,$$

where ξ_n are independent random variables with

$$\mathsf{P}\{\xi_n = 0\} = \mathsf{P}\{\xi_n = 1\} = \frac{1}{2}.$$

The distribution of Y_{λ} is called a symmetric Bernoulli convolution. The main result of this paper is

$$M_n = \mathsf{E} Y_\lambda^n = n^{\log_\lambda 2} 2^{\log_\lambda (1-\lambda) + 0.5 \log_\lambda 2 - 0.5} e^{\tau (-\log_\lambda n)} \left(1 + \mathcal{O}(n^{-0.99})\right),$$

where

$$\tau(x) = \sum_{k \neq 0} \frac{1}{k} \alpha \left(-\frac{k}{\ln \lambda} \right) e^{2\pi i k x}$$

is a 1-periodic function,

$$\alpha(t) = -\frac{1}{2i \operatorname{sh}(\pi^2 t)} (1 - \lambda)^{2\pi i t} (1 - 2^{2\pi i t}) \pi^{-2\pi i t} 2^{-2\pi i t} \zeta(2\pi i t),$$

and $\zeta(z)$ is the Riemann zeta function.

The article is published in the author's wording.

Keywords: moments, self-similar, Bernoulli convolution, singular, Mellin transform, asymptotic

For citation: Timofeev E. A., "Asymptotic Formula for the Moments of Bernoulli Convolutions", *Modeling and Analysis of Information Systems*, 23:2 (2016), 185–194.

On the authors:

 $\label{top:condition} \mbox{Timofeev Evgeniy Alexandrovich, orcid.org}/0000\text{-}0002\text{-}0980\text{-}2507, ScD, professor}$

P.G. Demidov Yaroslavl State University,

Sovetskaya str., 14, Yaroslavl, 150000, Russia, e-mail: timofeev<code>EA@gmail.com</code>

For each λ , $0 < \lambda < 1$ we define the random variable

$$Y_{\lambda} = (1 - \lambda) \sum_{n=0}^{\infty} \xi_n \lambda^n,$$

where ξ_n are independent random variables with

$$P\{\xi_n = 0\} = P\{\xi_n = 1\} = \frac{1}{2}.$$

The distribution of Y_{λ} is called a symmetric Bernoulli convolution.

The cumulative distribution function $F_{\lambda}(t) = P\{Y_{\lambda} < t\}$ can be characterized by the functional equation

$$F_{\lambda}(x) = \frac{1}{2}F_{\lambda}(\lambda^{-1}x) + \frac{1}{2}F_{\lambda}(\lambda^{-1}x - \lambda^{-1} + 1), \quad 0 \le x \le 1.$$
 (1)

We stress that the Fourier transform is the infinite product

$$\phi(t) = \mathsf{E}e^{itY_{\lambda}} = \prod_{n=0}^{\infty} \left(\frac{1}{2} + \frac{1}{2}e^{it\lambda^{n}(1-\lambda)}\right) = e^{it/2} \prod_{n=0}^{\infty} \cos(\lambda^{n}(1-\lambda)t/2),\tag{2}$$

The early study of $F_{\lambda}(t)$ was related to some questions of harmonic analysis [1, 14.20].

In Figure 1 we show the histograms for $F'_{\lambda}(t)$ approximations. This graphics were created as Iterated Functions System of the maps $S_1(x) = \lambda x$, $S_2(x) = \lambda x - \lambda + 1$. We used 2^{20} points and 1000 equally intervals for the histogram.

We stress that these approximations are very crude.

Since the 1930's a lot of work has been done to investigate $F_{\lambda}(t)$ (see e.g. survey [8]).

One of the fundamental question is to decide for which λ the function $F_{\lambda}(t)$ is absolutely continuous and for which it is singular.

Results on absolute continuity of $F_{\lambda}(t)$.

