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Abstract. We consider a singularly perturbed elliptic problem, of convection-diffusion type, posed
on a circular domain. Using polar coordinates, simple upwinding and a piecewise-uniform Shishkin
mesh in the radial direction, we construct a numerical method that is monotone, pointwise accurate and
parameter-uniform under certain compatibility constraints. Numerical results are presented to illustrate
the performance of the numerical method when these constraints are not imposed on the data.
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1. Introduction

There have been many recent publications on parameter-uniform numerical methods
[9, 2| for singularly perturbed linear problems of the convection-diffusion form

—eAu+a-Vu+bu=f a> 0,

where the domain is the unit square. In contrast, there have been few publications for the
case when the domain is non-rectangular and the problem is of convection-diffusion type.
In the case of elliptic problems posed on arbitrary convex domains, several theoretical
difficulties arise in designing a parameter-uniform numerical method [1]. An invertible
transformation can sometimes be designed to map a non-rectangular domain to the
unit square. However, in general, the differential operator in the transformed variables
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will contain a mixed second order derivative term. The construction of a parameter-
uniformly stable discretization of a mixed second order derivative on a layer-adapted
highly anisotropic mesh remains an open question. In this paper, we examine a circular
domain for which the standard transformation using polar coordinates can be utilized
throughout the entire domain. For this particular geometry, there are no mixed derivative
terms present in the transformed problem.

The issue of compatibility conditions at the characteristic points and the construction
of an e-uniform asymptotic expansions have been studied by Jung and Teman [6]. In
[3], we impose more stringent constraints on the problem data in a neighbourhood
of the characteristic points, in order to exclude the potential presence of additional
singularities near these two points. Under these data constraints, a parameter-uniform
numerical method can be constructed [3|, which captures the boundary layer at the
outflow boundary. Here, we present numerical results for a problem which does not satisfy
the minimal compatibility conditions. These experimental results suggest that some
positive order of uniform convergence may be retained in the case of no compatibility.
However, a theoretical justification for this conjecture remains an open question.

Notation: Our interest lies in designing parameter-uniform numerical methods and
so throughout this paper, C' denotes a generic constant that is independent of the singular
perturbation parameter £ and of all discretization parameters. We will always use the
pointwise maximum norm, which we denote throughout by || - ||.

2. Continuous problem

Consider the singularly perturbed elliptic problem:

Li = —eNt+a(zv,y)a, = f, in Q:={(z,y)|2* +y* < 1} (1a)

=0, on 09 a>a>0. (1b)

Assume that the data are sufficiently smooth so that @ € CS"’(E). For this problem, a

boundary layer will form in the vicinity of the outflow boundary T'p := {(z,y)|—1 < z <

1,y = V1 — 22} and there will be no layer present in the vicinity of the inflow boundary
Fy={(z,y)| - 1<z <1ly=—v1-—2?}

Polar coordinates are a natural co-ordinate system to employ for this problem. In

these coordinates, the continuous problem (1) is transformed into the problem: Find

u(r,0) € C°(Q) N C3(Q) such that

- %Ug’g — ety + a(r, 0)((sind — i)ur + Coseug) = f, in (2a)
r ar

u(1,0) =0,  0<8<o2m, (2b)

u(r, 2m) = u(r,0), ug(r, 2m) = up(r,0), 0<r<1. (2¢)

The solution u can be decomposed into the sum of a regular component v and a
singular component w such that

Lv=f, in Q, v=wuon [';; vsuitably specified on I'p;

Lw =0, in Q, w=0on I'y; w=u—von [p.
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This type of decomposition of the solution was first introduced by Shishkin [9] for a
large class of singularly perturbed partial differential equations. The decomposition is
related to an asymptotic expansion [8], but note that there is no explicit identification
of a remainder term. Moreover, the components v and w are not explicitly identified.
From a numerical analysis perspective, the advantage of this type of decomposition is that
parameter explicit pointwise bounds on the partial derivatives (up to and including third
order) of these two components can be established. These bounds on the derivatives of the
components are central to establishing informative pointwise bounds on the truncation
error associated with any proposed numerical method.
The reduced problem is defined as: Find 7y such that

% =f in Q\Ij; dp=a=0, only.

