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Abstract.

We consider two-dimensional singularly perturbed fourth order problems and estimate on properly
constructed layer-adapted errors of a mixed method in the associated energy norms and balanced norms.
This paper is a shortened version of [4].
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Introduction

Let us consider the singularly perturbed plate bending problem given by the fourth-order
differential equation

e2A’u—bAu+ (c-Vu+du=f inQ:=(0,1)% (1a)

where b > by > 1, d — L(dive+ Ab) > § > 0 and f € L*(Q) are smooth functions, with
the boundary conditions

u:@:() onI':= 00. (1b)

on
The solution of this problem lies in H? which means, a conforming finite element discreti-
sation requires C'-elements. They are not very popular in 2d or 3d, which leads to the
widely usage of mixed or non-conforming methods. In this paper we want to study mixed
finite element methods of order p. For non-singularly perturbed problems (¢ = 1) and

p-th order finite-element approximation for v and w = Awu, the classical error estimate

[ = unlls + hllw = wallo < CAP[[ullprs (2)
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for the discrete solutions u;, and wy on a standard shape-regular mesh with p > 2, is
known, see [3, 11].

Here we want to consider the singularly perturbed case and estimation in energy and
balanced norms. We use standard notation for Sobolev spaces, where |[|-||o is the L?-norm,
|- |x the seminorm in H* and ||-|x the full H*-norm. Furthermore, we denote by (u,v)p
the L%-scalar product over a domain D C €2, a subscript we drop if D = €.

1. Solution decomposition and meshes

For our numerical analysis to work we assume a decomposition of the solution u of
problem (1a)+(1b) into a smooth part, boundary layers and corner layers:

u=S+Y E where T={1,23412233441}.
kel

Here S stands for the smooth part, Ey with £ = 1,2, 3,4 for a boundary layer and Ej,
with £ = 12,23, 34,41 for a corner layer. More precisely, we assume

105855 lo < C, 0200 By (2, y)| < Ce' e /e,
0500 B (x, )| < Cel=dev/e, 10500 Ena (2, y)| < Celimiema/eemv/e,

and similarly for the other components of the decomposition. These assumptions are
reasonable, see e.g in 1d in [12] or for smooth domains in [2, §12.4.3].

Using the information on the layers we generate a layer-adapted Shishkin mesh [15].
With the transition points A = oeln N < }1 the interval [0, 1] is now partitioned with a
piecewise equidistant mesh, that is constructed by equidistantly dividing [0, A] into N/4
subintervals, [A,1 — A] into N/2 and [1 — A, 1] into N/4 subintervals again. The tensor
product of two such one-dimensional meshes gives the Shishkin mesh.

With above assumption on the solution decompositions we have |E} (A, y)| < CeN~°.
These layers are therefore weak layers as their influence vanishes with decreasing ¢ in a
pointwise sense. Note also that the small and the large meshwidths satisfy

4\ 1 -2\

h:WSC%N_llnN and H =2 < CN L

2. Numerical method and analysis

Using w = eAu € H*(Q), we rewrite the fourth-order problem as a system and obtain a
weak formulation:

Find (u,w) € H}(Q) x H'(Q) such that for all (p,v) € H'(Q) x H}(Q)

e(Vu, V) + (w, ) =0,
(OVu, Vi) + ((c - V)u + du, ) — e(Vw, Vo)) = (f,¢),

where ¢ = ¢ + Vb. The associated bilinear form is given by a : (H} x H')* — R with

a((u,w), (¥, ¢)) = e(Vu, Vo) + (w, ) + (bVu, Vi) + (¢ - Vu+ du, ) —e(Vw, Vi)).
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and a corresponding energy norm by
2
1w, )II” = [l + bl Veel[§ + ]l
By a direct calculation we have coercivity of the bilinear form w.r.t. the energy norm
2
a((u, w), (u, w)) = ||| (u, w)||”.

Therefore, above mixed formulation has a unique solution. Now let us define the discrete
space on a rectangularly divided mesh T . We use

Vi={ve H(Q): v|, € Q,(1)Vr € Ty}, Vo:=V N Hi(Q).

Here Q,(7) is the polynomial space on 7, with polynomial degrees at most p in each
coordinate direction. The discrete problem now reads: Find (uy,wy) € Vo x V such that

a((un, wn), (¥, ) = (f, ) forallp eV, v €W (3)

2.1. Estimation in the energy norm

The analysis of our method works, as usual, with the help of suitable interpolation opera-
tors and their error estimates. Let us define the interpolation operators I : C(Q2) — V,(€2)
and J : C(Q) — V() in the sense of [5, p. 108] and [8]. For these interpolation opera-
tors hold the anisotropic interpolation-error estimates by [1, 10]. Using these, standard
techniques and the definition of the mesh, see i.e. [14, Section II1.3.5], we obtain the
following interpolation-error estimates.

Lemma 1. We have foro >p+1
|luw — Tullp < C(N~'1In N)PH, |V (u— Iu)|jp < C(N"'In N)P,
|w — Jwllo < C(N~'In NP IV (w — Jw)|lo < Ce™Y2(N~In N)P.

