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Abstract. The main objective of the paper is to present a new analytic-numerical approach to
singularly perturbed reaction-diffusion-advection models with solutions containing moving interior layers
(fronts). We describe some methods to generate the dynamic adapted meshes for an efficient numerical
solution of such problems. It is based on a priori information about the moving front properties
provided by the asymptotic analysis. In particular, for the mesh construction we take into account
a priori asymptotic evaluation of the location and speed of the moving front, its width and structure.
Our algorithms significantly reduce the CPU time and enhance the stability of the numerical process
compared with classical approaches.
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Introduction

Singularly perturbed parabolic problems often feature narrow boundary and interior
layers (stationary or moving fronts). Their numerical treatment by means of difference
schemes requires meshes with a very large number of nodes. In some cases it leads
to unacceptable CPU-times and unreliable solutions due the accumulation of round-
off errors. To overcome both problems we propose an effective asymptotic-numerical
approach for problems with moving interior layers in nonlinear reaction-diffusion-advection
equations. Its motivation comes from the following observations: the smaller the parameter
¢ in singularly perturbed problem, the more rough and unstable the constructed numerical
solution we obtain; but the more precise a prior: information about the exact solution
we can get from the asymptotic analysis. So, an appropriate combination of asymptotic
analysis and numerical schemes should improve the effectiveness of numerical calculations,
increase its speed and stability.

This idea has been used recently for problems with stationary interior layers in [1, 2,
3, 4, 5, 6, 7], where special grids have been used. In the case of moving interior layers,
fairly complicated difference schemes has been constructed in the papers |2, 8, 9, 10| and
[11] where one example of periodic problem was considered.

In this paper we present an effective analytic-numerical approach for the numerical
approximation of periodic solutions with moving interior layers in reaction-diffusion-
advection equations. This approach exploits the asymptotic results obtained in [12, 13,
14] and is based on the construction of dynamic adapted mesh(DAM).

Note, that numerical investigation of time-periodic problems generates a number of
specific features. The main of them is that there is no information about the location of
the interior layer at the initial time moment. To determine the initial conditions, which
are necessary for further numerical calculations with the dynamic adapted mesh, we can
use asymptotic analysis of the problem.

Another approach for numerical solving of periodic problems is to use the method
of relaxation count. However, in this case it is necessary to know the stability of the
periodic solution and investigate its domain of influence for the correct choice of the initial
approximation. This proof and related estimates also can be done using the asymptotic
analysis of the periodic problem by the methods developed in [12, 13].

The paper is structured as follows. In Section 1. we discuss methods by which we can
obtain a prior: information that will be used for the process of constructing a DAM. In
Section 2. we briefly describe the main ideas for constructing DAM.

1. Asymptotic analysis and a prior: information

To demonstrate our approach we consider the following problem

( (0%u  Ou ou

gu_gu) _ 4 M B

5 (81'2 0t> (u,z,t) e + B(u, x,t)

for (z,t) € D:={x € (—-1,1); t € R}, (1)
w(—1,t) = wep(t), w(l,t) = tupigne(t) fort € R,

L u(z,0) =u(z,t+1T) forz e [-1,1], t € R,
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where the parameter ¢ is sufficiently small (0 < ¢ < 1) and the functions A(u,z,1t),
B(u,z,t), wes(t) and ugn(t) are sufficiently smooth and T-periodic in ¢.

The methods of asymptotic analysis for singularly perturbed time-periodic parabolic
problems was developed in [12, 13]|. It is known [13] that under certain conditions
this problem has a solution of moving front type: in the interval (—1,1) there is some
periodically moving point (¢, ) which is connected with a thin transition layer containing
x4, (t,€) such that the solution for z < wx,(t,¢) is close to some level w,z(t) and for
r > x4(t) close to some level wign(t), where wepi(t) # wrigni(t) for all t. The main
purpose of this paper is to present an effective numerical method for the solution of
the moving front type which is based on the asymptotic a prior: information such as
location and /or speed of the internal layer (front), width of the internal layer and structure
of the internal layer. This information can be obtained by the asymptotic analysis of
the problem (1) which was developed in [13]. Here we recall some ideas and formulas
from [13].

If we put € =0 in (1) we get the reduced equation and define two functions

d

O t): Al x,t)é + Bu,,t) =0, w(—1,1) = wep(t);
(2)

d

Oz, t): Alu, a:,t)ﬁ + Bu,w,t) =0, u(l,t) = tpigne(t),

where t has to be considered as a parameter.