As identified in [6], singularities appear in the vicinity of the points (£1,0) unless
compatibility conditions of some level m
oiti ]?
oxtoy’

(£1,0)=0, 0<2i+j<m, m>0 (3)

are imposed on the data. The first order correction to the reduced solution is given by

01 (z,y) = /y M dw.

w=—vizz a(z,w)

Requiring a certain regularity on v; places additional regularity requirements on vy.
Explicit compatibility conditions on the derivatives of the regular components vy, v; are
given in [5, Lemma 2.2| to ensure any desired level of regularity of these components.
The outflow boundary conditions for the regular component are taken to be vy + cvy
in order that the partial derivatives (up to second order) of the regular component are
bounded independently of €. For example, compatibility conditions of level m = 9 suffice
for 7 € C°(Q) and ¥; € C°(Q). However, to obtain pointwise bounds on the boundary
layer component w, additional constraints were imposed in [3]:
Assumption Assume that there exists a 0.5 < d < 1 such that

fle,y) =0, 1-6<|z| <1 (4)
Note that this assumption supersedes the compatibility conditions (3) of any order.

Theorem 1. /3] The solution u of problem (1), (4) can be decomposed into the sum
u = v + w, where the derivatives of the reqular component v satisfy the bounds

C(1+e* "), i+ 7 <3,

H aer]U

ortog7

and the boundary layer component satisfies (for some positive )

asin(0)(1—r) ¥

lw(r,0)] < Crle= 2= +Ce =.
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3. Discrete problem

A popular assumption within the literature on numerical methods for singularly perturbed
problems is to assume that
e<CNL

In this case a classical finite element method will generate large oscillatory solutions and
thereby fail to capture accurately any layers present in the solution. This is one reason
why this case is often viewed as the case of most interest. For certain classes of singularly
perturbed problems, one can generate a uniformly valid asymptotic expansion for the
continuous solution. In addition, there are problem classes for which a combination of a
simple numerical method and the analytical expression for the leading order term for the
layer function can be utilized to generate an approximation, to the continuous solution,
of O(N™1). For example, in the case of problem (1), (4), we observe that

_a(1,0)sin(0)(1—r)
€

i = Vo(w,y) — To(z, V1 — 22)(2* + y*)e + O(e).
Coupling this asymptotic expansion with the restriction on the parameters of e < CN~!,
means that we only require a sufficiently accurate approximation to the reduced solution
Uo(z,y). This can be easily generated by simply discretizing the first order problem
defining the reduced problem and then interpolating these nodal values to produce a
global approximation. However, these mixed numerical /asymptotic approaches only have
validity under the assumption e < CN~!. In [3], we have designed a parameter-uniform
numerical method, which is valid for all values of 0 < ¢ < 1.

We discretize problem (2), (4) using simple upwinding on a tensor product mesh, with
M mesh elements uniformly distributed in the angular direction and N mesh elements in
the radial direction distributed across a piecewise uniform Shishkin mesh [9]. The mesh
points (r;, 0;) are defined by:

2

Qj:iK,j:O,]_,...,M, :M (5&)
N N
T’Z:ZH,Z:O,l,,E, 7“1:1—0'4-(2—]\[/2)}1,2:?4—1,,]\[ (5b)
2(1—o0) 20 o1 4
H=——> h:=— = —, Cieln N}; > .
I . h N ° mln{Q,Csn b C >am (5¢)

The numerical method on this mesh is: For 0 <r; <1, 0 <6; < 2m,

— :;253[] — 62U + (asinf; — ;)DriU + % cos0; Dy U = f; (6a)

(2

where 2(aD*)Z := (a — |a|)DTZ + (a + |a])D~Z and

U(l,Hj) :O, OSHJ §27T, (6b)
U(ry, 2m) = U(ry,0), Dy U(r;,27) = DfU(r;,0), 0<r; <1; (6¢)
M—-1
1
U(O,QJ) = U(O) = M U(?"l,ej), 0 S 9]' S 2. (Gd)

Jj=0
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The finite difference operators Dt, D~ are the standard forward and backward first order
difference operators and §? denotes the standard discrete approximation of the second
derivative. Once the nodal values have been determined, a global approximation U can
be generated using the bilinear interpolant

0r6) = 3 Ul 6)6:(r)5(0),  (r.6) €0,

i,j=0
where ¢;(r),1;(0) are piecewise linear basis functions, defined by the nodal values of
Gi(ry) = dix = ¥i(0).