- Jessen and Wintner [7] proved that $F_{\lambda}(t)$ is either absolutely continuous or purely singular. It is clear that $F_{\lambda}(t)$ is uniform on [0,1] for $\lambda = \frac{1}{2}$ and is purely singular for $\lambda < \frac{1}{2}$.
- Wintner [13] proved that $F_{\lambda}(t)$ is absolutely continuous for $\lambda = 2^{-1/k}$, k = 1, 2, ..., with a density having k-1 derivatives. For example, for $\lambda = 2^{-1/2}$ we have the following density

$$F'_{\lambda}(x) = \begin{cases} \left(2 + \frac{3}{\sqrt{2}}\right)x, & 0 \le x \le \sqrt{2} - 1; \\ 1 + \frac{1}{\sqrt{2}}, & \sqrt{2} - 1 \le x \le 2 - \sqrt{2}; \\ \left(2 + \frac{3}{\sqrt{2}}\right)(1 - x), & 2 - \sqrt{2} \le x \le 1. \end{cases}$$
(3)

• Erdös [4] showed that $F_{\lambda}(t)$ is singular when λ^{-1} is a Pisot (Pisot-Vijayaraghavan) number $(0.5 < \lambda < 1)$. Moreover, the Fourier transform $\phi(t)$ does not tend to 0 as $t \to \infty$. Recall that a Pisot number is an algebraic integer $\theta > 1$ all of whose Galois conjugates (other roots of the minimal polynomial) of θ are less than 1 in modulus.

Fig 1. Histograms for $F'_{\lambda}(t)$ correspond to the following $\lambda^{-1}=1+i/21,\,i=1,2,\ldots,20$

- Salem [9–11] proved the converse of the result of Erdos. If $\phi(t)$ does not tend to 0 as $t \to \infty$, then λ^{-1} is necessarily a Pisot number. The reciprocal of Pisot numbers remain today the only known set of λ for which $F_{\lambda}(t)$ is singular.
- At the next year Erdös [5] proved a result in opposite direction, namely, there is a a < 1 such that for almost all λ in the interval $a < \lambda < 1$ we have $F_{\lambda}(t)$ is absolutely continuous.
- Garsia [6] found new examples of algebraic λ with absolutely continuous $F_{\lambda}(t)$.
- Solomyak [12] proved that $F_{\lambda}(t)$ is absolutely continuous with a density in L^2 for a.e. $0.5 < \lambda < 1$.

In this paper we study the moments of Bernoulli convolution. They are defined by

$$M_n = \mathsf{E} Y_\lambda^n = \int_0^1 x^n \, dF_\lambda(x). \tag{4}$$

The main result of this paper

Theorem 1. Let M_n be defined by (4), then the following holds as $n \to \infty$

$$M_n = n^{\log_{\lambda} 2} 2^{\log_{\lambda}(1-\lambda) + 0.5 \log_{\lambda} 2 - 0.5} e^{\tau(-\log_{\lambda} n)} \left(1 + \mathcal{O}(n^{-0.99}) \right),$$

where

$$\tau(x) = \sum_{k \neq 0} \frac{1}{k} \alpha \left(-\frac{k}{\ln \lambda} \right) e^{2\pi i k x} \tag{5}$$

is 1-periodic function,

$$\alpha(t) = -\frac{1}{2i \operatorname{sh}(\pi^2 t)} (1 - \lambda)^{2\pi i t} (1 - 2^{2\pi i t}) \pi^{-2\pi i t} 2^{-2\pi i t} \zeta(2\pi i t), \tag{6}$$

and $\zeta(z)$ is the Riemann zeta function.

Remark 1. We emphasize that the periodic function $\tau(x)$ is a constant only in the Wintner's cases $\lambda = 2^{-1/k}$, $k = 1, 2, \ldots$

Moreover, only in these cases $F_{\lambda}(x) = Cx^{\alpha} + \mathcal{O}(x^{\alpha+\varepsilon})$ for some $\alpha > 0$, $\varepsilon > 0$ as $x \to 0$.

We observe that $|\alpha(t)|$ does not depend on λ , $|\alpha(\pm 1/\ln 2)| \approx 10^{-5}$, and due the fast decrease of $|\alpha(t)|$ (see Figure 2) the fluctuating function $\tau(x)$ stays bounded by 10^{-5} .

Remark 2. We have the following approximations

$$M_n \approx n^{\log_{\lambda} 2} 2^{\log_{\lambda}(1-\lambda) + 0.5 \log_{\lambda} 2 - 0.5}$$

with accuracy 10^{-5} and

$$M_n \approx n^{\log_{\lambda} 2} 2^{\log_{\lambda}(1-\lambda) + 0.5 \log_{\lambda} 2 - 0.5} + \alpha \left(-\frac{1}{\ln \lambda}\right) n^{-2\pi i/\ln \lambda} - \alpha \left(\frac{1}{\ln \lambda}\right) e^{+2\pi i/\ln \lambda}$$

with accuracy 10^{-9} .