Condition 1. Suppose that for (x,t) € D := {x € [~1,1],t € R} there exist T-
periodic in t solutions ©'(x,t) and ¢"(x,t) of the problem (2) satisfying the following
inequalities for all (v,t) € D

a) oz, t) < ¢ (x,1),

l r <3)
b) A(¢'(z,t),x) >0, A(¢"(x,t),z) <O0.

Let us define the function

" (@,t)
I(x,t) := A(u, x, t)du (4)
@l(z,t)
Condition 2. The equation
I(z,t)=0 (5)

has a T-periodic solution xy(t) satisfying for allt € R

a) —1 <uzo(t) <1,

s

b) / A, zo(t), )du > 0 for s € (¢Hzo(t), 1), " (zolt), 1)) . (6)

@' (wo(t):t)

Condition 3. The solution zo(t) of equation (5) obeys the condition

%(xo(t),t) <0 forall teR. (7)
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In [13] under Conditions 1-3 the existence of the solution of (1) with moving internal
layer was proved and rigorous asymptotic analysis of this solution was presented.
Asymptotic of the solutions of (1) was built in the form

U (w,t,e) = " (w,t,6) + Q7 (& t,e) = f:si (@ @n+QrEn),  ®

1=0

where @"(x,t, €) are regular functions which represent the solution far from the transition
point x,,.(t,€); the functions Q' (&, ¢, €), where & = (x — x4,.(¢,€)) /e, describe the moving
front located near this point; & < 0 is related to a function with the upper index [ and
¢ > 0 to a function with the upper index r.

Location of the transition point zy,.(t,€) presented in the form of a power series in &

Ty (t,e) = xo(t) +ex1(t) + ... (9)

where z;(t), © = 1,2,... are T-periodic functions. The terms of series in (8) and (9)
can be determined by the asymptotic procedure [13]| from CW-matching conditions
for functions U!(x,t,¢) and U"(x,t, ) — continuous matching for functions and its first
derivatives at the point x = x4,(¢,¢) for all orders of ¢.

It was also proved in [13] that functions Q'"(,t,¢) exponentially tend to zero if
¢ — t00. So the front width can be estimated as d = Ce|lne].

In Section 2. we use this information and illustrate our analytic-numerical approach
by means of the following particular case of problem (1): A(u, z,t) = —u and B(u,z,t) =
ub(t), where b(t) =2+ cos(4nt) ; wepe(t) = —8 4 sin(4nt), Upign(t) = 8 — 2sin(4nt).

For this example we have

o'(x,t) = =8 +sin(4nt) + (v + 1) (2 + cos(4nt)) ;
" (z,t) =8 — 2sin(4nt) + (x — 1) (2 + cos(4t)).

Condition 1 is satisfied because it holds for all z € [—1,1]
O (2, 1) — " (2, 1) = —16 4+ 2 (2 + cos(4nt)) + 3sin(4rt) < 0;

AP (x,t),2,t)) = 8 — (x + 1) (2 + cos(4nt)) — sin(4rt) > 0,
A" (z,t),x,t) = =8 — (x — 1) (2 4 cos(4nt)) + 2sin(4nt) < 0.
The function I(x,t) defined in (4) reads
" (@,t)
I(x,t) = / —udu =

@l (z,t)

% (22 (2 + cos(4nt)) — sin(4nt)) (=16 + 2 (2 + cos(4nt)) + 3sin(4nt))

and (5) gives the following expression for the zero order term of moving front position

sin(47t)

=——F—"—¢€[-1;1 for all R. 1
Zo(1) 4 + 2 cos(4rt) € =11 o te (10)

Conditions 2 and 3 hold true for this x(t).
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At first order of € we have from [13]

(1) = ~ g - [255(0) + (3 an(0). ) + T ol0).1)] (1)

where

ul(r,t) = % {ul%;gt) -In (1 + blt) (x+ 1)> + % [In(b(t))] - (x + 1);

@ (x,1) = % [“b@'(—"tt)(t) ‘In (1 + %(x - 1)) + % n(b(t)] - (z — 1).