Theorem 2. [3] Assume M = O(N). If u is the solution of the continuous problem (1),
(4) and U is the bilinear interpolant of the discrete solution U, then

|lu—=U|| < C(N"'+M Y (InN)>

4. Numerical results

In this section, we examine the performance of the numerical method as applied to two
particular problems. However, these problems do not satisfy the constraint (4) imposed
in [3]. Observe that the choice of the transition parameter o in (5¢) depends on (4). For
the problems examined in this section, we have simply replaced (5c) by

1
o= min{§, deln N'}.

Approximations to the uniform order of convergence are estimated using the double mesh
method |2|. The numerical method was applied for ¢ € {277}2° and N € {27}1°. The
maximum pointwise two-mesh differences DY and the parameter—uniform maximum
pointwise two-mesh differences D¥, are computed from

DY = ||UYN =T ||ox o, DV := max DY
' ee{2-7}20

Approximations pY to the local order of convergence and approximations p" to the
parameter—uniform order of local convergence are subsequently computed from

DN DN
pév = log, 2N pY = log, DN

Example 1 (Compatible problem) Motivated by the test example from [4, equation
(61)], we consider the following problem

—cAu+u, = 671‘@%*92), in Q= {(v,y)2*+y* <1}, u=0,on 90 (7)

This problem is not covered by the theory presented in [3]. However, it is highly compatible
at the characteristic points. In Table 1, we present a corresponding table of computed
orders of convergence and in Figure 1 we present a sample computed solution and
a comparison between the computed solution and a fine mesh solution. We observe
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Table 1. Computed double-mesh orders for (7) for some sample values of (N, )
pY
16 32 64 128 256
0.9726 0.9828 0.9911 0.9954 0.9977 0.9988
0.9831 0.9915 0.9958 0.9979 0.9989 0.9995
1.0070 1.1536 1.0959 1.0535 1.0286 1.0148
0.8941 1.1250 1.1220 1.0737 1.0393 1.0202
0.8709 1.1697 0.8094 0.8506 0.9293 0.9647
0.8336  1.1413 0.1646 0.7814 0.8888 0.9449
0.7334 1.1615 0.6512 0.5114 0.7289 0.7194
0.6157 1.1146 0.8905 0.5192 0.7304 0.7233
0.5836  1.0358 1.0265 0.5194 0.7289 0.7273
0.5863 0.9855 0.9939 0.6061 0.7261 0.7302
0.5926 0.9584 0.9647 0.6550 0.7268 0.7312
—1110.5969 0.9443 0.9474 0.6808 0.7271 0.7318
12 105993 0.9373 0.9376 0.6944 0.7273 0.7321
13 10.6005 0.9337 0.9323 0.7015 0.7274 0.7323
—14 1 0.6012 0.9320 0.9295 0.7052 0.7275 0.7324
0.6015 0.9311 0.9281 0.7070 0.7275 0.7324
—16 1 0.6017 0.9307 0.9274 0.7079 0.7276 0.7325
—17.10.6018 0.9304 0.9271 0.7084 0.7276 0.7325
—18 1 0.6018 0.9303 0.9269 0.7086 0.7276 0.7325
—1910.6018 0.9303 0.9268 0.7087 0.7276 0.7325
~20 1 0.6018 0.9303 0.9268 0.7088 0.7276 0.7325
pY [ 0.6018 0.9303 0.9268 0.7088 0.7276 0.7325

)
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(a) Computed Solution U128 (b) Fine mesh comparison U128 — {71024

Fig 1. Plots of numerical solution and approximate error for Example 1 with ¢ = 2715,

convergence in the Table. This suggests that the theoretical constraint (4) may not be
required in practice.