Fig 2. The graphs of $|\alpha(t)|$ for $t \in [0,1]$, $t \in [1,2]$, and $t \in [2,3]$

Proof. Now we give a proof of the theorem using analytic techniques such as poissonization and the Mellin transform

A recursive relation for the moments M_n of any function satisfying (1) is the following

$$M_n = \int_0^1 x^n dF_{\lambda}(x) =$$

$$= \frac{1}{2} \int_0^1 x^n dF_{\lambda}(\lambda^{-1}x) + \frac{1}{2} \int_0^1 x^n dF_{\lambda}(\lambda^{-1}x - \lambda^{-1} + 1) =$$

$$= \frac{1}{2} \lambda^n \int_0^1 t^n dF_{\lambda}(t) + \frac{1}{2} \int_0^1 (\lambda t + 1 - \lambda)^n dF_{\lambda}(t).$$

Substituting M_n , we obtain

$$M_n = \frac{1}{2}\lambda^n M_n + \frac{1}{2}\sum_{k=0}^n \binom{n}{k} \lambda^k (1-\lambda)^{n-k} M_k, \quad M_0 = 1, \quad n = 0, 1, \dots$$
 (7)

We define the Poisson transform as

$$M(x) = \sum_{n=0}^{\infty} M_n \frac{x^n}{n!} e^{-x}.$$
 (8)

which exists for all complex x since the series converges due to the estimate $M_m \leq 1$. Substituting (7) B (8), we get

$$M(x) = \frac{1}{2} \sum_{n=0}^{\infty} \lambda^n M_n \frac{x^n}{n!} e^{-x} + \frac{1}{2} \sum_{n=0}^{\infty} \frac{x^n}{n!} e^{-x} \sum_{k=0}^{n} \binom{n}{k} \lambda^k (1-\lambda)^{n-k} M_k = \frac{1}{2} M(\lambda x) e^{-(1-\lambda)x} + \frac{1}{2} M(\lambda x).$$
(9)

Since $M_0 = 1$, we find that

$$M(x) = \prod_{k=0}^{\infty} \left(\frac{1}{2} + \frac{1}{2} e^{-(1-\lambda)\lambda^k x} \right). \tag{10}$$

Let

$$G(x) = \ln M(x) = \sum_{k=0}^{\infty} \ln \left(\frac{1}{2} + \frac{1}{2} e^{-(1-\lambda)\lambda^k x} \right).$$
 (11)

The Mellin transform

$$\tilde{G}(z) = \int_0^\infty G(x)x^{z-1}dx,\tag{12}$$

is define for

$$-1 < \Re z < 0$$

and satisfies

$$\tilde{G}(z) = \frac{(1-\lambda)^{-z}}{1-\lambda^{-z}} \int_0^\infty x^{z-1} \ln\left(\frac{1}{2} + \frac{1}{2}e^{-x}\right) dx,$$

By integration by parts, we obtain

$$\tilde{G}(z) = \frac{(1-\lambda)^{-z}}{1-\lambda^{-z}} \frac{1}{z} \int_0^\infty \frac{x^z}{1+e^x} dx,$$

Using [15, 3.411.3], we get

$$\tilde{G}(z) = \frac{(1-\lambda)^{-z}}{1-\lambda^{-z}} (1-2^{-z}) \Gamma(z) \zeta(z+1), \tag{13}$$

for $-1 < \Re z < 0$.

It is known that the Gamma function and the zeta function are both continuable to the complex plane:

- $\Gamma(z)$ has simple poles at the non-positive integers;
- $\zeta(z)$ has only simple pole at z=1.

Therefore, the function $\tilde{G}(z)$ continuable to the complex plane.

G(z) has a double pole at z=0 and simple poles:

- at the non-positive integers, from $\Gamma(z)$,
- at $z = z_k$, from $(1 \lambda^{-z})^{-1}$, where

$$z_k = \frac{2\pi i k}{\ln \lambda}, \quad k \neq 0; \tag{14}$$

Via the inverse Mellin transform we find that

$$G(x) = \frac{1}{2\pi i} \int_{-\sigma - i\infty}^{-\sigma + i\infty} \tilde{G}(z) x^{-z} dz,$$
(15)

where $0 < \sigma < 1$.

In order to find G(x), we apply the residue theorem for the right half-plane $\Re z > -\sigma$. Now we find residues of the function $\tilde{G}(z)x^{-z}$.

