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Abstract. We consider a Dirichlet problem for a singularly perturbed convection-diffusion equation
with constant coefficients in a rectangular domain in the case when the convection is parallel to the
horizontal faces of the rectangular and directed to the right while the first derivative of the boundary
function is discontinuous on the left face. Under these conditions the solution of the problem has a regular
boundary layer in the neighborhood of the right face, two characteristic boundary layers near the top
and bottom faces, and a horizontal interior layer due to the non-smoothness of the boundary function.
We show that on the piecewise uniform Shishkin meshes refined near the regular and characteristic
layers, the solution given by the classical five-point upwind difference scheme converges uniformly to the
solution of the original problem with almost first-order rate in the discrete maximum norm. This is the
same rate as in the case of a smooth boundary function. The numerical results presented support the
theoretical estimate. They show also that in the case of the problem with a dominating interior layer
the piecewise uniform Shishkin mesh refined near the layer decreases the error and gives the first-order
convergence.
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Setting the problem

We consider a Dirichlet problem for singularly perturbed convection-diffusion equation
in a rectangle domain © = (0,1) x (=1, 1) with the boundary 02:

Lu=—-cAu+adu/dr+qu= f(z,y), (z,y)e€Q, €€(0,1],
a=const >0, q=const >0, (1)
u=g(z,y), (z,y)€ N

Assume that g(x,y) on 02\ {(0,0)} and f(z,y) on €2 are sufficiently smooth and

9g:1(y) 9g1(y)
L Rl o P 2)

where ¢1(y) = ¢(0,y). It is known that a solution of the problem for a small € can have
a regular layer O(¢) wide near the boundary x = 1, through which the flow is leaving
the domain; the characteristic layers of the wideness O(1/¢) near the boundaries y = +1
parallel to the flow; corner layers near the vertices at the exit of the flow, and also
corner singularities because no compatibility conditions at the corners of the domain are
assumed.

1. Difference problem

In the domain €2 we define the following mesh 0" as a direct product of one-dimensional
meshes @ (x) and Wh(y), where Wi (x) = {7;|0 = 29 < 21 < --+ < any = 1}, Wh(y) =
{yil 1=y n<yna <<y 1<y=0<y; < ---<yy=1}

Defining the mesh domain, we shall use a piece-wise uniform Shishkin mesh refining
near the boundary x = 1 where the solution has a regular layer, and near the boundaries
y = *1, where it can have characteristic layers.

We introduce the following notation: steps of the mesh h;; = x; — x;_1, ho; =
y; —yj—1 and hy; = (hy; + hiiy1)/2; divided diferences vz, ; = (vij — vic15) /Py Vaij =
Vziv1; and vz = (vip1; — vi;)/h1; boundaries of the mesh domain 00" = Q" non.

We approximate the problem for u(x,y) by the classical five-point difference scheme

—h
for uf] on the mesh O :

Lhuzj = —(ul, + ugy)” + aufgi’j + qqu = f(z,y;), (i, y;) € Q" =0"n Q,

“?] = g(zi,y5), (i, y;) € 0"

(3)

Observe that the maximum principle holds for the difference problem in question.

For sufficiently smooth on the faces of the rectangle boundary functions the problem
was considered by several authors, in particular in [1], [2], [3]. In the case when no
compatibility conditions, except for minimal ones, are assumed in the corners of the
domain in [2| on the piece-wise uniform Shishkin meshes refining near the regular and
the characteristic layers it was obtained the convergence of the mesh solution to the
solution of the original problem with rate O(N~!In® N) uniformly in & (N is the number
of the points in the mesh in every direction).
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For the singularly perturbed convection—diffusion equation in a half-plane the problem
with non-smooth boundary conditions, when there is a discontinuity of the boundary
function or its derivatives, is considered in [4] where the estimates for the solution and
itsderivatives depending on the parameter € are given. We use these estimates, and also
rely on the results of [2] and [3].

Below ¢ denotes a positive constant independent of ¢ and N.

2. Decomposition of the solution

To begin with we single out a solution u;(z, y) related to the singularity of the boundary
condition ¢;(y). For this purpose we define the function g{(y) = g1(y) * n(y) on the line
R = {(z,y) |z = 0} where

mw:{L vl < 1/3,

<
0, lyl=2/3,  n(y) € C*R).
We consider a bounded solution uj(x,y) of the problem
Luj = —eAuj +aduy/0x + quy =0, (z,y) €RL,  wj(0,9) = g7 (y) (4)

in the half-plane R% = {(z,y),z > 0}. To estimate the solution uj(z,y) we use the
results of [4]. The main theorem of this work in particular states the following. Let
r = /22 +y?, and let R, (resp. R_) denote the interval (0, co) (resp. (—o0,0),).
Theorem 1. Let gi(y) € H (R |UR_). Then there exists a constant ¢ such that for
0<e<landm=0,2,3, n=0,1,2,3 the following inequalities hold for the solution
ui(2,y):

1D, wi(w,)] < (1 + ),

D™ (2, y)| < e(1+r"")  for r < 2,

1Dy wi(z,y)| < c(L+r7")  for 7 < 2e,

|D" ui(z,y)] < ol + VerTmt? e~V /er 4 pmmtl 67”/5) for 26 <r < V2,
1Dy ui(z,y)| < e(l+ gt D/2 (ot )/2 pmey?/er | pmntl gmer/ey - for 90 < < V2.