Example 2 (Incompatible problem) Motivated by the test example from [4, equation
(63)], consider the following problem

—eNu+tu, =1, in Qi={(z,y)|z* +v*<1}; u=0, on 9N (8)

In Figure 2, we see some significant difference (between the computed solution and a fine
mesh solution) in the vicinity of the two characteristic points. In Table 2, we present a
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corresponding table of computed orders of convergence. We again observe convergence
in the Table. This suggests that the lack of compatibility in the reduced problem does
not appear to have a significant detrimental effect on the performance of the method
in the outflow region. These numerical results indicate that the question of whether the
above numerical method is parameter-uniform or not, for incompatible problems like (8),
warrants further investigation.

(a) Computed Solution U'%® (b) Fine mesh comparison U128 — {71024

Fig 2. Plots of numerical solution and approximate error for Example 2 with ¢ = 2715,

Table 2. Computed double-mesh orders for (8) for some sample values of (N, ¢)
Y

e\N 8 16 32 64 128 256

270 10.9984 0.9986 0.9992 0.9995 0.9998 0.9999
2 0.9923 1.0005 1.0000 1.0000 1.0000 1.0000
272 109156 0.8106 0.8600 0.9386 0.9699 0.9851
273 10.7233 0.6661 0.8192 0.9120 0.9576 0.9792
274 | 0.4440 0.5900 0.7581 0.8792 0.9408 0.9699
275 | 0.6701 0.4357 0.0832 0.8009 0.8945 0.9470
56
P §
2
2

0.5775 0.8902 0.3358 0.4911 0.7178 0.7078
0.4678 1.1707 0.3489 0.4917 0.7189 0.7080
-8 10.3690 1.1901 0.5374 0.4959 0.7192 0.7092
=9 102946 1.1123 0.7616 0.4986 0.7193 0.7097
2710 1 0.2345 1.0235 0.9476 0.4996 0.7197 0.7100
27111 0.1947 0.9385 1.0912 0.5002 0.7199 0.7102
2712 1 0.1722 0.8686 1.1931 0.5005 0.7199 0.7104
2713 1 0.1602 0.8194 1.2461 0.5133 0.7202 0.7105
2714 10.1539 0.7897 1.1939 0.6037 0.7204 0.7106
2715 1 0.1507 0.7734 1.1456 0.6726 0.7206 0.7106
2716 | 0.1491 0.7648 1.1147 0.7143 0.7206 0.7106
2717 1 0.1483 0.7604 1.0970 0.7375 0.7207 0.7106
2718 1 0.1479 0.7582 1.0874 0.7499 0.7207 0.7106
2719 1 0.1477 0.7571 1.0824 0.7563 0.7207 0.7106
2720 | 0.1476 0.7565 1.0799 0.7595 0.7207 0.7106
pN | 0.1476 0.7565 1.0799 0.7595 0.7207 0.7106
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Annoramnus. PaccmarpuBaercst CHHIYIISIPHO BO3MYIIIEHHAST SJIIUIITHIECKAsT 3a1a9a TUIA KOHBEKIIHsI-
muddysus B Kpyrosoit obsractu. C UCIOIB30BaHUEM MOJISPHBIX KOOP/IMHAT, IIPOCTOI CXEMbI C PA3HOCTSI-
MU MPOTUB IIOTOKA U KyCOYHO-paBHOMepHOI ceTku [llumknHa B pajuajbHOM HAIIPABJICHUN I HEE
CTPOUTCS YHMCJICHHBIH METOJ, KOTOPBIil Oy/I€T MOHOTOHHBIM, MOTOYEYHO TOYHBIM W PABHOMEPHBIM 110
[apaMerpy IpU HEKOTOPBIX OIPAHUYEHUSIX COBMECTHOCTH. [IpUBOMSTCS INC/IEHHBIE SKCIIEPUMEHTHI, NJI-
Jiocrpupyooimre 3p@GEeKTUBHOCTD JAHHOIO YHUCJIEHHOINO METOJa B CJIydae, KOIJa STU OrpAHUYEHUs He
HaKJIaIbIBAIOTCS HA, JIAHHBIE 3aJIa9H.
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