Using the following formula

$$\operatorname{Res}\left(\frac{P(z)}{zQ(z)},0\right) = \frac{P'(0)}{Q'(0)} - \frac{P(0)Q''(0)}{2Q'(0)^2},$$

where

$$P(z) = \frac{1 - 2^{-z}}{z} \Gamma(z+1)(1-\lambda)^{-z} x^{-z} (z\zeta(z+1)),$$
$$Q(z) = 1 - \lambda^{-z},$$

we obtain

Res
$$(\tilde{G}(z)x^{-z}, 0) = \frac{P'(0)}{Q'(0)} - \frac{P(0)Q''(0)}{2Q'(0)^2}$$
.

(There Res $(f(z), z_0)$ denotes the residue of f(z) at the point $z = z_0$.) Substituting $(z\zeta(z+1))_{z=0} = 1$, $(z\zeta(z+1))'_{z=0} = -\Gamma'(1)$ [15, 9.536], we get

$$P(0) = \ln 2$$
, $P'(0) = -\ln x \ln 2 - \ln(1 - \lambda) \ln 2 - \frac{1}{2} \ln^2 2$,

$$Q'(0) = \ln \lambda, \quad Q''(0) = -\ln^2 \lambda.$$

Therefore,

Res
$$(\tilde{G}(z)x^{-z}, 0) = -\frac{\ln 2}{\ln \lambda} \left(\ln x + \ln(1 - \lambda) + \frac{1}{2} \ln 2 \right) + \frac{1}{2} \ln 2.$$

The residue at z_k , $k = \pm 1, \pm 2, \dots$ is

Res
$$(\tilde{G}(z)x^{-z}, z_k) = \frac{(1-\lambda)^{-z_k}}{\ln \lambda} (1-2^{-z_k})\Gamma(z_k)\zeta(z_k+1)x^{-z_k}.$$

 $\Gamma(z)$ decreases exponentially fast along vertical lines while $\zeta(z)$ is only polinomial growth as $\Im z \to \pm \infty$. Thus, Collorary 1 to Theorem 4 from [3] applies here and we have

$$G(x) = \frac{\ln 2}{\ln \lambda} \left(\ln x + \ln(1 - \lambda) + \frac{1}{2} \ln 2 \right) - \frac{1}{2} \ln 2 - \frac{1}{\ln \lambda} \sum_{k \neq 0} (1 - \lambda)^{-z_k} (1 - 2^{-z_k}) \Gamma(z_k) \zeta(z_k + 1) x^{-z_k} + \mathcal{O}(x^{-\gamma}), \quad (16)$$

for every $\gamma > 0$.

Take $\gamma = \log_{\lambda} 2 + 2$.

Using (16) and (11), we get

$$M(x) = x^{\log_{\lambda} 2} e^{\tau(\log_{\lambda} x)} \left(1 + \mathcal{O}(x^{-\gamma}) \right),\,$$

where the function τ is defined in (5).

In order to find M_n , we apply Theorem 10.5 from [14]. To apply Theorem 10.5 from [14], we must check that the conditions required in this theorem are actually satisfied. In particular:

there exist β , $0 < \theta < \pi/2$, and $0 < \eta < 1$ such that the following conditions hold for sufficiently large |z|, z = x + iy:

• for $z \in S_{\theta}$

$$\left| \frac{1}{2} + \frac{1}{2} e^{-(1-\lambda)z} \right| \lambda^{\beta} \le 1 - \eta;$$

• for $z \notin S_{\theta}$ and some $\alpha < 1$

$$\left| \frac{1}{2} + \frac{1}{2} e^{-(1-\lambda)z} \right| e^{(1-\lambda)x} \le e^{\alpha(1-\lambda)|z|};$$

where $S_{\theta} = \{z : |\Im z| \le \theta \Re z\}.$

It can easily be checked that this condition holds for every $\beta > \log_{\lambda} 2$ and we apply Theorem 10.5 from [14] to yield

$$M_n = M(n) \left(1 + \mathcal{O}(n^{-0.99}) \right).$$

for $\beta = \log_{\lambda} 2 + 0.01$.

The last step consists of simplifying the function $\alpha(t)$ (6). Using (16), we have

$$\alpha(t) = -\frac{1}{2\pi i} (1 - \lambda)^{2\pi i t} (1 - 2^{2\pi i t}) \Gamma(-2\pi i t + 1) \zeta(-2\pi i t + 1).$$

Applying the functional equation of the Reimann zeta function [15, 9.535.3]

$$\Gamma(z)\zeta(z)\cos\frac{\pi z}{2} = \pi^z 2^{z-1}\zeta(1-z),$$

we obtain (6).