We represent the solution u(x,y) of the original problem in the form u = wu; + uy
where u; is the restriction of the solution ui(z,y) to Q and wus(z,y) is a solution of the
problem

—eluy + aduy [0 + qus = f(z,y),  (2,y) €,

uz(z,y)loa = (9(z,y) —wi(z,y))|o0-
The boundary function of the solution us(x,y) has no singularity on x = 0.

3. The estimate of the convergence rate of the mesh
solution

According to the decomposition u = u; + us we write down the difference solution as

u = ul + ul where every ul is a solution of the problem

Lhuz,i,j = Lug(z;, yj), (i, yj) < Qha Uz,i,ﬂam = Uk(xz»yjﬂaﬂm (5)
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It is our main task to investigate the convergence rate of the difference solution u”

to uy(z,y).

The approximation error of the equation on the solution u, (z,y) is equal to W, ;(u;) =
L"(uy;—u}, ;). The estimate W; ;(uy) is obtained from the estimates of the the solution
uy(z,y) and some additional inequalities (similar to how it was done in [2]):

|L" (ug — uf)]iy = Wi (ur)] < c ( (Pris17;; 2+ hoj17; ; )+ hyiry + ho 17, ) (6)
For the estimation of the |u; —u?| we use the barrier function introduced by V.B.Andreev
in [2]: B(r',¢') = ln% + (/2 — ) (7/2 4+ ¢ + 1) + 1 where 7' = /2’2 +y?, ¢ =
arctan ﬂ/, ' =x+0bH, b> 1. The following lemma is an analog of the Theorem 1 of
that work for the mesh we consider here.

Lemma 1. If the function w ; satisfies the following inequalities
|LMwl| < cleri?+r;t + 1) for (x5,y;) € Q" wl| <c for (i) € 09",

then the estimate |w}';| < cIn N is fulfilled in the whole domain Q"

The following estimate of the error of the solution u? of the difference problem follows
from (6) and Lemma 1 :

Lemma 2. Let ulix,y) be the above defined restriction of the solution of the problem
(4) to the domain Q, and ul'— be the solution of the problem (5). Let f(z,y) be smooth
enough in Q, the same holds for gx,y) in 02\ {(0,0)}, and g(0,y) € H'({-2/3 <y <
0} {0 <y < 2/3}). Then the following estimate holds

luy — ul'| < e N7'in? N, (xi,y;) € Q"

A convergence rate for the solution u! is obtained in [2], [3]:

lug —ub] <eN"'In® N, (z4,y,) € a".

The last two estimates imply our main result:

Theorem 2. Let u(x,y) be a solution of the problem (1), (2). Let f(x,y) be smooth
enough in ), the same holds for giz,y) in O\ {(0,0)} and g1(y) € H™ ({— 2/3 <y<
0} U{0 < y < 2/3}). Then the following inequality holds for the solution ul; of the

problem (3) on the mesh " uniformly in e:

1
u(zs, y;) — uljlpn, < cN'In® N, (wi,y,) € "

4. Example of numerical solution

We consider the following problem in the unit square:
—cAu+20ufdr+3u = f(z,y),  (z,y) € Q= (0,12
u(z,y) =0, (z,y) € 92\ {(0,9)},

3

y°, 0<y< 0.5,
u(0,y) = )

(1 —1y)°, 0.5 <y <L
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The solution of this problem has a discontinuity of the first derivative on the boundary
x = 0 at y = 0.5, thus it has a weak interior layer. For f(z,y) = 0 the solution has
relatively small regular layer near the boundary x = 1, no characteristic layers along
the boundaries y = 0, y = 1 and singularities in the corners of the square (Fig.1). The
problem of the regular layer is resolved by means a mesh refining in the strip of width
op =min{l/2eln N; 1/4}.
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Fig. 1. Solution Fig. 2. The error of the solution

To estimate the convergence rate we use the values of e; = r{la§<|u’1{,(z, ) —ubn(2i,27)]
Z?]

where u% (7, 7) is a difference solution on the mesh with the number of points equal to N
in every direction and u}, is a solution on the mesh with the double number of points
while the value of oy is the same. In the Table 1 the e1, e = €1 - N, e3 = €1 - N/In N for
every considered value ¢ are evaluated.

The numerical investigations show that the maximal errors in the solution are located
in the interior layer, near the middle of it (Fig. 2).

For ¢ = 1072 the convergence rate is O(N7'); for ¢ < 107% it is O(N"!'In N)
which meets the above obtained estimate (Lemma 2 ). In course of decreasing the e
the error stabilizes which gives evidence of the uniform in € convergence. The piecewise
uniform Shishkin mesh with oy = min {g~"/?,/zIn N; 1/8} refined along the interior
layer improves the convergence up to the rate O(N 1) for our solution with the dominating
interior layer.