We can also use supercloseness estimates based on integral identities from [7, 6, 17,
16]. They yield on each cell 7

{(Tv = 0)zs Xa)r| < ORZ |vgy0a

0,7 Xz ||0,7'- (48“)

Let us now consider a rectangular domain 7' = [ J{7} with ¢, 7 and {5 being its left and
right boundary. With inverse and Holder inequalities we conclude also the estimates

K,
(70 = v)orxadrl < € k7 (3Nl + loanrolor ) Il

TCT

k. 1/2
+0Y Y w (h_> syt 2 @romyIXllor. (4D)

2
i=1 TCT T
Tﬁ€i7T¢@
If v, =0o0r x =0on ¢ for i =1 or ¢ = 2, then the sum containing 7 in (4b) can
be omitted. The proof of the following theorem is based purely on interpolation-error
estimates, supercloseness estimates and standard techniques for singularly perturbed
problems.
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Theorem 2. Let (up,wy) € Vo x V. Then it holds for the discrete error on a Shishkin
mesh with o > p+ 2 the supercloseness result

Il(Tu — up, Jw — wp)|]| < C(N~Hn NP,

Having these discrete-error and interpolation-error estimates, it is easy to conclude
the following error estimates.

Theorem 3. On a Shishkin mesh with o > p+ 2 holds for the exact solution (u,w) and
the discrete solution (up,wy) € Vo x V

Il(w = up,w —wy)|[| < C(N"*In N)P.

2.2. Estimation in a balanced norm

For a typical layer function E; and a non-layer function S the energy-norm yields
(B, eAB|IP = [ AB§ + bol[VE[ + 0l Eallg < Ce and [[|(S, eAS)|I* < C
and the the layer is not seen for € — 0 in the energy norm. Introducing a balanced norm
Il (s )l = & Hlwllg + boll Vull§ + 8]llls

with

(v, eAE)|, = | AB[§ + bo [ VEL 5 + S| Erlls < C and  [[|(S,eA8)], < C,
the layer is seen in this balanced norm. Unfortunately, our method is not coercive with
respect to this norm. In order to prove error estimates we have to combine some more
ideas. In [9] a special interpolation operator is constructed which uses different inter-
polants for a decomposition of w = eAwu into smooth and layer components and is for
layer components zero in the subdomain where the layer components are small enough.

In [13] the idea of using suitable projections in estimating balanced norms is introduced.
For this purpose we define the Ritz-projection mu € V; by

(bV(mu —u), V) + (c - V(ru — u),¥) + (d(mu — u), ) =0
for all v € Vi. Then we have for ¢ = mu — up € Vy and ¢ = Jw —wy, € V.
||| (rw — wp, Jw — wh)H|2 < e(V(ru—u), Vo) + (Jw —w, p) — e(V(Jw — w), V).
Using these ideas we can prove error estimates in the stronger balanced norm.

Theorem 4. [t holds for the error of the discrete solution (un,wp) € Vo x V in the
balanced norm
1w — up,w —wy)l, < C(N"'In N)P~

Remark 5. Comparing the results of the Theorems 3 and 4 we observe a reduction of
the convergence order by one when measuring in the stronger norm. Numerically, there
15 no reduction visible.

Moreover, combining Theorems 3 and 4 we obtain

llu — up||ls + (N*1 lnN)éfl/QHw — wpllo < C’(N*1 In N)P

which s the corresponding uniform result on Shishkin meshes to the classical estimate
(2) fore=1.
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2.3. Further problems

The techniques used for the error estimates presented here can also be used for related
problems. One of these examples is

2 A — bAT+ (¢ V)a +d
{L:

i=f inQ:=(0,1)
At =0

on .

These boundary conditions introduce even weaker boundary layers, but above analysis
can be adapted for this case too, and the same results in the energy norm hold. This
norm is again not balanced, but can be made stronger by properly defining the weights
in its definition. In this stronger norm an error estimate of the same order as in the
energy norm holds in the case of constant b.

The extension to problems of type

A% 4 da=f inQ:=(0,1)%

with either of the boundary conditions considered above, can also be done. Here the
boundary layers are stronger than the ones considered so far. Still the analysis can be
applied.

Further information, the full proofs and numerical results can be found in [4].
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AnHoTamusa. PaccMaTpuBaioTCs JIByMEPHbLIE CHHTYJISAPHO BO3MYMISHHBIE 33Ja9d YETBEPTOrO II0-
PAIKA U ONEHUBAIOTCA JOJXKHBIM 00pa30M MOCTPOCHHBIE aJaNTHPOBAHHBIE K CJIOK MOIPEITHOCTH CMe-
MIAHHOI'O MeTOJa B COOTBETCTBYIOIINX HEPreTHYecKnX HOpMax U cOaJaHCHPOBAHHBLIX HopMax. JlanHas
paboTa sBJISETCS COKPAIeHHOH Bepeueit [4].

KurogeBbpie ciioBa:  CHHI'YJISIpDHbIE BO3MYIIEHUS, 33Ja4a YETBEPTOrO IMOPsIKA, CMEIIaHHBIH MeTOJ,
[IOTPAHUYHBIE CJIOW, 3/ IAITUPOBAHHbBIE K CJIOI0 CETKH, COATAHCHPOBAHHBIE HOPMBbI
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