References

- [1] Bari N.K., Trigonometric Series, Holt, Rinehart and Winston, New York, 1967.
- [2] Flajolet P., Sedgewick R., Analytic Combinatorics, Cambridge University Press, 2008.
- [3] Flajolet P., Gourdon X., Dumas P., "Mellin transforms and asymptotics: Harmonic sums", Theoretical Computer Science, 144:1–2 (1995), 3–58.
- [4] Erdös P., "On a Family of Symmetric Bernoulli Convolutions", American Journal of Mathematics, 61:4 (1995), 974–976.

- [5] Erdös P., "On the Smoothness Properties of a Family of Bernoulli Convolutions", American Journal of Mathematics, **62**:1 (1940), 180–186.
- [6] Garsia A.M., "Arithmetic Properties of Bernoulli Convolutions", Transactions of the American Mathematical Society, 102:3 (1962), 409–432.
- [7] Jessen B., Wintner A., "Distribution Functions and the Riemann Zeta Function", Transactions of the American Mathematical Society, 38:1 (1935), 48–88.
- [8] Peres Y., Schlag W., and Solomyak B., "Sixty years of Bernoulli convolutions", Fractals and Stochastics II (C. Bandt, S. Graf and M. Zaehle, eds.), Birkhauser, 2000, 39–65.
- [9] Salem R., "Sets of Uniqueness and Sets of Multiplicity", Transactions of the American Mathematical Society, 54:2 (1943), 218–228.
- [10] Salem R., "Sets of Uniqueness and Sets of Multiplicity. II", Transactions of the American Mathematical Society, **56**:1 (1944), 32–49.
- [11] Salem R., "Rectifications to the Papers Sets of Uniqueness and Sets of Multiplicity, I and II", Transactions of the American Mathematical Society, 63:3 (1948), 595–598.
- [12] Solomyak B., "On the Random Series $\sum \pm \lambda^n$ (an Erdos Problem)", The Annals of Mathematics 2nd Ser., 142:3 (1995), 611–625.
- [13] Wintner A., "On Convergent Poisson Convolutions", American Journal of Mathematics, 57:4 (1935), 827–838.
- [14] Szpankowski W., Average Case Analysis of Algorithms on Sequences, John Wiley & Sons, New York, 2001.
- [15] Gradstein I.S., Ryzhik I.M., Table of integrals, Series, and Products, Academic Press, 1994.

Тимофеев Е.А., "Асимптотика моментов симметричной свертки Бернулли", *Мо- делирование и анализ информационых систем*, **23**:2 (2016), 185–194.

DOI: 10.18255/1818-1015-2016-2-185-194

Аннотация. Для каждого λ , $0<\lambda<1$ определим случайную величину (симметричную свертку Бернулли)

$$Y_{\lambda} = (1 - \lambda) \sum_{n=0}^{\infty} \xi_n \lambda^n,$$

где ξ_n – независимые случайные величины с

$$P\{\xi_n = 0\} = P\{\xi_n = 1\} = \frac{1}{2}.$$

Основной результат настоящей работы

$$M_n = \mathsf{E} Y_{\lambda}^n = n^{\log_{\lambda} 2} 2^{\log_{\lambda} (1-\lambda) + 0.5 \log_{\lambda} 2 - 0.5} e^{\tau(-\log_{\lambda} n)} \left(1 + \mathcal{O}(n^{-0.99}) \right),$$

где функция

$$\tau(x) = \sum_{k \neq 0} \frac{1}{k} \alpha \left(-\frac{k}{\ln \lambda} \right) e^{2\pi i k x}$$

является периодической с периодом равным 1,

$$\alpha(t) = -\frac{1}{2i \operatorname{sh}(\pi^2 t)} (1 - \lambda)^{2\pi i t} (1 - 2^{2\pi i t}) \pi^{-2\pi i t} 2^{-2\pi i t} \zeta(2\pi i t),$$

а $\zeta(z)$ – дзета-функция Римана.

Статья публикуется в авторской редакции.

Ключевые слова: моменты, самоподобие, свертка Бернулли, сингулярная функция, преобразование Меллина, асимптотика

Об авторах:

Тимофеев Евгений Александрович, orcid.org/0000-0002-0980-2507, доктор. физ.-мат. наук, профессор кафедры теоретической информатики, Ярославский государственный университет им. П.Г. Демидова, ул. Советская, 14, г. Ярославль, 150000 Россия, e-mail: timofeevEA@gmail.com