2. Dynamic adapted mesh construction

Our idea of dynamic adaptive mesh construction is quite simple. If we know the width
of the transition layer, we can introduce a basic uniform mesh with steps equal to this
width. Then refine two intervals that are nearest to the transition point x,(¢,¢) which
location we estimate by asymptotic analysis as xg(t) + ez1(t). Next, if we know the
position of the transition layer for each time step, we can track whether the transition
layer is located in these intervals or not. If the transition layer starts to leave one of these
intervals, we refine the following or previous basic interval, perform an interpolation of
the function on these additional nodes. In the following calculations we discard the nodes
of the refined interval that are farthest from the position of the transition point. For an
appropriate interpolation we need an information about the structure of the transition
layer. As a result, we have again only two refined basic intervals. Some example of the
constructed DAM by this approach is represented on Figure 1.

Another approach is to construct classical "Shishkin mesh"(see Figure 2).

A crucial assumption for this constructing process is the possibility to obtain a
corresponding a prior: information. This problem was discussed in Section 1. for one
type of reaction-diffusion-advection equations.

Some example of numerical calculations is represented on the Figure 3.

3. Conclusion

Asymptotic analysis of a singularly perturbed problem gives the a priori which can be
used for efficient mesh construction. This fact provides the possibility for a productive
combination of asymptotic and numerical approaches in order to substantially improve
the effectiveness of numerical calculations.

Based on these ideas we propose an efficient analytic-numerical algorithm for a
singularly perturbed reaction-diffusion-advection equations that allows significantly to
reduce the complexity and to enhance the stability of the numerical calculations in
comparison with classical approaches. As a result, we can essentially save CPU time and
significantly speed up the process of constructing approximate solutions with a suitable
accuracy.
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Fig 1. Some result of the process of dynamic adapted mesh construction: [J — node that
is used for calculations; o — node in which function was interpolated; x — node that was
discarded from the process of calculations on the following steps
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Fig 2. Some result of the process of dynamic adapted mesh construction in the case of
constructing classical “Shishkin meshes”
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Fig 3. The example of calculation for ¢ = 1072, Ny = 43 (has been calculated

automatically), N, = 100 (control parameter that has been set manually)
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Awnnsorammsi. OCHOBHOI 11eJIbIO0 JIAHHON pPabOTHI SIBJISIETCS IIPEJCTABJIEHHE HOBOTO AHAJIMTUKO-
YUCJIEHHOTO TIOX0/1a K MCCJIEIOBAHUIO CHHIYJISIPHO BO3MYIIEHHBIX MOJejeil TUla peakius-auddy3usi-
AJBEKIMs, PENIeHNs] KOTOPBIX COJEPKAT JIBUKYIIUECs BHY TPEHHUE TIepexonble cion (bpoursr). B pado-
Te OMUCAHBI HEKOTOPBIE METOBI IIOCTPOCHNUSA JUHAMUYIECKH aJAlITHPOBAHHBIX CETOK st 3(PPEKTUBHOTO
YUCJIEHHOIO PEIIeHNs 38184 YKA3aHHOIO TUIIA. DT METO/IbI OCHOBAHBI Ha MCIIOJIb30BAHUN allpUOPHON NH-
dopmaruu 0 CBOMCTBaX JBUKYIIEr0Cs (DPOHTA, MTOTYIEHHON B pe3y/IbTaTe aCUMIITOTUIECKOTO aHAIN3a.
B wacTHOCTH, IPU TTOCTPOEHUH CETKU YIUTBIBAIOTCS AlPUOPHBIE ACUMIITOTHYECKUE OIEHKH JIOKAIN3AIUN
1 ckopocTu (PPOHTA, €ro MIMPUHA U CTPYKTypa. lIpenioKeHHble aJIrOPUTMBI IO3BOJIAIOT CYIIECTBEHHO
CHU3WUTDH 3aTPAThl BRITUCIUTEIHLHBIX PECYPCOB U MOBBICUTEH CTAOMIBLHOCTD YMCJIEHHOTO CUETa 0 CpaBHe-
HUIO C U3BECTHBIMHU KJIACCUIECKIUMU ITOJIXOTaMM.

Crarbst IyObJIMKyeTCsl B aBTOPCKON PeJIaKIun.

KurogyeBblie ciioBa: CHHIYJIIDHO BO3MYIIEHHBIE [1apabOINYecKie YPABHEHNUSI, [IEPUOIMIECKNE Pellle-
HUsl, TUHAMUYIECKN aJJAIITHPOBAHHDIE CETKH
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