If for the right hand part of the equation we have f(x,y) = 1 then the solution
has a more serious regular interior layer and characteristic layers. In this case the
maximal error is located in the neighborhood of the regular interior layer. Moreover,
the convergence rate is O(N~'In® N) uniformly in ¢ which meets the above obtained
estimates (Theorem 2).

The author is grateful to V.B. Andreev for setting the problem, his attention and
valuable remarks.
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Table 1

The errors of solution e; = max |[uf, — uly|
and it compositions on N and N/InN

N 32 64 128 256

e =102

e; | 3.15-1073 1.63-1073 0.80-1073 0.39-1073
€9 1.01-1071 1.04-10~1 1.02-1071 0.98-102
es 2.91-1072 2.51-1072 2.11-1072 1.78-1072

e; | 1.49-1073 1.10-1073 0.70-10~* 0.37-10~*
ey | 4.76-1072 7.05-10~2 8.95-102 9.41-10~2
es | 1.37-1072 1.69-102 1.84-1072 1.70-1072

e; | 1.02:1073 0.54-10~* 0.29-10~* 0.17-10~*
ey | 3.28:1072 3.43-1072 3.69-1072 4.46-1072
e3 | 9.46-1073 8.24-1073 7.60-1073 8.05-1073

ey | 1.02:107% 053107 0.27-1074 0.14-10~*
es | 3.26:1072  3.36:1072  3.43-1072 3.54-1072
es | 9.41.107%  8.07-107  7.07-1073 6.39-1073

e; | 1.02:1073 0.52:10~% 0.27-107% 0.13-1074
es | 3.26-1072 3.35-102 3.40-1072 3.44-1072
es | 9.40-1073 8.06-1073 7.01-1073 6.20-103
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Annoramus. Paccmorpena 3agaga Jlupuxiie [1i1st CHHTYJISIDHO BO3MYIIIEHHOTO yPABHEHNS KOHBEKINN-
auddy3un ¢ TOCTOSHHBIME KO MUITMEHTAMI B MPSAMOYTOJIbLHUKE B CIydae, KOT/Ia KOHBEKITUS MapaJi-
JieJIbHa, TOPU30HTAIbHBIM CTOPOHAM IIPSIMOYTOJIbHUKA U HAIIPABJIEHA B CTOPOHY IPaBOil 'PAHUIGI, a HA
JIEBOII T'paHUIle MepBasi MPOU3BO/HAS I'PAHUYHON (DYHKIMU pa3pbiBHA. 1Ipy THX yC/IOBUSIX pelleHue
3a/Ia9M UMEeT PEryJIspPHBII MOrPAHUYHBINA CJION B OKPECTHOCTH IMPABOIl IDAHUIIBI, JIBA XAPAKTEPUCTU-
YeCKUX HOIPAHUYHBIX CJI0d OKOJIO BEpXHEU W HUKHEU I'PAHUIBI U TOPU30HTAJBHBIIA BHYTPEHHHUIL CJION,
BO3HUKAIOIIUI 13-38 MaJIOi IJIaAKOCTU rpanndHoil dyukmun. [TokazaHno, 4T0 HA KYCOYHO PABHOMEPHBIX
cerkax [IIWIKWHA, CIYIIAMOIMMUXCS OKOJIO PErYJISPHOIO U XapaKTEPUCTUYECKUX CJIOEB, PEIleHne, MOJIy-
YaeMoe 110 KJIACCHYECKON ISITUTOYETHON PA3HOCTHOW CXeMe C HAIIPABJIEHHOW PA3HOCTHIO, PABHOMEPHO
10 MaJIOMy ITapaMeTPy CXOIUTCS K PEIIEeHWI0 MCXOTHON 3aJ[add B CETOYHON HOPME MaKCAMYM MOJLYJIst
[IOYTHU C MEPBBIM MOPSIKOM, & UMEHHO C TOM K€ CKOPOCTBIO, 9TO U IPH IVIAJKON rpaHuIHON (YHKIIUN.
IIpesncraBiienbl YnucaeHHbIE PE3YIHTATHI, HOATBEPIK/IAIOIINE TEOPETUIECKYIO OIEHKY. Takrke MOKa3aHo,
9TO B CJIydae 33J1a4M C [Ipeo0JsIaIaloNiiM BHYTPEHHUM CJIOEM KYCOYHO paBHOMepHas cerka Illumkuna,
CTYIIAIOIIASICS OKOJIO BHYTPEHHErO CJIOs, JIAeT YMEHBIIIEHUE OIMUOKN U CXOIUMOCTD C IIEPBBIM HOPSIIKOM.

Crarbst myObIUMKyeTCss B aBTOPCKON PeIaKIun.

KurouesBbie ciioBa:  kouBeknusi-auddy3usi, CHHIYISIPHOE BO3MYIIEHNE, BHYTPEHHUI CJIOH, CEeTOYHOe
pelienne, paBHOMEpPHAsI CXOJIMMOCTD
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